In this article we explore the underpinnings of what we view as a recent "backlash" in English law, a judicial reaction against considering children's and young people's expressions of their own feelings about treatment as their "true" wishes. We use this case law as a springboard to conceptual discussion, rooted in (a) empirical psychological work on child development and (b) three key philosophical ideas: rationality, autonomy and identity. Using these three concepts, we explore different understandings of our central theme, true (...) wishes. These different conceptual interpretations, we argue, help to elucidate important clinical questions in the area of children's informed consent to treatment. For example, how much should a child's own wishes count in making medical decisions? Does it make a difference if the child or young person is undergoing psychiatric treatment?—if in some sense her wishes are abnormal, not "true" expressions of what she really wants? If the child's wishes do not count, why not? If they do matter but count for less, how much less? We conclude by advocating functional tests of a young person's true wishes, applicable on a case-by-case basis, rather than a black-and-white distinction between "incompetent" children and "competent" adults. (shrink)
In December 2013, the Nonhuman Rights Project (NhRP) filed a petition for a common law writ of habeas corpus in the New York State Supreme Court on behalf of Tommy, a chimpanzee living alone in a cage in a shed in rural New York (Barlow, 2017). Under animal welfare laws, Tommy’s owners, the Laverys, were doing nothing illegal by keeping him in those conditions. Nonetheless, the NhRP argued that given the cognitive, social, and emotional capacities of chimpanzees, Tommy’s confinement constituted (...) a profound wrong that demanded remedy by the courts. Soon thereafter, the NhRP filed habeas corpus petitions on behalf of Kiko, another chimpanzee housed alone in Niagara Falls, and Hercules and Leo, two chimpanzees held in research facilities at Stony Brook University. Thus began the legal struggle to move these chimpanzees from captivity to a sanctuary, an effort that has led the NhRP to argue in multiple courts before multiple judges. The central point of contention has been whether Tommy, Kiko, Hercules, and Leo have legal rights. To date, no judge has been willing to issue a writ of habeas corpus on their behalf. Such a ruling would mean that these chimpanzees have rights that confinement might violate. Instead, the judges have argued that chimpanzees cannot be bearers of legal rights because they are not, and cannot be persons. In this book we argue that chimpanzees are persons because they are autonomous. (shrink)
In order to improve our understanding of the components that reflect functionally important processes during reward anticipation and consumption, we used principle components analyses (PCA) to separate and quantify averaged ERP data obtained from each stage of a modified monetary incentive delay (MID) task. Although a small number of recent ERP studies have reported that reward and loss cues potentiate ERPs during anticipation, action preparation, and consummatory stages of reward processing, these findings are inconsistent due to temporal and spatial overlap (...) between the relevant electrophysiological components. Our results show three components following cue presentation are sensitive to incentive cues (N1, P3a, P3b). In contrast to previous research, reward‐related enhancement occurred only in the P3b, with earlier components more sensitive to break‐even and loss cues. During feedback anticipation, we observed a lateralized centroparietal negativity that was sensitive to response hand but not cue type. We also show that use of PCA on ERPs reflecting reward consumption successfully separates the reward positivity from the independently modulated feedback‐P3. Last, we observe for the first time a new reward consumption component: a late negativity distributed over the left frontal pole. This component appears to be sensitive to response hand, especially in the context of monetary gain. These results illustrate that the time course and sensitivities of electrophysiological activity that follows incentive cues do not follow a simple heuristic in which reward incentive cues produce enhanced activity at all stages and substages. (shrink)
In this brief, we argue that there is a diversity of ways in which humans (Homo sapiens) are ‘persons’ and there are no non-arbitrary conceptions of ‘personhood’ that can include all humans and exclude all nonhuman animals. To do so we describe and assess the four most prominent conceptions of ‘personhood’ that can be found in the rulings concerning Kiko and Tommy, with particular focus on the most recent decision, Nonhuman Rights Project, Inc v Lavery.
While every health care system stakeholder would seem to be concerned with obtaining the greatest value from a given technology, there is often a disconnect in the perception of value between a technology’s promoters and those responsible for the ultimate decision as to whether or not to pay for it. Adopting an empirical ethics approach, this paper examines how five Canadian medical device manufacturers, via their websites, frame the corporate “value proposition” of their innovation and seek to respond to what (...) they consider the key expectations of their customers. Our analysis shows that the manufacturers’ framing strategies combine claims that relate to valuable socio-technical goals and features such as prevention, efficiency, sense of security, real-time feedback, ease of use and flexibility, all elements that likely resonate with a large spectrum of health care system stakeholders. The websites do not describe, however, how the innovations may impact health care delivery and tend to obfuscate the decisional trade-offs these innovations represent from a health care system perspective. Such framing strategies, we argue, tend to bolster physicians’ and patients’ expectations and provide a large set of stakeholders with powerful rhetorical tools that may influence the health policy arena. Because these strategies are difficult to counter given the paucity of evidence and its limited use in policymaking, establishing sound collective health care priorities will require solid critiques of how certain kinds of medical devices may provide a better (i.e., more valuable) response to health care needs when compared to others. (shrink)
We submit this brief in support of the Nonhuman Rights Project’s efforts to secure habeas corpus relief for the elephant named Happy. The Supreme Court, Bronx County, declined to grant habeas corpus relief and order Happy’s transfer to an elephant sanctuary, relying, in part, on previous decisions that denied habeas relief for the NhRP’s chimpanzee clients, Kiko and Tommy. Those decisions use incompatible conceptions of ‘person’ which, when properly understood, are either philosophically inadequate or, in fact, compatible with Happy’s personhood.
This paper aims to shed new light on certain philosophical theories of perceptual experience by examining the semantics of perceptual ascriptions such as “Jones sees an apple.” I start with the assumption, recently defended elsewhere, that perceptual ascriptions lend themselves to intensional readings. In the first part of the paper, I defend three theses regarding such readings: I) intensional readings of perceptual ascriptions ascribe phenomenal properties, II) perceptual verbs are not ambiguous between intensional and extensional readings, and III) intensional (...) perceptual ascriptions have a relational form. The second part of the paper describes the implications of I-III for theories of perceptual experience. I argue that I-III support and reconcile the three main views of perceptual experience, relationalism, disjunctivism, and representationalism. However, I-III leave open at least one important point of contention: particularism, the view that we experience external objects. I conclude by exploring the implications of accepting or denying particularism given I-III. (shrink)
This paper defends the view that perceptual ascriptions such as “Jones sees a cat” are sometimes intensional. I offer a range of examples of intensional perceptual ascriptions, respond to objections to intensional readings of perceptual ascriptions, and show how widely accepted semantic accounts of intensionality can explain the key features of intensional perceptual ascriptions.
Judith Shklar, David Runciman, and others argue against what they see as excessive criticism of political hypocrisy. Such arguments often assume that communicating in an authentic manner is an impossible political ideal. This article challenges the characterization of authenticity as an unrealistic ideal and makes the case that its value can be grounded in a certain political realism sensitive to the threats posed by representative democracy. First, by analyzing authenticity’s demands for political discourse, I show that authenticity has greater (...) flexibility than many assume in accommodating practices common to politics, such as deception, concealment, and persuasion through rhetoric. Second, I argue that a concern for authenticity in political discourse represents a virtue, not a distraction, for representative democracy. Authenticity takes on heightened importance when the public seeks information on how representatives will act in contexts where the public is absent and unable to influence decisions. Furthermore, given the psychological mechanisms behind hypocrisy, public criticism is a sensible response for trying to limit political hypocrisy. From the perspective of democratic theory and psychology, the public has compelling reasons to value authenticity in political discourse. (shrink)
Some time ago, in an article for the Journal of Consciousness Studies, David Chalmers challenged his peers to identify the ingredient missing from our current theories of consciousness, the absence of which prevents us from solving the 'hard' problem and forces us to make do with nonreductive theories. Here I respond to this challenge. I suggest that consciousness is a metaphysical problem and as such can be solved only within a global metaphysical theory. Such a theory would look very (...) like the information theory proposed by Chalmers, but with the addition of an extra phenomenon that would allow it to become fundamental. (shrink)
