This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure (...) of the physical world. The no-miracles argument is the primary motivation for scientific realism. It is a presupposition of this argument that unobservable entities are explanatory only when they determine the empirical phenomena they explain. I argue that mathematical entities should also be seen as explanatory only when they determine the empirical facts they explain, namely, the modal structure of the physical world. Thus, scientific realism commits us to a metaphysical determination relation between mathematics and physical modality that has not been previously recognized. The requirement to account for the metaphysical dependence of modal physical structure on mathematics limits the class of acceptable solutions to the applicability problem that are available to the scientific realist. (shrink)
Contemporary philosophical accounts of the applicability of mathematics in physical sciences and the empirical world are based on formalized relations between the mathematical structures and the physical systems they are supposed to represent within the models. Such relations were constructed both to ensure an adequate representation and to allow a justification of the validity of the mathematical models as means of scientific inference. This article puts in evidence the various circularities (logical, epistemic, and of definition) that are present (...) in these formal constructions and discusses them as an argument for the alternative semantic and propositional-structure accounts of the applicability of mathematics. (shrink)
According to Steiner (1998), in contemporary physics new important discoveries are often obtained by means of strategies which rely on purely formal mathematical considerations. In such discoveries, mathematics seems to have a peculiar and controversial role, which apparently cannot be accounted for by means of standard methodological criteria. M. Gell-Mann and Y. Ne׳eman׳s prediction of the Ω− particle is usually considered a typical example of application of this kind of strategy. According to Bangu (2008), this prediction is apparently based (...) on the employment of a highly controversial principle—what he calls the “reification principle”. Bangu himself takes this principle to be methodologically unjustifiable, but still indispensable to make the prediction logically sound. In the present paper I will offer a new reconstruction of the reasoning that led to this prediction. By means of this reconstruction, I will show that we do not need to postulate any “reificatory” role of mathematics in contemporary physics and I will contextually clarify the representative and heuristic role of mathematics in science. (shrink)
The attempts of theoretically solving the famous puzzle-dictum of physicist Eugene Wigner regarding the “unreasonable” effectiveness of mathematics as a problem of analytical philosophy, started at the end of the 19th century, are yet far from coming out with an acceptable theoretical solution. The theories developed for explaining the empirical “miracle” of applied mathematics vary in nature, foundation and solution, from denying the existence of a genuine problem to structural theories with an advanced level of mathematical formalism. Despite (...) this variation, methodologically fundamental questions like “Which is the adequate theoretical framework for solving Wigner’s conjecture?” and “Can the logico-mathematical formalism solve it and is it entitled to do it?” did not receive answers yet. The problem of the applicability of mathematics in the physical reality has been treated unitarily in some sense, with respect to the semantic-conceptual use of the constitutive terms, within both the structural and non-structural theories. This unity (of consistency) applied to both the referred objects and concepts per se and the aims of the investigations. For being able to make an objective study of the possible alternatives of the existent theories, a foundational approach of them is needed, including through semantic-conceptual distinctions which to weaken the unity of consistency. (shrink)
Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of Frege (...) to a wider audience. In addition to the new introduction by John Slater, this edition contains Russell's introduction to the 1937 edition in which he defends his position against his formalist and intuitionist critics. (shrink)
This is not a mathematics book, but a book about mathematics, which addresses both student and teacher, with a goal as practical as possible, namely to initiate and smooth the way toward the student’s full understanding of the mathematics taught in school. The customary procedural-formal approach to teaching mathematics has resulted in students’ distorted vision of mathematics as a merely formal, instrumental, and computational discipline. Without the conceptual base of mathematics, students develop over time (...) a “mathematical anxiety” and abandon any effort to understand mathematics, which becomes their “traditional enemy” in school. This work materializes the results of the inter- and trans-disciplinary research aimed toward the understanding of mathematics, which concluded that the fields with the potential to contribute to mathematics education in this respect, by unifying the procedural and conceptual approaches, are epistemology and philosophy of mathematics and science, as well as fundamentals and history of mathematics. These results argue that students’ fear of mathematics can be annulled through a conceptual approach, and a student with a good conceptual understanding will be a better problem solver. The author has identified those zones and concepts from the above disciplines that can be adapted and processed for familiarizing the student with this type of knowledge, which should accompany the traditional content of school mathematics. The work was organized so as to create for the reader a unificatory image of the complex nature of mathematics, as well as a conceptual perspective ultimately necessary to the holistic understanding of school mathematics. The author talks about mathematics to convince readers that to understand mathematics means first to understand it as a whole, but also as part of a whole. The nature of mathematics, its primary concepts (like numbers and sets), its structures, language, methods, roles, and applicability, are all presented in their essential content, and the explanation of non-mathematical concepts is done in an accessible language and with many relevant examples. (shrink)
Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) mathematical truths are not (...) truths about the external world but specifications (formulations) of mathematical conceptions; (iii) mathematics is first and foremost our imagined tool by which, with certain assumptions about its applicability, we explore nature and synthesize our rational cognition of it. (shrink)
This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as (...) a formal science, mathematical ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is. The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl’s phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of “naturalist” and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the “unreasonable” effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies. (shrink)
This study provides a basic introduction to agent-based modeling (ABM) as a powerful blend of classical and constructive mathematics, with a primary focus on its applicability for social science research. The typical goals of ABM social science researchers are discussed along with the culture-dish nature of their computer experiments. The applicability of ABM for science more generally is also considered, with special attention to physics. Finally, two distinct types of ABM applications are summarized in order to illustrate (...) concretely the duality of ABM: Real-world systems can not only be simulated with verisimilitude using ABM; they can also be efficiently and robustly designed and constructed on the basis of ABM principles. (shrink)
The classical (set-theoretic) concept of structure has become essential for every contemporary account of a scientific theory, but also for the metatheoretical accounts dealing with the adequacy of such theories and their methods. In the latter category of accounts, and in particular, the structural metamodels designed for the applicability of mathematics have struggled over the last decade to justify the use of mathematical models in sciences beyond their 'indispensability' in terms of either method or concepts/entities. In this paper, (...) I argue that these metamodels employ structures of different natures and epistemologies, and this diversity does pose a serious problem to the intended justification. (shrink)
Einstein, like most philosophers, thought that there cannot be mathematical truths which are both necessary and about reality. The article argues against this, starting with prima facie examples such as "It is impossible to tile my bathroom floor with regular pentagonal tiles." Replies are given to objections based on the supposedly purely logical or hypothetical nature of mathematics.
“Structuralism, Fictionalism, and the Applicability of Mathematics in Science”. This article has two objectives. The first one is to review some of the most important questions in the contemporary philosophy of mathematics: What is the nature of mathematical objects? How do we acquire knowledge about these objects? Should mathematical statements be interpreted differently than ordinary ones? And, finally, how can we explain the applicability of mathematics in science? The debate that guides these reflections is the (...) one between mathematical realism and anti-realism. On the other hand, the second objective is to discuss the arguments that use the applicability of mathematics in science to justify mathematical realism, and show that none of them reaches its aim. To this end, we will distinguish three aspects of the problem of the applicability of mathematics: the utility of mathematics in science, the unexpected utility of some mathematical theories, and the apparent indispensability of mathematics in our best scientific theories - in particular, in our best scientific explanations. Finally, I argue that none of these aspects constitutes a reason to adopt mathematical realism. (shrink)
The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...) mathematical practices and their foundations. Yet, the collapse of Euclidean certitudes, of over 2300 years, and the crisis in the mathematical analysis of the 19th century, led to the exclusion of “geometric judgments” from the foundations of Mathematics. After the success and the limits of the logico-formal analysis, it is necessary to broaden our foundational tools and re-examine the interactions with natural sciences. In particular, the way the geometric and algebraic approaches organize knowledge is analyzed as a cross-disciplinary and cross-cultural issue and will be examined in Mathematical Physics and Biology. We finally discuss how the current notions of mathematical (phase) “space” should be revisited for the purposes of life sciences. (shrink)
According to Agrippa's trilemma, an attempt to justify something leads to either infinite regress, circularity, or dogmatism. This essay examines whether and to what extent the trilemma applies to ethics. There are various responses to the trilemma, such as foundationalism, coherentism, contextualism, infinitism, and German idealism. Examining those responses, the essay shows that the trilemma applies at least to rational justification of contentful moral beliefs. This means that rationalist ethics based on any contentful moral belief are rationally unjustifiable.
Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
ABSTRACT- In this paper my aim is to concentrate on the concepts like predicate, properties and classes; with an aim to understand the reason behind the re-applicability of general terms. It must also be noted that here general terms are supposed to be found in the predicate place of a proposition as properties and how they are ascribed to objects which may be mentioned in the subject place. This paper harps on the issue of; what acts as a deciding (...) factor behind such act of classification. A clear effort has been made as to the reason behind our grouping of objects and what we actually search for while choosing an object under a class. I have tried to make my point on the issue that at most we can call our act of classification as natural instead of calling a class as natural. For this I have particularly chosen an article of Anthony Quinton namely, ‘Properties and Classes’ (1958 vol-58, Issue 1, 1st June Proceedings of the Aristotelian Society). (shrink)
Modern philosophy of mathematics has been dominated by Platonism and nominalism, to the neglect of the Aristotelian realist option. Aristotelianism holds that mathematics studies certain real properties of the world – mathematics is neither about a disembodied world of “abstract objects”, as Platonism holds, nor it is merely a language of science, as nominalism holds. Aristotle’s theory that mathematics is the “science of quantity” is a good account of at least elementary mathematics: the ratio of (...) two heights, for example, is a perceivable and measurable real relation between properties of physical things, a relation that can be shared by the ratio of two weights or two time intervals. Ratios are an example of continuous quantity; discrete quantities, such as whole numbers, are also realised as relations between a heap and a unit-making universal. For example, the relation between foliage and being-a-leaf is the number of leaves on a tree,a relation that may equal the relation between a heap of shoes and being-a-shoe. Modern higher mathematics, however, deals with some real properties that are not naturally seen as quantity, so that the “science of quantity” theory of mathematics needs supplementation. Symmetry, topology and similar structural properties are studied by mathematics, but are about pattern, structure or arrangement rather than quantity. (shrink)
The literature on the indispensability argument for mathematical realism often refers to the ‘indispensable explanatory role’ of mathematics. I argue that we should examine the notion of explanatory indispensability from the point of view of specific conceptions of scientific explanation. The reason is that explanatory indispensability in and of itself turns out to be insufficient for justifying the ontological conclusions at stake. To show this I introduce a distinction between different kinds of explanatory roles—some ‘thick’ and ontologically committing, others (...) ‘thin’ and ontologically peripheral—and examine this distinction in relation to some notable ‘ontic’ accounts of explanation. I also discuss the issue in the broader context of other ‘explanationist’ realist arguments. (shrink)
This article introduces an account of moral education grounded in Zagzebski’s recent Exemplarist Moral Theory and discusses two problems that have to be solved for the account to become a realistic alternative to other educational models on the market, namely the limited-applicability problem and the problem of indoctrination. The first problem raises worries about the viability of the account in ordinary circumstances. The second charges the proposed educational model with indoctrinating students. The main goal of this article is to (...) show how an exemplar-based account of moral education can handle both problems without compromising its structure and upshot. (shrink)
This essay offers a strategic reinterpretation of Kant’s philosophy of mathematics in Critique of Pure Reason via a broad, empirically based reconception of Kant’s conception of drawing. It begins with a general overview of Kant’s philosophy of mathematics, observing how he differentiates mathematics in the Critique from both the dynamical and the philosophical. Second, it examines how a recent wave of critical analyses of Kant’s constructivism takes up these issues, largely inspired by Hintikka’s unorthodox conception of Kantian (...) intuition. Third, it offers further analyses of three Kantian concepts vitally linked to that of drawing. It concludes with an etymologically based exploration of the seven clusters of meanings of the word drawing to gesture toward new possibilities for interpreting a Kantian philosophy of mathematics. (shrink)
Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. For Nietzsche, (...) math is an artistic and moral activity that has an essential role to play in the joyful wisdom. (shrink)