GAMETOGÊNESE -/- Emanuel Isaque Cordeiro da Silva Instituto Agronômico de Pernambuco Departamento de Zootecnia – UFRPE Embrapa Semiárido -/- • _____OBJETIVO -/- Os estudantes bem informados, estão a buscando conhecimento a todo momento. O estudante de Veterinária e Zootecnia, sabe que a Reprodução é uma área de primordial importância para sua carreira. Logo, o conhecimento da mesma torna-se indispensável. No primeiro trabalho da série fisiologia reprodutiva dos animais domésticos, foi abordado de forma clara, didática e objetiva os mecanismos de diferenciação (...) sexual dos embriões em desenvolvimento, quais os genes envolvidos nesse processo e tudo mais. Nesse segundo trabalho, a abordagem será teórica, mas também clara, sobre a formação primordial dos gametas femininos e masculinos, através da ovogênese nas fêmeas e a espermatogênese nos machos. Esse trabalho visa levar a importância do processo de formação dos gametas e a produção hormonal das gônadas, bem como o entendimento sobre as interações com o eixo hipotálamo-hipofisário. -/- •____INTRODUÇÃO -/- A reprodução sexual é um processo mediante a qual dois organismos da mesma espécie unem seu material genético para dar lugar a um organismo fixo com combinação única de genes; para isso, cada organismo produz células que contém a metade do material genético característico da espécie. Essas células haploides (1n) são denominadas gametas; ao combinar-se um gameta masculino com um feminino produz-se uma célula diploide (2n) (zigoto ou ovo) a partir da qual se forma o embrião. A grande maioria das espécies com reprodução sexual são anisogâmicas, o que significa que produzem dois tipos de gametas diferentes: os gametas masculinos são microscópios, móveis e produzem-se em grande quantidade, enquanto que os femininos são grandes, imóveis e produzem-se em menor quantidade. O tipo de gameta que um indivíduo produz é o que define seu sexo; sobre os animais o macho é o indivíduo que produz grandes quantidades de espermatozoides e a fêmea produz uma menor quantidade de óvulos, enquanto que nas plantas as gônadas masculinas são as produtoras pólen e as femininas produzem oosferas. Os gametas são diferentes do resto das células do organismo, as quais se chamam células somáticas; essas últimas são diploides porque contém dois pares de cromossomos, um par herdado do pai do indivíduo e o outro da mãe. As células somáticas, ademais, se dividem por mitose, ao qual os cromossomos se duplicam antes de cada divisão celular e cada uma das células filhas recebe um complemento diploide idêntico dos cromossomos, logo todas as células somáticas de um indivíduo possuem o mesmo material genético, embora cada tipo celular expresse diferentes combinações de genes. Em contraponto, os gametas são células haploides porque possuem somente um par de cromossomos e a metade do material genético característico da espécie. Cada um dos cromossomos em um gameta é resultado da recombinação dos genes contidos nos cromossomos paterno e materno do indivíduo que originam o gameta, e cada um destes possuem uma combinação única de genes. Os gametas se formam a partir das células germinais, que são células que em sua origem são diploides e elas de “comprometem” a manter-se como uma linha celular especial que em determinado momento sofrerá o processo de meiose para dar origem aos gametas haploides, sejam óvulos ou espermatozoides segundo o sexo do animal. Como descrito no trabalho sobre a diferenciação sexual, as células germinativas primordiais originam-se no epiblasto do embrião, e migram desde o saco vitelino até colonizar as cristas gonodais, onde, por sua vez, proliferam-se e se organizam junto com as células somáticas da gônada primitiva para formar o testículo ou o ovário. As células germinais masculinas e femininas tem a mesma origem embrionária. As gônadas indiferenciadas em um embrião possuem três tipos celulares: as células que dão origem aos gametas (ovogonia ou espermatogonia), as precursoras de células que nutrem os gametas em desenvolvimento (células da granulosa no ovário; células de Sertoli no testículo) e as precursoras de células que secretam hormônios sexuais (células da teca no ovário; células de Leydig no testículo). As células germinais são as únicas estruturas do organismo que têm a capacidade de dividir-se por meiose sofrendo uma redução no número de seus cromossomos, sendo responsável pela transmissão da carga genética aos descendentes. Em contraste, as células somáticas somente se dividem por mitose. A formação dos gametas compreende fases sequenciais de mitose, meiose e pós-meiose. Esses processos são altamente organizados e necessitam de um preciso e bem coordenado programa de expressão genética. Uma das características importantes da gametogênese é a redução cromossômica, que através da meiose, reduz pela metade o número de cromossomos e produz células distintas entre si, devido a trocas de material genético entre os pares de cromossomos provenientes do pai e da mãe, o que ocorre no processo de “crossing over” durante a primeira fase da meiose. A gametogênese é o processo mediante o qual as células germinais de cada sexo se multiplicam, dividem e diferenciam até formar os gametas. No caso da formação dos gametas masculinos o processo recebe o nome específico de espermatogênese, e para os gametas femininos é denominado como ovogênese. Embora os dois processos alcancem o objetivo comum de produção das células haploides, por onde compartilham algumas características, existem diferenças marcadas entre eles devido a necessidade de produzir um número muito distinto de gametas, de tamanho diferente, e com características de motilidade também distintas. -/- •___ESPERMATOGÊNESE -/- A espermatogênese é o processo mediante o qual se produz os gametas masculinos denominados espermatozoides. Durante a vida fetal as células germinais e as células somáticas do testículo em formação organizam-se em túbulos seminíferos que se derivam dos cordões sexuais primários e conformam a maior parte da medula do testículo. Na etapa fetal cada tubo seminífero é delimitado por uma membrana basal, recoberta na parte interior pelas células precursoras das células de Sertoli (um tipo de células somáticas). No exterior do túbulo localizam-se as células precursoras das células de Leydig ou intersticiais (figura 1), que também são células somáticas. Entre a membrana basal e as células de Sertoli encontram-se algumas células germinais denominadas espermatogonias de reserva A0 (denominadas gonócitos) que serão o único tipo de células germinais presentes no testículo enquanto o animal não alcançar a puberdade. As células de Sertoli estabelecem na região basal uniões oclusoras entre si, formando parte da barreira hemato-testicular. As espermatogonias A0 localizam-se por dentro da membrana basal do túbulo seminífero, embora fora da barreira hemato-testicular. Figura 1: fase neonatal. Nota-se a grande infiltração de tecido intersticial em quase 50% da seção originando que os túbulos sejam pequenos e redondos em sua maioria. O citoplasma e núcleo das células pré-Leydig são notadas claramente por essa ser uma espécie suína onde o tecido intersticial está claramente diferenciado. Hematoxilina-eosina (X 220.5). Fonte: Embrapa. -/- O número de células de Sertoli no testículo depende da influência do hormônio folículo estimulante (FSH) presente durante a vida fetal e as primeiras etapas de vida pós-natal. A população de células de Sertoli ao chegar a puberdade se manterá fixa durante o resto da vida do animal; existe uma relação positiva entre o tamanho e a população de células de Sertoli e a capacidade de produção de espermatozoides do testículo. As células de Sertoli são as únicas células somáticas que estão no epitélio seminífero, e sua função é a nutrição, sustentação e controle endócrino das células germinais. As células de Sertoli participam ativamente no processo de liberação dos espermatozoides para a luz do túbulo. Nesse momento, as células de Sertoli realizam a fagocitose de parte do citoplasma do espermatozoide dos chamados corpos residuais. As células de Sertoli também fagocitam as células germinais que se degeneram no curso normal da espermatogênese. Essas células ainda sintetizam grande quantidade de proteínas, como por exemplo as proteínas ABP (androgen hinding protein), que transportam andrógenos para todo o aparelho reprodutivo, transferrinas, que transportam ferro para a respiração celular das células germinais e também às inibinas, que regulam a liberação de FSH pela hipófise, através de um sistema de retroalimentação (feedback) negativa (figura 2). Figura 2: epitélio seminífero, células de Sertoli (flecha) (400 X). Fonte: Embrapa. -/- Antes da puberdade dos túbulos seminíferos observam-se ao corte como estruturas de diâmetro pequeno, sem luz, e conformados unicamente pelas células de Sertoli e espermatogonias de reserva e rodeados por abundante tecido intersticial, ao que estão presentes as células precursoras das células de Leydig. Ainda antes da puberdade, a diferenciação celular manifesta-se primeiro pela presença de espermatócitos primários, os quais se degeneram em geral na fase de paquíteno, por falta de estimulação hormonal. A partir de que o animal chega a puberdade inicia-se o processo de espermatogênese, que se manterá durante toda a vida do animal, exceto em espécies de animais silvestres muito estacionais, ao qual pode se suspender durante a época não reprodutiva para voltar e ser retomada na época ou estação reprodutiva. Depois da puberdade, os túbulos seminíferos possuem um diâmetro muito maior; em seu interior observa-se um grande número de células germinais de todos os tipos, diferentes estádios de divisão, e em seu lúmen contém líquido e espermatozoides. Ainda sobre o alcancei da puberdade, as espermatogonias começam a dividir-se aceleradamente por mitose, enquanto que no espaço intersticial as células mesenquimais também começam a se diferenciar e a dar origem as células de Leydig (figura 3). A partir dessa etapa as células de Leydig (totalmente diferenciadas) são também evidentes no exterior do túbulo, junto com as células mioides ou peritubulares que o rodeiam o que ao contrair-se são responsáveis por controlar o avanço dos fluidos e as células presentes no lúmen do túbulo. As células mioides estão situadas ao redor do túbulo, e é creditado a elas a promoção da contração e da integridade estrutural do túbulo. Esse tipo celular apenas se diferencia na puberdade pela ação dos andrógenos (figura 4). As interações entre as células de Sertoli e as mioides parecem ter um papel importante na manutenção das funções do testículo. Durante o processo de espermatogênese, as espermatogonias de reserva dividem-se periodicamente e enquanto algumas células fixas permanecem como espermatogonias de reserva, outras proliferam e sofrem uma seção de divisões mitóticas durante as quais se vão diferenciando até formarem espermatócitos primários (espermatocitogênese ou fase de mitose), logo sofrem divisões especiais mediante as quais reduzem seu número de cromossomos (fase de meiose), e ao final trocam de forma para converter-se em espermatozoides (espermatocitogênese) (figura 5). Cada uma dessas etapas da espermato- gênese será descrito detalhadamente adiante, antes é necessário a explicação de algumas características das células de Sertoli e de Leydig que ajudarão a entender seu papel durante a espermatogênese. Figura 3: células de Leydig no espaço intersticial do testículo bovino adulto PAS (400 X). Fonte: Embrapa. -/- Figura 4: o estabelecimento da puberdade pela presença de espermatozoides no túbulo. Hematoxilina-eosina (400 X). Fonte: Embrapa. Figura 5: fases mitóticas das espermatogonias (A0 e B) para formação de um espermatócito primário e as duas fases de meiose que se sucedem antes da espermatogênese. Fonte: ZARCO, 2018. -/- Ao início da espermatocitogênese as uniões oclusoras entre as células de Sertoli se abrem por etapas (como as comportas de um submarino) para permitir a passagem das espermatogonias em direção ao centro do túbulo seminífero sem que se estabeleça uma continuidade entre o exterior e o interior da barreira hemato-testicular. Uma vez ultrapassada essa barreira, as sucessivas gerações de espermatogonias, espermatócitos, espermátides e espermatozoides irão se localizar em direção ao interior do túbulo seminífero, em estreita associação com as células de Sertoli. Em consequência, as células de Sertoli dividem o túbulo seminífero em dois compartimentos; o compartimento basal (debaixo das uniões oclusoras das células de Sertoli), ao qual residem as espermatogonias de reserva, e o compartimento adluminal (em direção ao centro do túbulo), cujos espaços entre as células de Sertoli desenvolvem o resto do processo de espermatogênese (meiose e espermatocitogênese). Esse feito é importante porque durante a vida fetal as únicas células germinais existentes eram as espermatogonias de reserva, pelo que os antígenos expressados por gerações mais avançadas (espermatogonias intermediárias, secundárias, espermátides e espermatozoides) não são reconhecidos como próprios do corpo pelo sistema imunológico. Logo, o anterior implica que deve existir uma barreira entre eles e o sangue para evitar um ataque imunológico. Em todas as etapas da espermatogênese, as células de Sertoli atuam como células de suporte para as células germinais, que sempre permanecem recoberta pela membrana das células de Sertoli. Também atuam como células nutricionais já que proporcionam o meio em que as células germinais se desenvolvem e maturam, assim como as substâncias que regulam e sincronizam as sucessivas divisões e transformações das células germinais. As células de Sertoli produzem hormônios, como estrógenos e inibina que atuam sobre a hipófise para regular a secreção das gonadotropinas que controlam a espermatogênese. As células de Leydig que residem no exterior do túbulo seminífero também são importantes para a espermatogênese: produzem a testosterona que estimula e mantém a espermatogênese, bem como serve como substrato sobre o qual atua como aromatizador das células de Sertoli para transformá-las em estrógenos. Como supracitado, para seu estudo podemos dividir a espermatogênese em três fase: espermatocitogênese, meiose e espermiogênese (figura 6). Agora, serão descritas cada uma dessas etapas. Em algumas espécies, incluindo no homem, os macrófagos representam o segundo tipo celular intersticial mais numeroso no testículo, depois das células de Leydig. Os macrófagos e vários subtipos de linfócitos são identificados nós testículos de ovinos e ratos. Eles estão intimamente associados com as células de Leydig e atuam juntamente na regulação da esteroidogênese. Figura 6: fluxograma da espermatogênese. -/- Espermatocitogênese -/- A espermatocitogênese, também chamada de etapa proliferativa ou de mitose, consiste numa série de divisões mitóticas sofridas pelas células descendentes de uma espermatogonia de reserva. Uma vez que a célula se divide, abandona o estado de reserva e começa um processo de diferenciação. As espermatogonias de reserva (denominadas espermatogonias A0 na rata ou As nos humanos) são células que existem desde a vida fetal e que permanecem mitoticamente inativas durante a infância. Uma vez que alcançam a puberdade começam a dividir-se em intervalos regulares, e as células filhas podem permanecer como espermatogonias de reserva ou abandonar a reserva e ingressar na dita espermatocitogênese. Uma vez abandonada a reserva, as células filhas que vão se formando em cada divisão permanecem unidas por pontes citoplasmáticas, constituindo um clone que se divide sincronicamente. As células que se formam depois de cada divisão continuam sendo espermatogonias, porém cada geração é ligeiramente diferente da anterior. Na rata, por exemplo, as espermatogonias tipo A0 ao dividir-se originam espermatogonias do tipo A1, que em sucessivas divisões formam espermatogonias dos tipos A2, A3 e A4, as quais, por sua vez, sofrem outra mitose para formar espermatogonias intermediárias e uma mais para formar espermatogonias do tipo B. Essas últimas se diferenciam (sem se dividir) em espermatócitos primários, processo em que termina a fase de espermatocitogênese, que literalmente significa processo de geração de espermatócitos. As espermatogonias tipo A0 são a fonte para a contínua produção de gametas. A metade delas se dividem e formam células iguais (as chamadas células tronco) e a outra metade forma as espermatogonias A1, que sofre novas divisões mitóticas e formam os tipos 2, 3 e 4. O tipo A4 sofre mitose para formar a intermediária (A In), que por mitose, forma a tipo B (figura 6). Esses tipos de espermatogonias podem ser identificadas em evoluções histológicas de acordo com sua organização topográfica na membrana basal dos túbulos seminíferos ou mediante seu conteúdo de heterocromatina. Outra maneira de diferenciação se baseia em marcadores moleculares específicos que distinguem as espermatogonias tronco (A0) das demais, com os fins de isolamento, desenvolvimento in vitro e transplante. As tipo B passam por mitose para formarem os espermatócitos primários; estes iniciam a primeira etapa da meiose formando os espermatócitos secundários; na segunda etapa da divisão meiótica, cada espermatócito secundário se divide e formam as chamadas espermátides. Quando o testículo alcança seu desenvolvimento total, a meiose completa-se e as espermátides originadas se convertem em espermatozoides. Um dos maiores sinais característicos desse fenômeno é o alargamento das espermátides e sua migração em direção ao lúmen do túbulo seminífero (figuras 4, 7 e 8). Figura 7: espermatogonias marcadas por imuno-histoquímica, anticorpo monoclonal TGFa (400 x). Figura 8: fases de divisões meióticas (M), espermatócitos em paquíteno (PA) e espermatócitos secundários (ES). -/- Figura 9: estádio posterior a liberação dos espermatozoides na luz do túbulo. Hematoxilina-eosina (400 x). Mediante as seis divisões mitóticas que ocorrem durante a espermatocitogênese se forma potencialmente um clone de 64 espermatócitos primários a partir de cada espermatogonia A que ingressa sobre o processo. Não obstante, algumas células sofrem apoptose em cada uma das etapas do processo, ao qual o número real formado é menor. Em outras espécies produzem-se um transcurso similar de divisões mitóticas sucessivas durante a espermatocitogênese, embora a nomenclatura utilizada possa ser distinta, por exemplo nos bovinos as duas últimas divisões mitóticas dão origem as espermatogonias de tipo B1 e B2. -/- Meiose -/- Uma vez que as espermatogonias B se diferenciam em espermatócitos primários, esses iniciam a etapa de meiose, com uma nova divisão; desta vez a divisão é do tipo meiótica. Ao completar-se a primeira divisão meiótica (meiose I) se obtém os espermató-citos secundários, que ao sofrer a segunda divisão meiótica (meiose II) dão origem as espermátides. Vale salientar que a meiose é o processo mediante o qual reduz-se a metade do número de cromossomos, pelo que as espermátides que se obtém são células haploides (1n). Os espermatócitos secundários que se formam depois da primeira divisão meiótica contém a metade do número normal de cromossomos, porém a mesma quantidade de DNA já que cada cromossomo é duplo. As espermátides formadas na conclusão da segunda divisão meiótica (figura 7), por sua vez, contém a metade dos cromossomos, e esse já não são duplos, já que se trata de células 1n. Também deve-se enfatizar que durante a meiose é relevante o entrecruzamento dos cromossomos homólogos, pelo que cada espermátide possui uma combinação única e diferente de genes paternos e maternos. Outro ponto que deve ser levado em consideração é que cada espermátide somente possui um cromossomo sexual; a metade das espermátides contém o cromossomo X herdado da mãe do macho que está levando a cabo a espermatogênese e a outra metade contém o cromossomo Y herdado de seu pai. Para cada espermatócito primário que entra no processo de meiose obtém-se cerca de quatro espermátides, pelo qual ao ser completada a meiose potencialmente se poderiam formar até 256 espermátides por cada espermatogonia que abandona a reserva e ingressa na espermatocitogênese. -/- Espermiogênese -/- Durante a espermiogênese, também chamada de fase de diferenciação, as esper-mátides sofrem, sem se dividir, uma metamorfose que as transforma em espermatozoides, os quais finalmente são liberados das células de Sertoli em direção ao lúmen do túbulo seminífero. A espermiogênese é um processo complicado e longo já que a espermátide deve sofrer complexas trocas nucleares, citoplasmáticas e morfológicas que resultam na forma-ção dos espermatozoides. Algumas dessas mudanças incluem a condensação do material nuclear para formação de um núcleo plano e denso, a eliminação do citoplasma para a constituição de uma célula pequena, a formação de uma estrutura especializada denomi-nada acrossomo ou tampa cefálica, e a formação do pescoço e da cauda (flagelo) do esper-matozoide, do que depende a sua motilidade. Durante a maior parte da espermiogênese, as espermátides se mantém com uma estreita associação com as células de Sertoli; logo, chega-se a observar, então, flagelos que se projetam em direção a luz do túbulo que pare-cem sair das células de Sertoli, sendo na realidade os flagelos dos espermatozoides que ainda não tinham sido liberados pelo lúmen. Ao liberar os espermatozoides em direção a luz do túbulo, as células de Sertoli realizam a fagocitose de parte do citoplasma dos espermatozoides (corpos residuais). Também fagocitam os restos de todas as células germinais que sofrem apoptose ou degeneram-se durante a espermatogênese. Credita-se que ao realizar essas funções as células de Sertoli podem fazer uma monitoração eficiente da espermatogênese, o que lhes permitiria emitir sinais para colaborar na regulação desse processo em nível gonodal e a nível sistêmico através da secreção de hormônios como a inibina e o estradiol. Além da inibina e activina, as células de Sertoli sintetizam outras proteínas, como a ABP (proteína ligadora de andrógenos) que serve como uma molécula de transporte de andrógenos dentro dos túbulos seminíferos, ductos deferentes e epidídimo, ou a transfer-rina, que transporta o ferro necessário para a respiração celular. -/- Resultados da espermatogênese -/- O resultado da espermatogênese não significa apenas uma simples multiplicação das células germinais (até 256 espermatozoides a partir de cada espermatogonia A1), senão que através dela são produzidos gametas haploides pequenos, móveis e com grande diversidade genética entre eles, ao mesmo tempo que se mantêm uma reversa de células mãe (espermatogonias A0) a partir das quais se poderiam originar novos ciclos de esper-matogênese durante o resto da vida do animal. -/- Controle hormonal da espermatogênese -/- Como mencionado, o FSH reproduz um importante papel para o estabelecimento das células de Sertoli durante a vida fetal e início da vida pós-natal. O começo da esper-matogênese também é estimulado pelo FSH, que atua sobre as células de Sertoli para estimular sua função e a ativação de sinais dessas células em direção as células germinais, incluindo-as a abandonar a reserva e ingressar na espermatogênese. O FSH, assim mesmo, estimula a mitose durante o resto da espermatogênese e aumenta a eficiência do processo, já que reduz a apoptose e a degeneração de espermatogonias intermediárias e do tipo B. O FSH também estimula as células de Sertoli para produzirem inibina e ABP. Uma vez iniciada a espermatogênese somente requerem níveis baixos de FSH para se mantê-la. As células de Sertoli também devem ser estimuladas pela testosterona para funcio-nar de maneira adequada; se requer também do LH hipofisário: hormônio que estimula as células de Leydig para produzir testosterona. Por sua vez, a secreção de LH e FSH é regulada pelo GnRH hipotalâmico: esse neurohormônio também faz parte do mecanismo de regulação da espermatogênese. A espermatogênese também é modulada em nível local mediante a produção de determinados fatores e interações entre as células. Dentro dos fatores locais podemos mencionar o fator de crescimento parecido com a insulina 1 (IGF-1), o fator de crescimen-to transformante beta (TGF- β), activina, ocitocina e diversas citocinas. Entre as intera-ções celulares existem tanto uniões de comunicação entre as células de Sertoli e as células germinais, como pontes citoplasmáticas entre todas as células germinais que formam o clone de células descendentes de uma espermatogonia A1. Uma vez que as células de Sertoli iniciam sua função na puberdade é possível manter experimentalmente a espermatogênese somente com testosterona, sem ser requeri-dos nenhum outro hormônio. A quantidade de espermatozoides produzidos, no entanto, é maior quando há presença do FSH. Abaixo do estímulo do FSH as células de Sertoli produzem estradiol e inibina, hormônios que geram uma retroalimentação sobre o eixo hipotálamo-hipofisário para a regulação da secreção de gonadotropinas. Em particular, a inibina reduz a secreção de FSH, pelo qual é factível que sirva como um sinal que evite uma excessiva estimulação as células de Sertoli. -/- Ciclo do epitélio seminífero -/- Em cada espécie as espermatogonias de reserva iniciam um novo processo de divi-sões celulares em intervalos fixos: a casa 14 dias no touro; 12 dias no garanhão e a cada 9 dias no cachaço (reprodutor suíno). A nova geração de células que começam a proliferar sobre a base do tubo deslocam-se em direção ao centro do túbulo a geração anterior, que por sua vez deslocam-se as gerações anteriores. Devido as mudanças que vão sofrendo cada geração celular se ajustam a tempos característicos de cada etapa, já que rodas as células em uma determinada seção do túbulo estão sincronizadas