In this paper, I argue that the disjunction elimination rule presupposes the principle that a true disjunction contains at least one true disjunct. However, in some contexts such as supervaluationism or quantum logic, we have good reasons to reject this principle. Hence, disjunction elimination is restricted in at least one respect: it is not applicable to disjunctions for which this principle does not hold. The insight that disjunction elimination presupposes the principle that a true disjunction contains at least one true (...) disjunct is applied to two arguments which argue for this very principle. I show that these arguments are rule-circular since they rest on disjunction elimination. I claim that rule-circularity better explains why the arguments fail than the explanations provided by Rumfitt (2015), which, for instance, rely on controversial principles about truth. (shrink)
The article evaluates the Domain Postulate of the Classical Model of Science and the related Aristotelian prohibition rule on kind-crossing as interpretative tools in the history of the development of mathematics into a general science of quantities. Special reference is made to Proclus’ commentary to Euclid’s first book of Elements , to the sixteenth century translations of Euclid’s work into Latin and to the works of Stevin, Wallis, Viète and Descartes. The prohibition rule on kind-crossing formulated by Aristotle in (...) Posterior analytics is used to distinguish between conceptions that share the same name but are substantively different: for example the search for a broader genus including all mathematical objects; the search for a common character of different species of mathematical objects; and the effort to treat magnitudes as numbers. (shrink)
In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, (...) D—the challenge to justify our D-beliefs—with the reliability challenge for D-realism—the challenge to explain the reliability of our D-beliefs. Harman’s contrast is relevant to the first, but not, evidently, to the second. One upshot of the discussion is that genealogical debunking arguments are fallacious. Another is that indispensability considerations cannot answer the Benacerraf–Field challenge for mathematical realism. (shrink)
The objective of this article is to take into account the functioning of representational cognitive tools, and in particular of notations and visualizations in mathematics. In order to explain their functioning, formulas in algebra and logic and diagrams in topology will be presented as case studies and the notion of manipulative imagination as proposed in previous work will be discussed. To better characterize the analysis, the notions of material anchor and representational affordance will be introduced.
The physical foundations of mathematics in the theory of emergent space-time-matter were considered. It is shown that mathematics, including logic, is a consequence of equation which describes the fundamental field. If the most fundamental level were described not by mathematics, but something else, then instead of mathematics there would be consequences of this something else.
We propose a way to explain the diversification of branches of mathematics, distinguishing the different approaches by which mathematical objects can be studied. In our philosophy of mathematics, there is a base object, which is the abstract multiplicity that comes from our empirical experience. However, due to our human condition, the analysis of such multiplicity is covered by other empirical cognitive attitudes (approaches), diversifying the ways in which it can be conceived, and consequently giving rise to different mathematical (...) disciplines. This diversity of approaches is founded on the manifold categories that we find in physical reality. We also propose, grounded on this idea, the use of Aristotelian categories as a first model for this division, generating from it a classification of mathematical branches. Finally we make a history review to show that there is consistency between our classification, and the historical appearance of the different branches of mathematics. (shrink)
Biological research on race has often been seen as motivated by or lending credence to underlying racist attitudes; in part for this reason, recently philosophers and biologists have gone through great pains to essentially deny the existence of biological human races. We argue that human races, in the biological sense of local populations adapted to particular environments, do in fact exist; such races are best understood through the common ecological concept of ecotypes. However, human ecotypic races do not in general (...) correspond with 'folk' racial categories, largely because many similar ecotypes have multiple independent origins. Consequently, while human natural races exist, they have little or nothing in common with 'folk' races. (shrink)
Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...) of themes in recent philosophy of mathematics (concerning a priority and fictionalism, for example) in revealing new light. (shrink)