entre si pelas células de Sertoli; em cada espécie somente é possível encontrar um certo número de combinações celulares: 14 diferentes combinações no caso da rata, 8 no touro e 6 no ser humano. A sucessão de possíveis combinações até regressar a primeira combinação se conhece como o ciclo do epitélio seminífero. Na maioria das espécies os espermatozoides que são libera-dos em direção a luz do túbulo provém das células que entraram no processo de esperma-togênese quatro gerações antes que a geração que está ingressando nesse momento, pelo que a espermatogênese no touro dura ao redor de 60 dias e um pouco menos em outras espécies domésticas. Significa que os efeitos negativos das alterações na espermatogêne-se podem estar presentes até dois meses depois de que se produziram essas alterações. Como supracitado, geralmente se observa a mesma combinação celular em toda a área de uma determinada secção transversal do túbulo seminífero. No entanto, se fizermos uma série de secções, observa-se que ao longo do túbulo há uma sucessão ordenada de combinações (a primeira em uma determinada secção; a segunda combinação na seguinte secção, e assim sucessivamente em secções subsequentes até regressar a primeira combi-nação. Teremos, então, que ao início da divisão das espermatogonias A1 se produz de forma sincronizada em uma secção do túbulo, e vai-se transmitindo como uma onda peristáltica as secções adjacentes. Esse processo é denominado como onda do epitélio seminífero e graças à esse túbulo seminífero sempre tem secções em todas as etapas da espermatogênese, com o que se alcança uma produção constante de espermatozoides. -/- Alterações da espermatogênese -/- Nas espécies estacionais a espermatogênese, como já mencionado, pode reduzir-se ou inclusive suspender sua atividade fisiológica durante a época não reprodutiva dessas espécimes, porém esse processo fisiológico não pode ser considerado como uma altera-ção. No entanto, a espermatogênese só pode ser alterada pelas enfermidades ou por fatores externos. A principal causa de alterações na espermatogênese é o aumento da temperatura testicular. Por isso, os testículos são localizados na saco escrotal e são “caídos” para fora do corpo como pode-se observar nos bovinos, caprinos, ovinos, caninos e no próprio homem. A temperatura testicular deve estar cerca de 2 a 6 °C abaixo da temperatura corporal normal. As células germinais masculinas são sensíveis ao calor, pelo qual na maioria dos mamíferos os testículos se encontram fora da cavidade abdominal e existe um sofisticado sistema de termorregulação para mantê-los a uma temperatura menor que a corporal. Se a temperatura corporal for elevada ou se os testículos permanecerem na cavidade abdominal, ou ainda se os sistemas termorreguladores do testículo sejam afetados por fatores inflamatórios como edema ou falta de mobilidade testicular dentro do escroto, a temperatura do tecido testicular aumentará e a espermatogênese sofrerá alterações proporcionais ao excesso de temperatura e a duração da elevação. A espermatogênese também pode ser afetada pela exposição a hormônios ou a outras substâncias. É possível que a causa mais comum (sobretudo no homem) seja o uso de esteroides anabólicos, que elevam a concentração de andrógenos na circulação, provo-cando um feedback negativo sobre a secreção de gonadotropinas. Ao deixar de estimular-se o testículo pelas gonadotropinas, este deixará de produzir testosterona, e as concentra-ções de andrógeno exógeno nunca alcançará as altíssimas concentrações de testosterona que normalmente estão presentes a nível do tecido testicular por ser o local onde se produz o hormônio. Também se supõe que diversas substâncias com propriedades estrogênicas derivadas de processos industriais (indústria dos plásticos, hidrocarbonetos etc.) e presentes no ambiente (fatores xenobióticos) podem ser responsáveis pelas alterações na espermatogênese em diversas espécies, entre as quais se inclui o ser humano. -/- • OVOGÊNESE E FOLICULOGÊNESE -/- A ovogênese é o processo seguido pelas células germinais da fêmea para a forma-ção dos óvulos, que são células haploides. Durante a vida fetal as células germinais proliferam-se no ovário por mitose, formando um grande número de ovogonias, algumas das quais se diferenciam em ovócitos primários que iniciam sua primeira divisão meiótica para deter-se na prófase da divisão. Somente alguns desses ovócitos primários retornarão e concluirão a primeira divisão meiótica em algum momento da vida adulta do animal, dando origem a um ovócito secundário e a um corpo polar. O ovócito secundário inicia a sua segunda divisão meiótica, a qual volta a ficar suspensa até receber um estímulo apropriado, já que somente os ovócitos secundários que são ovulados e penetrados por um espermatozoide retornam e concluem a segunda divisão meiótica, dando origem a um óvulo (figura 10). O processo de ovogênese é realizado dentro dos folículos ovarianos, que também tem que sofrer um longo transcurso de desenvolvimento e diferenciação denominado foliculogênese pelo que a ovogênese como tal realiza-se dentro do marco desse último processo. Por essa razão, na seguinte seção descreverei tanto a ovogênese como a folicu-logênese, e a relação que existe entre ambos. Figura 10: representação da ovogênese. Na etapa de proliferação, as células germinais se diferen-ciam por mitose. A meiose I se caracteriza por uma prófase prolongada, ocorrendo a duplicação do DNA. Nas duas divisões, que ocorrem antes da ovulação e depois da fertilização, a quantidade de DNA é reduzida a 1n, com o fim de que a fusão dos pronúcles (singamia) pós-fertilização, seja gerado um zigoto com um número de cromossomos de 2n (diploide). -/- Geração de ovócitos primários e folículos primordiais Tanto a ovogênese como a foliculogênese iniciam-se durante a vida fetal, quando as células germinais primordiais provenientes do saco vitelino colonizam a gônada primitiva e, junto com as células somáticas z organizam-se para a formação dos cordões sexuais secundários, que se desenvolvem principalmente no córtex do ovário. Nesse período, as células germinais que colonizaram o ovário sofrem até 30 divisões mitóticas, proliferando-se até formar milhares ou milhões de ovogonias, que inicialmente formam “ninhos” constituídos cada um deles por um clone de várias ovogonias que descendem da mesma célula precursora e que se mantêm unidas por pontes citoplasmáticas, sincronizan-do suas divisões mitóticas. Nessa etapa alcança-se a máxima população de células germinais no ovário, que antes de nascer se reduzirá drasticamente por apoptose. No ovário do feto humano chegam a haver até sete milhões de células germinais que ao nascimento se reduzem a dois milhões. Os ovários fetais do bovino, de maneira análoga, chegam a ter até 2.100.000 células germinais, que ao nascimento reduzem para 130.000 aproximadamente. A redução no número de ovogonias produz-se ao mesmo tempo que essas células, que vêm dividindo-se por mitose e estão agrupadas em ninhos, iniciam sua primeira divisão meiótica para se transformarem em ovócitos primários: células germinais que se encontram em uma etapa de suspensão (diplóteno) da prófase da primeira divisão meiótica. Nesse período produz-se uma grande proporção de células germinais; as células somáticas dos cordões sexuais, por sua vez, emitem projeções citoplasmáticas que separam a isolam os ovócitos primários sobreviventes, ficando cada um deles rodeados por uma capa de células aplanadas da (pré) granulosa. Ao mesmo tempo em que se forma uma membrana basal entre as células da granulosa e o tecido intersticial do ovário. Ao ovócito primário rodeado de uma capa de células da (pré) granulosa aplanadas e delimita-das por uma membrana basal denomina-se de folículo primordial (figura 11). Nas vacas os folículos primordiais bem formados já estão presentes nos ovários a partir do dia 90 da gestação. A maioria dos folículos primordiais com os que nasce uma fêmea se manterão inativos durante um longo tempo; muitos deles durante toda a vida do animal. Nos folículos primordiais inativos tanto os ovócitos primários como as células da granulosa conservam sua forma original e mantém um metabolismo reduzido estritamente ao mínimo necessário para manter-se viáveis. Por essa razão, ao realizar um corte histológico de qualquer ovário as estruturas mais numerosas que se observam serão os folículos primordiais. No entanto, cada dia da vida de um animal, inclusive desde a vida fetal, um certo número de folículos primordiais reiniciam seu desenvolvimento, e a partir desse momento um folículo exclusivamente pode ter dois destinos: o primeiro, prosseguir seu desenvolvi-mento até chegar a ovular, e o segundo (que é muito mais frequente) encontrar em algum momento condições inadequadas que fazem fronteira com ele para parar seu desenvolvi-mento, levando-o a sofrer atresia e degenerar até desaparecer do ovário. Figura 11: sequência da foliculogênese apresentando as diferentes estruturas que podemos encontrar em cada fase. Fonte: ZARCO, 2018. Culminação da ovogênese A ovogênese somente se completará quando um ovócito primário reinicia a meio-se; completa sua primeira divisão meiótica para formar um ovócito secundário e um primeiro corpo polar e, quando, finalmente sofrer uma segunda divisão meiótica para formar um óvulo e um segundo corpo polar. Os óvulos são as células 1n que constituem os gametas femininos, pouco numerosos, grandes e imóveis. A grande maioria dos ovóci-tos primários, como veremos mais adiante, nunca retomam a meiose e, em consequência, não chegam a formar ovócitos secundários, e muitos dos ovócitos secundários tampouco sofrem uma segunda divisão meiótica, pelo que não chegam a formar os óvulos. Ao longo da vida de uma fêmea, na maioria das espécies, menos de 0,1% dos ovócitos primários (um a cada mil) chega a terminar a ovogênese, dando origem a um óvulo. O supracitado deve-se a que a ovogênese somente pode retomar-se e ser completa-da em ovócitos primários que se encontram dentro dos folículos primordiais que (uma vez ativados) vão alcançando diversas etapas de seu desenvolvimento em momentos precisos aos que encontram as condições ideais de oxigenação, nutrição, vascularização e exposição a fatores parácrinos e a exposição a concentrações de hormônios que se requerem para que o folículo continue em cada etapa de seu desenvolvimento com o processo de foliculogênese até chegar a ovular. Qualquer folículo que não esteja nessas condições ao longo do desenvolvimento sofrerá degeneração e atresia, pelo que o ovócito primário em seu interior nunca chegará ao ponto em que pode retomar a primeira divisão meiótica. No que resta da presente seção revisaremos o processo de foliculogênese em cujo marco se desenvolve a ovogênese; havemos que tomar de conta que essa última se limita ao que ocorre nas células germinais (ovogonia, ovócito primário, secundário e óvulo), pelo qual depende intimamente do desenvolvimento do folículo de que essas células formam parte. Em um princípio a ativação do folículo primordial e o desenvolvimento folicular são independentes das gonadotropinas: não se conhecem os mecanismos precisos median-te os quais um folículo primordial se ativa e reinicia seu desenvolvimento, nem como se decide quais folículos, dentre as dezenas de milhares de ou centenas de milhares presentes em um ovário se reativarão em um dia em particular. A reativação trata-se de uma liberação de influência de fatores inibidores, já que os folículos primordiais se reativam espontaneamente quando cultivados in vitro, isolados do resto do tecido ovariano. Uma vez que um folículo primordial se ativa, inicia-se um longo processo de desenvolvimento que somente depois de vários meses (ao redor de cinco meses no caso dos bovinos) o levará a um estádio em que seu desenvolvimento posterior requer a presença das gonado-tropinas; daí que se diz que as primeiras etapas do desenvolvimento são independentes das gonadotropinas. Durante a fase independente de gonadotropinas, um folículo primordial que tenha sido ativado e tenha começado a crescer; passará primeiro para a