Abstract In the new millennium there have been important empirical developments in the philosophy of mathematics. One of these is the so-called “Empirical Philosophy of Mathematics”(EPM) of Buldt, Löwe, Müller and Müller-Hill, which aims to complement the methodology of the philosophy of mathematics with empirical work. Among other things, this includes surveys of mathematicians, which EPM believes to give philosophically important results. In this paper I take a critical look at the sociological part of EPM as a (...) case study of ... (shrink)
In these days, there is an increasing technological development in intelligent tutoring systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics that help students understand the basics of math and that helps a lot of students of all ages to understand the topic because it's important for students of adding and subtracting. Through which the student will be able to study the course and solve related problems. An (...) evaluation of the intelligent tutoring systems was carried out and the results were encouraging. (shrink)
The role of mathematics in the development of Gilles Deleuze's (1925-95) philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic is demonstrated in this paper by differentiating Deleuze's interpretation of the problem of the infinitesimal in Difference and Repetition from that which G. W. F Hegel (1770-1831) presents in the Science of Logic . Each deploys the operation of integration as conceived at different stages in the development of the infinitesimal calculus in (...) his treatment of the problem of the infinitesimal. Against the role that Hegel assigns to integration as the inverse transformation of differentiation in the development of his dialectical logic, Deleuze strategically redeploys Leibniz's account of integration as a method of summation in the form of a series in the development of his philosophy of difference. By demonstrating the relation between the differential point of view of the Leibnizian infinitesimal calculus and the differential calculus of contemporary mathematics, I argue that Deleuze effectively bypasses the methods of the differential calculus which Hegel uses to support the development of the dialectical logic, and by doing so, sets up the critical perspective from which to construct an alternative logic of relations characteristic of a philosophy of difference. The mode of operation of this logic is then demonstrated by drawing upon the mathematical philosophy of Albert Lautman (1908-44), which plays a significant role in Deleuze's project of constructing a philosophy of difference. Indeed, the logic of relations that Deleuze constructs is dialectical in the Lautmanian sense. (shrink)
I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are vulnerable (...) to such arguments while mathematical, logical, and normative beliefs are not—the very construction of Harman-style skeptical arguments requires the truth of significant fragments of our mathematical, logical, and normative beliefs, but requires no such thing of our moral beliefs. Given this property, Harman-style skeptical arguments against logical, mathematical, and normative beliefs are self-effacing; doubting these beliefs on the basis of such arguments results in the loss of our reasons for doubt. But we can cleanly doubt the truth of morality. (shrink)
This article examines the possibility of philosophizing about mathematics with children. It aims at outlining the nature of the practice of philosophy of mathematics with children in a mainly theoretical and exploratory way. First, an attempt at a definition is proposed. Second, I suggest some reasons that might motivate such a practice. My thesis is that one can identify an intrinsic as well as two extrinsic goals of philosophizing about mathematics with children. The intrinsic goal is related (...) to a presumed inherent importance of presenting children with some philosophical questions about mathematics. The extrinsic goals consist of first the positive effects such a practice can have on mathematical learning and abilities and second the fostering of children's understanding of philosophical method of inquiry and thinking and therefore of their philosophical thinking competences. Third, some examples found in the literature of previously developed ways of practising philosophy of mathematics with children are presented. This article aims at giving a general outlining picture of the issues surrounding the practice of philosophy of mathematics with children and should therefore be read as an encouragement to further development and studies. (shrink)
In this paper, I present and discuss critically the main elements of Mario Bunge’s philosophy of mathematics. In particular, I explore how mathematical knowledge is accounted for in Bunge’s systemic emergent materialism.To Mario, with gratitude.