etapa de folículo primá-rio, caracterizada por conter um ovócito primário que está rodeado, por sua vez, por uma capa de células da granulosa, que não são planas, e sim cúbicas. Depois, se o folículo continuar crescendo se transformará em um folículo secundário, ao qual as células da granulosa começam a proliferar (aumentando em número) e se organizam em duas ou mais capas que rodeiam o ovócito primário. Entre o ovócito e as células da granulosa que o rodeiam se forma nesta uma zona pelúcida; ainda assim o ovócito mantém contato direto com essas células, mediante o estabelecimento de pontes citoplasmáticas que atravessam a zona pelúcida. Através dessas pontes citoplasmáticas as células da granulosa podem passar nutrientes e informação ao ovócito primário. O volume e o diâmetro do ovócito primário aumentam ao mesmo tempo que as células da granulosa proliferam-se, para incrementar as capas ao redor do ovócito. De maneira gradual o citoplasma do ovócito primário aumenta até 50 vezes seu volume e a proliferação das células continua. Esses folículos que possuem cada vez mais células e portanto mais capas de células da granulosa se denominam folículos secundários. Para evitar confusões, há a necessidade de nomen-clatura ao qual o folículo vá mudando de nome de primordial a primário e logo, de secun-dário, a terciário, por sua vez, o ovócito que encontra-se em seu interior, a todo momento, segue sendo um ovócito primário. Durante a etapa dependente de gonadotropinas, os folículos secundários começam a formar um espaço cheio de líquido, o antro folicular, desse modo se convertem em folí-culos terciários. Com a utilização de outra nomenclatura, a formação do antro marca a transição entre folículos pré-antrais (sem antro) e folículos antrais (com antro). Em algum momento dessa transição entre folículo secundário e terciário, também aparece a depen-dência de folículos em direção as gonadotropinas, pelo qual somente podem seguir crescendo na presença do hormônio luteinizante (LH) e do hormônio folículo estimulante (FSH). Nos bovinos e em outras espécies (para seu estudo), os folículos antrais são dividi-dos em pequenos, médios e grandes. Embora todos eles possuam um antro folicular, dependendo do seu grau de desenvolvimento requerem diferentes concentrações de gona-dotropinas para continuar o crescimento. Os folículos antrais mais pequenos somente re-querem concentrações baixas de LH e FSH, pelo qual podem continuar crescendo em qualquer momento do ciclo estral inclusive em animais que não estão ciclando (fêmeas em anestro pré-puberal, gestacional, lactacional, estacional). Nas etapas posteriores os folículos antrais requerem primeiro concentrações elevadas de FSH, e nas etapas finais somente podem continuar crescendo na presença de pulsos frequentes de LH, pelo qual somente os folículos que encontram-se sob concentrações apropriadas desses hormônios podem seguir crescendo. Por essa razão, nos animais que se encontram em anestro de qualquer tipo somente é possível encontrar folículos antrais pequenos ou médios, segundo a espécie, e nos animais que se encontram ciclando (estro) o maior tamanho folicular encontrado em um determinado dia do ciclo dependerá das concentrações de FSH e LH presentes nesse momento e nos dias anteriores. Um folículo que chega ao estado máximo de desenvolvimento, conhecido como folículo pré-ovulatório, ao final, somente chegará a ovular se for exposto a um pico pré-ovulatório de LH. Como supracitado, cada dia na vida de uma fêmea inicia seu desenvolvimento um certo número de folículos; a grande maioria sofrem atresia, mas depois da puberdade em cada dia do ciclo estral um ou vários folículos vão encontrando ao longo do seu desenvol-vimento concentrações hormonais que lhes permite chegar na etapa de folículo pré-ovula-tório. Somente nestes folículos, e como consequência de um pico pré-ovulatório de LH, se reinicia e completa-se a primeira divisão meiótica do ovócito primário, produzindo duas células distintas. Uma delas é o ovócito secundário, que retém praticamente todo o citoplasma. Contém, assim mesmo, em seu núcleo um par de cromossomos duplos, a outra é o primeiro corpo polar, que é exclusivamente um núcleo com uma quantidade mínima de citoplasma. Na maioria das espécies ovula-se um ovócito secundário que se encontra, então, suspendido na segunda divisão meiótica. Esta segunda divisão meiótica somente reinicia-rá e completarar-se uma vez que o espermatozoide começa a penetrar sob o ovócito secundário. Ao concluir-se a divisão se forma o segundo corpo polar e completa-se a ovogênese com o qual se obtém o óvulo, célula 1n que constitui o gameta feminino. No entanto, o óvulo existe pouco tempo como tal, já que em poucos minutos/horas (depen-dendo da espécie) se produzirá a fusão do núcleo do mesmo (pró-núcleo feminino) com o do espermatozoide (pró-núcleo masculino), com o qual se completa a fertilização e se forma um novo indivíduo (o ovo ou zigoto). -/- Ondas foliculares -/- Como mencionado supra, todos os dias um determinado número de folículos pri-mordiais se ativam e começam a crescer, os quais crescem em um ritmo característico em cada espécie. Isso provoca que em qualquer momento existam nos ovários folículos pri-mordiais (que começam a crescer em alguns dias ou semanas), assim como folículos secundários em diversas etapas do desenvolvimento, os quais iniciaram seu desenvolvi-mento em semanas ou inclusive meses (segundo o grau de desenvolvimento atual). Também em qualquer momento poderá haver folículos antrais nas etapas iniciais de seu desenvolvimento (com antros que já se podem detectar em cortes histológicos mas não são visíveis macroscopicamente). Todos esses folículos chegaram até seu estado de de-senvolvimento atual (primário, secundário ou antral pequeno), independente da etapa do ciclo estral em que sejam observados ou encontrados. Nos bovinos, os folículos que chegam ao início da etapa antral iniciaram seu desenvolvimento cinco meses antes, e todavia requerem ao redor de 42 dias para chegar ao estado pré-ovulatório. Para continuar seu desenvolvimento, os folículos antrais pequenos devem encon-trar concentrações altas de FSH, que os estimulam para prosseguir o crescimento. Cada vez que se produz uma elevação nas concentrações de FSH, esse hormônio estimula o desenvolvimento de um grupo de folículos antrais pequenos, que começaram a crescer muito tempo antes e que o dia da elevação de FSH tenha alcançado o grau de desenvolvi-mento preciso para responder com eficiência a este hormônio, o qual atuará através de seus receptores nas células da granulosa para estimular a produção de estradiol, a secreção de inibina, a produção de líquido folicular e a proliferação das células da granulosa. Um grupo de folículos antrais pequenos é assim recrutado pelo FSH para acelerar seu cresci-mento e aumentar sua produção de estradiol e inibina (figura 12). Mediante um seguimento ultrassonográfico dos ovários é possível identificar pou-cos dias depois um certo número de folículos, que por haver sido recrutados começam um período de crescimento acelerado. Durante alguns dias vários folículos crescem juntos, porém depois um deles é selecionado para continuar crescendo, enquanto que o restante do grupo deixam de fazê-lo e terminam sofrendo atresia. Através da ultrassom é possível identificar o folículo selecionado, agora chamado folículo domi-nante, já que sua trajetória de crescimento sofre um desvio com respeito a seguida pelo restante do grupo. Os folículos que não foram selecionados deixam de crescer e sofrem atresia já que deixam de possuir o suporte gonadotrópico de FSH, uma vez que as concentrações desse hormônio são suprimidos pela inibina e o estradiol produzidos pelo conjunto de folículos que conformam a onda folicular (figura 12), porém o folículo mais desenvolvido do grupo se converterá em dominante. A inibina atua diretamente a nível hipofisário para reduzir a secreção de FSH. Figura 12: onda folicular e relação dos níveis de FSH, estradiol e LH. Fonte: ZARCO, 2018. -/- Figura 13: Recrutamento, seleção e dominação folicular na espécie ovina e influência do FSH e LH nas fases. Fonte: SILVA, E. I. C. da, 2019. -/- A razão pela qual o folículo dominante é capaz de continuar seu desenvolvimento apesar da baixa nas concentrações de FSH é que o folículo é o único que alcançou o grau de progresso necessário para que apareçam os receptores para LH em suas células da granulosa. Esse processo permite ao folículo dominante ser estimulado pela LH, e que requeira baixas concentrações de FSH para manter seu desenvolvimento. A secreção de LH em forma de pulsos de baixa frequência (um pulso a cada quatro a seis horas), característica da fase lútea do ciclo estral; é suficiente para permitir que um folículo dominante continue crescendo por mais dias depois da sua seleção e que mais tarde mantenha-se viável durante alguns dias embora não aumentem de tamanho. Contu-do, se durante o período viável desse folículo não seja finalizada a fase lútea e não diminuam as concentrações de progesterona, o folículo terminará sofrendo atresia devido a exigência de um padrão de secreção acelerada de LH (aproximadamente um pulso por hora) durante o desenvolvimento pré-ovulatório, que somente pode ser produzido com a ausência da progesterona. Uma vez que um folículo dominante sofre atresia deixa de produzir inibina, pelo qual as concentrações de FSH podem elevar-se novamente para iniciar o recrutamento de outro grupo de folículos a partir da qual se origina uma nova onda folicular. Durante o ciclo estral de uma vaca podem gerar-se dois ou três ondas foliculares; somente em raros casos quatro. A etapa de dominância folicular da primeira onda na grande maioria dos casos não coincide com a regressão do corpo lúteo, pelo qual o primei-ro folículo dominante quase invariavelmente termina em atresia. Em algumas vacas o fo-lículo dominante da segunda onda ainda está viável quando se produz a regressão do corpo lúteo e acelera-se a secreção de LH, pelo qual esse segundo folículo dominante se converte em folículo pré-ovulatório e, ao final ovula. Em outros animais o segundo folícu-lo dominante também perde a sua viabilidade antes da regressão do corpo lúteo, por onde nesses animais se inicia uma terceira onda folicular, da qual surge o folículo que finalmen-te ovulará depois de produzir-se a regressão do corpo lúteo. Sem importar a onda em que se origine, uma vez que um folículo dominante é ex-posto a alta frequência de secreção de LH que se produz depois da regressão do corpo lúteo, aumenta ainda mais sua secreção de estradiol até que as altas concentrações desse hormônio comecem a exercer um feedback positivo para a secreção do LH. Isso provoca-rá a aceleração da frequência de secreção do LH até que os pulsos são tão frequentes que começam a ficar por cima e produzir-se o pico pré-ovulatório de LH, que é responsável pela realização da ovulação e a maturação final do ovócito. -/- •___DIFERENÇAS ENTRE ESPERMATOGÊNESE E OVOGÊNESE -/- Enquanto que na fêmea a ovogênese inicia-se durante a vida fetal, no macho a es-permatogênese começa na puberdade. Na fêmea, a partir de um ovócito primário se origi-na um óvulo; no macho, de um espermatócito primário se produzem, teoricamente, quatro espermatozoides. Outra característica interessante é que enquanto a fêmea já conta desde o nasci-mento com todos os ovócitos que necessitará na vida adulta, o macho necessitará chegar a puberdade para iniciar o desenvolvimento das células sexuais, já que ao nascer somente possui gonócitos precursores das células germinais, células de Sertoli e intersticiais. Na vida adulta de uma fêmea, o número de células germinais desaparece paulati-namente. Uma vez iniciada a espermatogênese no macho, a cada ciclo do epitélio seminí-fero as células germinais são renovadas mantendo a provisão para toda a vida reprodutiva. Na fêmea, a meiose sofre duas interrupções em seu transcurso, e no macho é ininterrupta. Figura 14: representação em diagramação comparativa do desenvolvimento da gametogênese. -/- Principais pontos abordados sobre as diferenças entre a gametogênese masculina e feminina: ❙ Na ovogênese a meiose contêm-se em duas ocasiões esperando acontecimentos externos para prosseguir. Já na espermatogênese não existe a suspensão da meiose. ❙ A espermatogênese é um processo contínuo, enquanto que a ovogênese pode completar exclusivamente um óvulo em cada ciclo estral; já que só pode ser completada por mais de um nas espécies que ovulam vários ovócitos no caso das porcas, cadelas, gatas etc. ❙ Na espermatogênese existem células de reserva que permitem a continuação du-rante toda a vida, enquanto que na ovogênese o número de ovócitos primários é limitado. A fêmea somente conta com os que nasceu, e eles não se dividem. ❙ Na espermatogênese obtém-se até 256 espermatozoides para cada espermatogo-nia que inicia o processo, enquanto que na ovogênese somente se obtém um óvulo a partir de cada ovócito primário. ❙ Durante a espermatogênese se produz uma metamorfose que transforma as es-permátides em espermatozoides. Na ovogênese não ocorre um processo análogo. ❙ Na espermatogênese, durante a meiose produzem-se quatro espermátides a partir de cada espermatócito primário. Na ovogênese se produz somente um óvulo a partir de cada ovócito primário; produz, ademais, dois corpos polares. ❙ Todos os óvulos que se produzem durante a ovogênese contém um cromossomo X, enquanto que a metade dos espermatozoides possuem um cromossomo Y e a outra metade um cromossomo X. ❙ Na espermatogênese produzem-se centenas ou dezenas de milhões de esperma-tozoides por dia, enquanto que na ovogênese se produz um ou alguns óvulos a cada ciclo estral. ❙ A espermatogênese produz gametas macroscópicos e com motilidade própria, enquanto que a ovogênese produz gametas grandes e imóveis. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ABDEL-RAOUF, Mohammed et al. The postnatal development of the reproductive organs in bullswith special reference to puberty.(Including growth of the hypophysis and the adrenals). Acta endocrinologica, n. Suppl No. 49, 1960. ADONA, Paulo Roberto et al. Ovogênese e foliculogênese em mamíferos. Journal of Health Sciences, v. 15, n. 3, 2013. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics: a review with emphasis on the bovine species. Part I: Folliculogenesis and pre‐antral follicle development. Reproduction in domestic animals, v. 45, n. 1, p. 171-179, 2010. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reproduction in domestic animals, v. 45, n. 1, p. 180-187, 2010. ALBERTINI, David F.; CARABATSOS, Mary Jo. Comparative aspects of meiotic cell cycle control in mammals. Journal of molecular medicine, v. 76, n. 12, p. 795-799, 1998. AUSTIN, Colin Russell; SHORT, R. Reproduction in mammals. Cambridge, 1972. BAKER, T. G. Oogenesis and ovulation. In. Reproduction in Mammals I Germ Cells and Fertilization, p. 29-30, 1972. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. BIGGERS, John D.; SCHUETZ, Allen W. Oogenesis. University Park Press, 1972. BINELLI, Mario; MURPHY, Bruce D. Coordinated regulation of follicle development by germ and somatic cells. Reproduction, Fertility and Development, v. 22, n. 1, p. 1-12, 2009. CHIARINI-GARCIA, Helio; RUSSELL, Lonnie D. High-resolution light microscopic characterization of mouse spermatogonia. Biology of reproduction, v. 65, n. 4, p. 1170-1178, 2001. CHOUDARY, J. B.; GIER, H. T.; MARION, G. B. Cyclic changes in bovine vesicular follicles. Journal of animal science, v. 27, n. 2, p. 468-471, 1968. CLERMONT, Yves; PEREY, Bernard. Quantitative study of the cell population of the seminiferous tubules in immature rats. American Journal of Anatomy, v. 100, n. 2, p. 241-267, 1957. COSTA, DEILER SAMPAIO; PAULA, T. A. R. Espermatogênese em mamíferos. Scientia, v. 4, 2003. CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. 2020. Acervo pessoal. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio. 2020. Acervo pessoal. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. EPIFANO, Olga; DEAN, Jurrien. Genetic control of early folliculogenesis in mice. Trends in Endocrinology & Metabolism, v. 13, n. 4, p. 169-173, 2002. ERICKSON, B. H. Development and senescence of the postnatal bovine ovary. Journal of animal science, v. 25, n. 3, p. 800-805, 1966. REFERÊNCIAS BIBLIOGRÁFICAS -/- FELDMAN, Edward C. et al. Canine and feline endocrinology-e-book. Elsevier health sciences, 2014. FUSCO, Giuseppe; MINELLI, Alessandro. The Biology of Reproduction. Cambridge University Press, 2019. GALINA-HIDALGO, Carlos Salvador. A study of the development of testicular function and an evaluation of testicular biopsy in farm animals. 1971. Tese de Doutorado. Royal Veterinary College (University of London). GALLICANO, G. Ian. Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Front Biosci, v. 6, p. D1089-1108, 2001. GILBERT, Scott F. Biología del desarrollo. Ed. Médica Panamericana, 2005. GNESSI, Lucio; FABBRI, Andrea; SPERA, Giovanni. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocrine reviews, v. 18, n. 4, p. 541-609, 1997. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HEDGER, Mark P. Testicular leukocytes: what are they doing?. Reviews of reproduction, v. 2, n. 1, p. 38-47, 1997. HUTSON, James C. Testicular macrophages. In: International review of cytology. Academic Press, 1994. p. 99-143. HYTTEL, P. Gametogênese. In. HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. São Paulo: Elsevier Brasil, 2012. JOHNSON, Martin H. Essential reproduction. Nova Jersey: John Wiley & Sons, 2018. JONES, Richard E.; LOPEZ, Kristin H. Human reproductive biology. Academic Press, 2013. KIERSZENBAUM, Abraham L.; TRES, Laura L. Primordial germ cell‐somatic cell partnership: A balancing cell signaling act. Molecular Reproduction and Development: Incorporating Gamete Research, v. 60, n. 3, p. 277-280, 2001. MATZUK, Martin M. et al. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, v. 296, n. 5576, p. 2178-2180, 2002. MCLAREN, Anne. Germ and somatic cell lineages in the developing gonad. Molecular and cellular endocrinology, v. 163, n. 1-2, p. 3-9, 2000. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MERCHANT-LARIOS, Horacio; MORENO-MENDOZA, Norma. Onset of sex differentiation: dialog between genes and cells. Archives of medical research, v. 32, n. 6, p. 553-558, 2001. MINTZ, Beatrice et al. Embryological phases of mammalian gametogenesis. Embryological phases of mammalian gametogenesis., v. 56, n. Suppl. 1, p. 31-43, 1960. MORALES, M. E. et al. Gametogénesis. I. Revisión de la literatura, con enfoque en la ovogénesis. Medicina Universitaria, v. 8, n. 32, p. 183-9, 2006. NAKATSUJI, NORIO; CHUMA, SHINICHIRO. Differentiation of mouse primordial germ cells into female or male germ cells. International Journal of Developmental Biology, v. 45, n. 3, p. 541-548, 2002. NILSSON, Eric; PARROTT, Jeff A.; SKINNER, Michael K. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Molecular and cellular endocrinology, v. 175, n. 1-2, p. 123-130, 2001. REFERÊNCIAS BIBLIOGRÁFICAS -/- NORRIS, David O.; LOPEZ, Kristin H. The endocrinology of the mammalian ovary. In: Hormones and reproduction of vertebrates. Academic Press, 2011. p. 59-72. PEDERSEN, Torben. Follicle growth in the immature mouse ovary. European Journal of Endocrinology, v. 62, n. 1, p. 117-132, 1969. PINEDA, Mauricio H. et al. McDonald's veterinary endocrinology and reproduction. Iowa state press, 2003. ROSER, J. F. Endocrine and paracrine control of sperm production in stallions. Animal Reproduction Science, v. 68, n. 3-4, p. 139-151, 2001. RUSSELL, Lonnie D. et al. Histological and histopathological evaluation of the testis. International journal of andrology, v. 16, n. 1, p. 83-83, 1993. RÜSSE, I.; SINOWATZ, F. Gametogenese. Lehrbuch der Embryologie der Haustiere, p. 42-92, 1991. SAITOU, Mitinori; BARTON, Sheila C.; SURANI, M. Azim. A molecular programme for the specification of germ cell fate in mice. Nature, v. 418, n. 6895, p. 293-300, 2002. SALISBURY, Glenn Wade et al. Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company., 1978. SAWYER, Heywood R. et al. Formation of ovarian follicles during fetal development in sheep. Biology of reproduction, v. 66, n. 4, p. 1134-1150, 2002. SCARAMUZZI, R. J.; MARTENSZ, N. D.; VAN LOOK, P. F. A. Ovarian morphology and the concentration of steroids, and of gonadotrophins during the breeding season in ewes actively immunized against oestradiol-17β or oestrone. Reproduction, v. 59, n. 2, p. 303-310, 1980. SEIDEL JR, G. E. et al. Control of folliculogenesis and ovulation in domestic animals: puberal and adult function. In: 9th International Congress on Animal Reproduction and Artificial Insemination, 16th-20th June 1980. II. Round tables. Editorial Garsi., 1980. p. 11-16. SKINNER, Michael K. Cell-cell interactions in the testis. Endocrine Reviews, v. 12, n. 1, p. 45-77, 1991. SMITZ, J. E.; CORTVRINDT, Rita G. The earliest stages of folliculogenesis in vitro. Reproduction, v. 123, n. 2, p. 185-202, 2002. SORENSEN, Anton Marinus. Reproducción animal: principios y prácticas. México, 1982. SUTOVSKY, Peter; MANANDHAR, Gaurishankar. Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. In. The sperm cell: Production, maturation, fertilization, regeneration, p. 1-30, 2006. TAZUKE, Salli I. et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development, v. 129, n. 10, p. 2529-2539, 2002. VAN STRAATEN, H. W. M.; WENSING, C. J. G. Leydig cell development in the testis of the pig. Biology of Reproduction, v. 18, n. 1, p. 86-93, 1978. TURNBULL, K. E.; BRADEN, A. W. H.; MATTNER, P. E. The pattern of follicular growth and atresia in the ovine ovary. Australian Journal of Biological Sciences, v. 30, n. 3, p. 229-242, 1977. WASSARMAN, Paul M. Gametogenesis. Londres: Academic Press, 2012. WROBEL, K.-H.; SÜß, Franz. Identification and temporospatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anatomy and embryology, v. 197, n. 6, p. 451-467, 1998. REFERÊNCIAS BIBLIOGRÁFICAS -/- ZARCO, L. Gametogénese. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. ZIRKIN, Barry R. et al. Endocrine and Paracrine Regulation of Mammalian Spermatogenesis. In: Hormones and Reproduction of Vertebrates. Academic Press, 2011. p. 45-57. -/- REALIZAÇÃO -/- . (shrink)
According to Richard Gelwick, one of the fundamental implications of Polanyi’s epistemology is that all intellectual disciplines are inherently heuristic. This article draws out the implications of a heuristic vision of theology latent in Polanyi’s thought by placing contemporary theologian David Brown’s dynamic understanding of tradition, imagination, and revelation in the context of a Polanyian-inspired vision of reality. Consequently, such a theology will follow the example of science, reimagining its task as one of discovery rather than mere reflection on (...) a timeless body of divine revelation. The ongoing development of a theological tradition thus involves the attempt to bring one’s understanding of the question of God to bear on the whole of the human experience. The pursuit of theology as a heuristic endeavor is a bold attempt to construct an integrated vision of nothing less than the entirety of all that is, without absolutizing one’s vision, and without giving up on the question of truth. (shrink)
Despite the closure of virtually all original grindhouse cinemas, ‘grindhouse’ lives on as a conceptual term. This article contends that the prevailing conceptualization of ‘grindhouse’ is problematized by a widening gap between the original grindhouse context (‘past’) and the DVD/home-viewing context (present). Despite fans’ and filmmakers’ desire to preserve this part of exploitation cinema history, the world of the grindhouse is now little more than a blurry set of tall-tales and faded phenomenal experiences, which are subject to present-bias. The continuing (...) usefulness of grindhouse-qua-concept requires that one should pay heed to the contemporary contexts in which ‘grindhouse’ is evoked. (shrink)
Tradução para o português da obra "História natural da religião", de David Hume.Tradução, apresentação e notas: Jaimir Conte. Editora da UNESP: São Paulo, 1ª ed. 2005. ISBN: 8571396043.