Throughout his work, John Dewey seeks to emancipate philosophical reflection from the influence of the classical tradition he traces back to Plato and Aristotle. For Dewey, this tradition rests upon a conception of knowledge based on the separation between theory and practice, which is incompatible with the structure of scientific inquiry. Philosophical work can make progress only if it is freed from its traditional heritage, i.e. only if it undergoes reconstruction. In this study I show that implicit appeals to the (...) classical tradition shape prominent debates in philosophy of mathematics, and I initiate a project of reconstruction within this field. (shrink)
For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could (...)mathematics be knowledge about? (2) How do we distinguish significant from insignificant mathematics? This is a fundamental philosophical problem concerning the nature of mathematics. But it is also a practical problem concerning mathematics itself. In the absence of the solution to the problem, there is the danger that genuinely significant mathematics will be lost among the unchecked growth of a mass of insignificant mathematics. This second problem cannot, it would seem, be solved granted knowledge-inquiry. For, in order to solve the problem, mathematics needs to be related to values, but this is, it seems, prohibited by knowledge-inquiry because it could only lead to the subversion of mathematical rigour. Both problems are solved, however, when mathematics is viewed from the perspective of wisdom-inquiry. (1) Mathematics is not a branch of knowledge. It is a body of systematized, unified and inter-connected problem-solving methods, a body of problematic possibilities. (2) A piece of mathematics is significant if (a) it links up to the interconnected body of existing mathematics, ideally in such a way that some problems difficult to solve in other branches become much easier to solve when translated into the piece of mathematics in question; (b) it has fruitful applications for (other) worthwhile human endeavours. If ever the revolution from knowledge to wisdom occurs, I would hope wisdom mathematics would flourish, the nature of mathematics would become much more transparent, more pupils and students would come to appreciate the fascination of mathematics, and it would be easier to discern what is genuinely significant in mathematics (something that baffled even Einstein). As a result of clarifying what should count as significant, the pursuit of wisdom mathematics might even lead to the development of significant new mathematics. (shrink)
Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered (...) and rejected. Constructive empiricism cannot be realist about abstract objects; it must reject even the realism advocated by otherwise ontologically restrained and epistemologically empiricist indispensability theorists. Indispensability arguments rely on the kind of inference to the best explanation the rejection of which is definitive of constructive empiricism. On the other hand, formalist and logicist anti-realist positions are also shown to be untenable. It is argued that a constructive empiricist philosophy of mathematics must be fictionalist. Borrowing and developing elements from both Philip Kitcher's constructive naturalism and Kendall Walton's theory of fiction, the account of mathematics advanced treats mathematics as a collection of stories told about an ideal agent and mathematical objects as fictions. The account explains what true portions of mathematics are about and why mathematics is useful, even while it is a story about an ideal agent operating in an ideal world; it connects theory and practice in mathematics with human experience of the phenomenal world. At the same time, the make-believe and game-playing aspects of the theory show how we can make sense of mathematics as fiction, as stories, without either undermining that explanation or being forced to accept abstract mathematical objects into our ontology. All of this occurs within the framework that constructive empiricism itself provides the epistemological limitations it mandates, the semantic view of theories, and an emphasis on the pragmatic dimension of our theories, our explanations, and of our relation to the language we use. (shrink)
This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; the types of mathematical modality; to the epistemic status of undecidable propositions and abstraction principles in the philosophy of mathematics; to the modal profile of rational propositional intuition; and to (...) the types of intention, when the latter is interpreted as a modal mental state. Each essay is informed by either epistemic logic, modal and cylindric algebra or coalgebra, intensional semantics or hyperintensional semantics. The book's original contributions include theories of: (i) epistemic modal algebras and coalgebras; (ii) cognitivism about epistemic modality; (iii) two-dimensional truthmaker semantics, and interpretations thereof; (iv) the ground-theoretic ontology of consciousness; (v) fixed-points in vagueness; (vi) the modal foundations of mathematical platonism; (vii) a solution to the Julius Caesar problem based on metaphysical definitions availing of notions of ground and essence; (viii) the application of epistemic two-dimensional semantics to the epistemology of mathematics; and (ix) a modal logic for rational intuition. I develop, further, (x) a novel approach to conditions of self-knowledge in the setting of the modal $\mu$-calculus, as well as (xi) novel epistemicist solutions to Curry's and the liar paradoxes. (shrink)
We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content (...) to key intuitions traded in the debate, regarding mathematics’ procurement of explanatory generality, and adjudicates unambiguously in favour of the nominalist, at least as far as ex- planatory generality is concerned. (shrink)
Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.