One of the leading cognitive models of auditory verbal hallucinations (AVHs) proposes such experiences result from a disturbance in the process by which inner speech is attributed to the self. Research in this area has, however, proceeded in the absence of thorough cognitive and phenomenological investigations of the nature of inner speech, against which AVHs are implicitly or explicitly defined. In this paper we begin by introducing philosophical phenomenology and highlighting its relevance to AVHs, before briefly examining the evolving literature (...) on the relation between inner experiences and AVHs. We then argue for the need for philosophical phenomenology (Phenomenology) and the traditional empirical methods of psychology for studying inner experience (phenomenology) to mutually inform each other to provide a richer and more nuanced picture of both inner experience and AVHs than either could on its own. A critical examination is undertaken of the leading model of AVHs derived from phenomenological philosophy, the ipseity disturbance model. From this we suggest issues that future work in this vein will need to consider, and examine how interdisciplinary methodologies may contribute to advances in our understanding of AVHs. Detailed suggestions are made for the direction and methodology of future work into AVHs, which we suggest should be undertaken in a context where phenomenology and physiology are both necessary, but neither sufficient. (shrink)
In his _Treatise on the Golden Lion_, Fazang says that wholes are _in_ each of their parts and that each part of a whole _is_ every other part of the whole. In this paper, I offer an interpretation of these remarks according to which they are not obviously false, and I use this interpretation in order to rigorously reconstruct Fazang's arguments for his claims. On the interpretation I favor, Fazang means that the presence of a whole's part suffices for the (...) presence of the whole and that the presence of any such part is both necessary and sufficient for the presence of any other part. I also argue that this interpretation is more plausible than its extant competitors. (shrink)
In seeking to clarify the concept of conflict of interest (COI) in debates about physician–industry relationships, Howard Brody (2011) highlights the extent to which the prob- lem turns on a common pejorative understanding of COI. Whether it is the academic or public policy “pharmapologists” or “pharmascolds” talking about COI, there is often a straightforward and overly simplistic correlation made: that is, a conflict of interest—by definition—leads to fraudulent or corrupt behavior. The same type of reasoning is com- monly found in (...) discussions about COI outside the health sciences, most notably in news stories about the awarding of government contracts or the behaviour of corporate executives. The problem is that in focusing on dramatic failures to manage COI (e.g., around Vioxx), there is a tendency to strongly associate COI with extreme forms of financial and even criminal misconduct, leaving the public, policymakers, academics, and professionals with a skewed and limited understanding of the concept. (shrink)
A Guide to Good Reasoning has been described by reviewers as “far superior to any other critical reasoning text.” It shows with both wit and philosophical care how students can become good at everyday reasoning. It starts with attitude—with alertness to judgmental heuristics and with the cultivation of intellectual virtues. From there it develops a system for skillfully clarifying and evaluating arguments, according to four standards—whether the premises fit the world, whether the conclusion fits the premises, whether the argument fits (...) the conversation, and whether it is possible to tell. (shrink)
Dans notre société de plus en plus digitalisée, avons-nous vraiment le choix d’adopter ou non les technologies? Comment cette digitalisation impacte-t-elle les personnes âgées en particulier et son écosystème? Quels sont les enjeux éthiques soulevés par cette digitalisation? Ce texte vise à amener des éléments de réflexions en lien avec ces enjeux selon le point de vue de divers experts des domaines de la technologie, du vieillissement et de la bioéthique. Ces experts se sont rencontrés lors d’un symposium ayant eu (...) lieu à Angers, France, en octobre 2019. Le texte est un compte-rendu des échanges et points de vue de ces experts, ainsi que des discussions ouvertes qu’ils ont eues avec l’assistance, portant sur les principaux enjeux soulevés par cette digitalisation selon la perspective des personnes âgées, des proches-aidants, des soignants, de la société et de la recherche. (shrink)
Research on research ethics—regarding both the governance and practice of the ethical review of human subjects research—has a tumultuous history in North America and Europe. Much of the academic literature focuses on issues to do with regulating the conduct and quality of ethics review of research protocols by ethics committees (research ethics boards (REBs) in Canada and institutional review boards (IRBs) in the United States). In addition, some of the literature attends to issues particular to the review of qualitative research, (...) and still other literature addresses the challenges posed by and the need for research on REBs/IRBs. It is this third group of literature within which our article is situated. (shrink)
Public discussions of ethical issues related to the biotechnology industry tend to treat "biotechnology" as a single, undifferentiated technology. Similarly, the pros and cons associated with this entire sector tend to get lumped together, such that individuals and groups often situate themselves as either "pro-" or "anti-" biotechnology as a whole. But different biotechnologies and their particular application context pose very different challenges for ethical corporate decision-making. Even within a single product category, different specialty products can pose strikingly different ethical (...) challenges. In this paper, we focus on the single over-arching category of "genetic testing" and compare tests for disease susceptibility and drug response. We highlight the diversity of ethical challenges - grouped under the broad categories of "truth in advertising" and "protecting intellectual property" - raised by the commercialization and marketing of these technologies. By examining social and technical differences between genetic tests, and the associated corporate ethics challenges posed by their commercialization, our intent is to contribute to the nascent business ethics literature examining issues raised by the development and marketing of genetic tests. (shrink)
Antimicrobial resistance is a growing public health concern and is associated with the over - or inappropriate use of antimicrobials in both humans and agriculture. While there has been recognition of this problem on the part of agricultural and public health authorities, there has nonetheless been significant difficulty in translating policy recommendations into practical guidelines. In this paper, we examine the process of public health policy development in Quebec agriculture, with a focus on the case of pork production and the (...) role of food animal veterinarians in policy making. We argue that a tendency to employ strictly techno- scientific risk analyses of antimicro- bial use ignores the fundamental social, economic and political realities of key stakeholders and so limits the applicability of policy recommendations developed by government advisory groups. In particular, we suggest that veterinarians’ personal and professional interests, and their ethical norms of practice, are key factors to both the problem of and the solution to the current over -reliance on antimicrobials in food production. (shrink)
Many virtue epistemologists conceive of epistemic competence on the model of skill —such as archery, playing baseball, or chess. In this paper, I argue that this is a mistake: epistemic competences and skills are crucially and relevantly different kinds of capacities. This, I suggest, undermines the popular attempt to understand epistemic normativity as a mere special case of the sort of normativity familiar from skilful action. In fact, as I argue further, epistemic competences resemble virtues rather than skills—a claim that (...) is based on an important, but often overlooked, difference between virtue and skill. The upshot is that virtue epistemology should indeed be based on virtue, not on skill. (shrink)
Antimicrobial resistance is a growing public health concern and is associated with the over- or inappropriate use of antimicrobials in both humans and agriculture. While there has been reco- gnition of this problem on the part of agricultural and public health authorities, there has none- theless been significant difficulty in translating policy recommendations into practical guidelines. In this paper, we examine the process of public health policy development in Quebec agriculture, with a focus on the case of pork production and (...) the role of food animal veterinarians in policy making. We argue that a tendency to employ strictly techno-scientific risk analyses of antimicro- bial use ignores the fundamental social, economic and political realities of key stakeholders and so limits the applicability of policy recommendations developed by government advisory groups. In particular, we suggest that veterinarians’ personal and professional interests, and their ethi- cal norms of practice, are key factors to both the problem of and the solution to the current over-reliance on antimicrobials in food production. (shrink)
Imagine that you are part of the editorial board of a young bioethics journal committed to publishing open access (OA) and to ensuring accessibility to high quality and innovative scholarship. To support junior and interna- tional scholars who might not otherwise find places for their work in the leading Western bioethics journals, you do not charge author fees. Imagine also that you have no financial resources to pay for a professional website, auto- mated submissions manager, or even a part-time coordina- (...) tor: Your government has cut all grants for journals, you cannot go to industry for private funding because of the evident risk of apparent conflicts of interest, and your strapped-for-cash institution cannot afford to offer you any support. If one of the major publishers were to approach you to sign a deal, the temptation would be strong to accept. However, this would likely mean putting aside your ideals: It would be impossible to stay a “Green OA” publication (i.e., free of author publication charges) or supportive of junior and international scholars (because of pressures to “increase credibility” through artificially high rejection rates, for example). (shrink)
Genetics research and biotechnology development - while holding the promise of improved pharmaceuticals, medical treatments, and foods - is also raising concerns about the impact of market forces on scientific inquiry, product development, and the provision of health care.
This case study examines some of the challenges, and in particular conflicts of interest, that professors face in writing letters of reference for their students.
The case of Andrew Gobea, the first child to receive experimental gene therapy for SCID, and a reflection on the associated ethical implications of gene therapy research.
Ongoing research in the fields of genetics and biotechnology hold the promise of improved diagnosis and treatment of genetic diseases, and potentially the development of individually tailored pharmaceuticals and gene therapies. Difficulty, however, arises in determining how these services are to be evaluated and integrated equitably into public health care systems such as Canada's. The current context is one of increasing fiscal restraint on the part of governments, limited financial resources being dedicated to health care, and rising costs for new (...) health care services and technologies. This has led to increasing public debate in the last few years about how to reform public health care, and whether we should prohibit, permit or perhaps even encourage private purchase of health care services. ;In Canada, some of these concerns have crystallized around the issue of gene patents and commercial genetic testing, in particular as illustrated by the case of Myriad Genetics' patented BRACAnalysis test for hereditary breast and ovarian cancer. While most Canadians who currently access genetic services do so through the public health care system, for those with the means, private purchase is becoming an option. This situation raises serious concerns---about justice in access to health care; about continued access to safe and reliable genetic testing supported by unbiased patient information; and about the broader effects of commercialization for ongoing research and the Canadian public health care system. Commercial genetic testing presents a challenge to health care professionals, policy analysts, and academics concerned with the social, ethical and policy implications of new genetic technologies. Using the Myriad case as an exemplar, tools from moral philosophy, the social sciences, and health policy and law will be brought to bear on the larger issues of how as a society we should regulate commercial research and product development, and more coherently decide which services to cover under public health insurance and which to leave to private purchase. Generally, the thesis is concerned with the question of "how best to bring capital, morality, and knowledge into a productive and ethical relationship". (shrink)
While there has been significant discussion in the health sciences and ethics literatures about problems associated with publication practices (e.g., ghost- and gift-authorship, conflicts of interest), there has been relatively little practical guidance developed to help researchers determine how they should fairly allocate credit for multi-authored publications. Fair allocation of credit requires that participating authors be acknowledged for their contribution and responsibilities, but it is not obvious what contributions should warrant authorship, nor who should be responsible for the quality and (...) content of the scientific research findings presented in a publication. In this paper, we review arguments presented in the ethics and health science literatures, and the policies or guidelines proposed by learned societies and journals, in order to explore the link between author contribution and responsibility in multi-author multidisciplinary health science publications. We then critically examine the various procedures used in the field to help researchers fairly allocate authorship. (shrink)
The theistic argument from beauty has what we call an 'evil twin', the argument from ugliness. The argument yields either what we call 'atheist win', or, when faced with aesthetic theodicies, 'agnostic tie' with the argument from beauty.
In recent years, educational institutions have started using the tools of commercial data analytics in higher education. By gathering information about students as they navigate campus information systems, learning analytics “uses analytic techniques to help target instructional, curricular, and support resources” to examine student learning behaviors and change students’ learning environments. As a result, the information educators and educational institutions have at their disposal is no longer demarcated by course content and assessments, and old boundaries between information used for assessment (...) and information about how students live and work are blurring. Our goal in this paper is to provide a systematic discussion of the ways in which privacy and learning analytics conflict and to provide a framework for understanding those conflicts. -/- We argue that there are five crucial issues about student privacy that we must address in order to ensure that whatever the laudable goals and gains of learning analytics, they are commensurate with respecting students’ privacy and associated rights, including (but not limited to) autonomy interests. First, we argue that we must distinguish among different entities with respect to whom students have, or lack, privacy. Second, we argue that we need clear criteria for what information may justifiably be collected in the name of learning analytics. Third, we need to address whether purported consequences of learning analytics (e.g., better learning outcomes) are justified and what the distributions of those consequences are. Fourth, we argue that regardless of how robust the benefits of learning analytics turn out to be, students have important autonomy interests in how information about them is collected. Finally, we argue that it is an open question whether the goods that justify higher education are advanced by learning analytics, or whether collection of information actually runs counter to those goods. (shrink)
There is increasing concern about “surveillance capitalism,” whereby for-profit companies generate value from data, while individuals are unable to resist (Zuboff 2019). Non-profits using data-enabled surveillance receive less attention. Higher education institutions (HEIs) have embraced data analytics, but the wide latitude that private, profit-oriented enterprises have to collect data is inappropriate. HEIs have a fiduciary relationship to students, not a narrowly transactional one (see Jones et al, forthcoming). They are responsible for facets of student life beyond education. In addition (...) to classrooms, learning management systems, and libraries, HEIs manage dormitories, gyms, dining halls, health facilities, career advising, police departments, and student employment. HEIs collect and use student data in all of these domains, ostensibly to understand learner behaviors and contexts, improve learning outcomes, and increase institutional efficiency through “learning analytics” (LA). ID card swipes and Wi-Fi log-ins can track student location, class attendance, use of campus facilities, eating habits, and friend groups. Course management systems capture how students interact with readings, video lectures, and discussion boards. Application materials provide demographic information. These data are used to identify students needing support, predict enrollment demands, and target recruiting efforts. These are laudable aims. However, current LA practices may be inconsistent with HEIs’ fiduciary responsibilities. HEIs often justify LA as advancing student interests, but some projects advance primarily organizational welfare and institutional interests. Moreover, LA advances a narrow conception of student interests while discounting privacy and autonomy. Students are generally unaware of the information collected, do not provide meaningful consent, and express discomfort and resigned acceptance about HEI data practices, especially for non-academic data (see Jones et al. forthcoming). The breadth and depth of student information available, combined with their fiduciary responsibility, create a duty that HEIs exercise substantial restraint and rigorous evaluation in data collection and use. (shrink)
What is absolutely unrestricted quantification? We distinguish two theoretical roles and identify two conceptions of absolute generality: maximally strong generality and maximally inclusive generality. We also distinguish two corresponding kinds of absolute domain. A maximally strong domain contains every potential counterexample to a generalisation. A maximally inclusive domain is such that no domain extends it. We argue that both conceptions of absolute generality are legitimate and investigate the relations between them. Although these conceptions coincide in standard settings, we show how (...) they diverge under more complex assumptions about the structure of meaningful predication, such as cumulative type theory. We conclude by arguing that maximally strong generality is the more theoretically valuable conception. (shrink)
Inspired by Rudolf Carnap's Der Logische Aufbau Der Welt, David J. Chalmers argues that the world can be constructed from a few basic elements. He develops a scrutability thesis saying that all truths about the world can be derived from basic truths and ideal reasoning. This thesis leads to many philosophical consequences: a broadly Fregean approach to meaning, an internalist approach to the contents of thought, and a reply to W. V. Quine's arguments against the analytic and the a (...) priori. Chalmers also uses scrutability to analyze the unity of science, to defend a conceptual approach to metaphysics, and to mount a structuralist response to skepticism. Based on the 2010 John Locke lectures, Constructing the World opens up debate on central philosophical issues involving language, consciousness, knowledge, and reality. This major work by a leading philosopher will appeal to philosophers in all areas. This entry contains uncorrected proofs of front matter, chapter 1, and first excursus. (shrink)
A evidência textual primária confirma que Schopenhauer estava ciente da adoção generalizada do confinamento solitário no sistema penitenciário americano e alguns de seus efeitos prejudiciais. Ele entende sua perniciosidade no que diz respeito ao tédio, fenômeno pelo qual é conhecido por ter nele pensado e analisado extensivamente. Neste artigo, eu interpreto o relato de Schopenhauer sobre o tédio e sua relação com o confinamento solitário. Defendo Schopenhauer contra a objeção de que os casos de confinamento servem apenas para ilustrar a (...) inadequação geral de sua explicação do tédio como a falta de coisas para se querer. Esta defesa chega à conclusão de que, ao contrário, alguém pode muito bem sofrer da falta de coisas para querer como resultado direto de estar confinado; e que o tédio, entendido como a privação de vontade — fenômeno que sugiro poder ser chamado de privação conativa — faz uma contribuição esclarecedora para a nossa compreensão teórica da nocividade do confinamento solitário. (shrink)
My claim in this article is that the thesis that Buddhism has no God, insofar as it is taken to apply to Buddhism universally, is false. I defend this claim by interpreting a central text in East-Asian Buddhism – The Awakening of Faith in Mahāyāna – through the lenses of perfect being theology (PBT), a research programme in philosophy of religion that attempts to provide a description of God through a two-step process: (1) defining God in terms of maximal greatness; (...) (2) inferring the properties or attributes that God must have in virtue of satisfying the definition. My argument comprises two steps. First, I argue that, since PBT is a method for providing a description of God starting from a definition of God, any text that contains a PBT ipso facto contains a notion of God. Second, I argue through textual evidence that The Awakening articulates a PBT, concluding that it contains a notion of God. Since the method of PBT leaves open what descriptions are to be inferred, my argument allows me to conclude that a text contains a notion of God without previously committing to any particular conception of the divine, which makes it particularly versatile and powerful. (shrink)
In his paper, Jakob Hohwy outlines a theory of the brain as an organ for prediction-error minimization, which he claims has the potential to profoundly alter our understanding of mind and cognition. One manner in which our understanding of the mind is altered, according to PEM, stems from the neurocentric conception of the mind that falls out of the framework, which portrays the mind as “inferentially-secluded” from its environment. This in turn leads Hohwy to reject certain theses of embodied cognition. (...) Focusing on this aspect of Hohwy’s argument, we first outline the key components of the PEM framework such as the “evidentiary boundary,” before looking at why this leads Hohwy to reject certain theses of embodied cognition. We will argue that although Hohwy may be correct to reject specific theses of embodied cognition, others are in fact implied by the PEM framework and may contribute to its development. We present the metaphor of the “body as a laboratory” in order to highlight wha... (shrink)
This essay explores the philosophical significance of Anthony Burgess’s 1960s novel "A Clockwork Orange." Specific themes in this novel are developed through character and situation, in a way which takes cognisance of important problems in the history of philosophy. The essay looks at two particular themes in this context. The first relates to the epistemological question of the distinction between truth and illusion. The novel thematizes the demarcation between truth and illusion, or truth and appearance, and raises the issue of (...) whether we can have a knowledge or epistemological foundation for such a distinction. Second, the novel addresses a question at the heart of ethics, that is, the issue of whether there is a clear distinction between good and evil. Moreover, it develops this question in relation to the further issue of the explanation for the seeming attractiveness of evil, if good is an acknowledged superior value. In the novel these questions are addressed especially through the main character of Alex, whose incarceration and rehabilitation treatment by psychiatry comes centre stage. Additionally, the text itself is adapted for film by Stanley Kubrick in 1971 and the essay explores how Kubrick’s interpretation of the original novel is distinct from that of Burgess (this difference being added to by the medium of film). Kubrick’s different interpretation nonetheless builds on the original novel and thus brings new insights in terms of the reading of the primary themes, while also complexifying the hermeneutics. (shrink)
Plato's Phaedo is a literary gem that develops many of his most famous ideas. David Ebrey's careful reinterpretation argues that the many debates about the dialogue cannot be resolved so long as we consider its passages in relative isolation from one another, separated from their intellectual background. His book shows how Plato responds to his literary, religious, scientific, and philosophical context, and argues that we can only understand the dialogue's central ideas and arguments in light of its overall structure. (...) This approach yields new interpretations of the dialogue's key ideas, including the nature and existence of 'Platonic' forms, the existence of the soul after death, the method of hypothesis, and the contemplative ethical ideal. Moreover, this comprehensive approach shows how the characters play an integral role in the Phaedo's development and how its literary structure complements Socrates' views while making its own distinctive contribution to the dialogue's drama and ideas. (shrink)
An internalist slogan says that justification depends on internal factors. But which factors are those? This paper examines some common motivations favoring internalism over externalism, and says they are compatible with including dispositional and even past mental states in the internal.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.