Results for 'Interpretability · Explainable artifcial intelligence · Machine learning'

964 found
Order:
  1.  62
    A global taxonomy of interpretable AI: unifying the terminology for the technical and social sciences.Lode Lauwaert - 2023 - Artificial Intelligence Review 56:3473–3504.
    Since its emergence in the 1960s, Artifcial Intelligence (AI) has grown to conquer many technology products and their felds of application. Machine learning, as a major part of the current AI solutions, can learn from the data and through experience to reach high performance on various tasks. This growing success of AI algorithms has led to a need for interpretability to understand opaque models such as deep neural networks. Various requirements have been raised from diferent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. The Pragmatic Turn in Explainable Artificial Intelligence.Andrés Páez - 2019 - Minds and Machines 29 (3):441-459.
    In this paper I argue that the search for explainable models and interpretable decisions in AI must be reformulated in terms of the broader project of offering a pragmatic and naturalistic account of understanding in AI. Intuitively, the purpose of providing an explanation of a model or a decision is to make it understandable to its stakeholders. But without a previous grasp of what it means to say that an agent understands a model or a decision, the explanatory strategies (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  3. An Introduction to Artificial Psychology Application Fuzzy Set Theory and Deep Machine Learning in Psychological Research using R.Farahani Hojjatollah - 2023 - Springer Cham. Edited by Hojjatollah Farahani, Marija Blagojević, Parviz Azadfallah, Peter Watson, Forough Esrafilian & Sara Saljoughi.
    Artificial Psychology (AP) is a highly multidisciplinary field of study in psychology. AP tries to solve problems which occur when psychologists do research and need a robust analysis method. Conventional statistical approaches have deep rooted limitations. These approaches are excellent on paper but often fail to model the real world. Mind researchers have been trying to overcome this by simplifying the models being studied. This stance has not received much practical attention recently. Promoting and improving artificial intelligence helps mind (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Explaining Explanations in AI.Brent Mittelstadt - forthcoming - FAT* 2019 Proceedings 1.
    Recent work on interpretability in machine learning and AI has focused on the building of simplified models that approximate the true criteria used to make decisions. These models are a useful pedagogical device for teaching trained professionals how to predict what decisions will be made by the complex system, and most importantly how the system might break. However, when considering any such model it’s important to remember Box’s maxim that "All models are wrong but some are useful." (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  5. The virtues of interpretable medical AI.Joshua Hatherley, Robert Sparrow & Mark Howard - 2024 - Cambridge Quarterly of Healthcare Ethics 33 (3):323-332.
    Artificial intelligence (AI) systems have demonstrated impressive performance across a variety of clinical tasks. However, notoriously, sometimes these systems are 'black boxes'. The initial response in the literature was a demand for 'explainable AI'. However, recently, several authors have suggested that making AI more explainable or 'interpretable' is likely to be at the cost of the accuracy of these systems and that prioritising interpretability in medical AI may constitute a 'lethal prejudice'. In this paper, we defend (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6.  76
    Interpretable and accurate prediction models for metagenomics data.Edi Prifti, Antoine Danchin, Jean-Daniel Zucker & Eugeni Belda - 2020 - Gigascience 9 (3):giaa010.
    Background: Microbiome biomarker discovery for patient diagnosis, prognosis, and risk evaluation is attracting broad interest. Selected groups of microbial features provide signatures that characterize host disease states such as cancer or cardio-metabolic diseases. Yet, the current predictive models stemming from machine learning still behave as black boxes and seldom generalize well. Their interpretation is challenging for physicians and biologists, which makes them difficult to trust and use routinely in the physician-patient decision-making process. Novel methods that provide interpretability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. (2 other versions)The explanation game: a formal framework for interpretable machine learning.David S. Watson & Luciano Floridi - 2020 - Synthese 198 (10):1–⁠32.
    We propose a formal framework for interpretable machine learning. Combining elements from statistical learning, causal interventionism, and decision theory, we design an idealised explanation game in which players collaborate to find the best explanation for a given algorithmic prediction. Through an iterative procedure of questions and answers, the players establish a three-dimensional Pareto frontier that describes the optimal trade-offs between explanatory accuracy, simplicity, and relevance. Multiple rounds are played at different levels of abstraction, allowing the players to (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  8. Levels of explicability for medical artificial intelligence: What do we normatively need and what can we technically reach?Frank Ursin, Felix Lindner, Timo Ropinski, Sabine Salloch & Cristian Timmermann - 2023 - Ethik in der Medizin 35 (2):173-199.
    Definition of the problem The umbrella term “explicability” refers to the reduction of opacity of artificial intelligence (AI) systems. These efforts are challenging for medical AI applications because higher accuracy often comes at the cost of increased opacity. This entails ethical tensions because physicians and patients desire to trace how results are produced without compromising the performance of AI systems. The centrality of explicability within the informed consent process for medical AI systems compels an ethical reflection on the trade-offs. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  9. Interprétabilité et explicabilité pour l’apprentissage machine : entre modèles descriptifs, modèles prédictifs et modèles causaux. Une nécessaire clarification épistémologique.Christophe Denis & Franck Varenne - 2019 - Actes de la Conférence Nationale En Intelligence Artificielle - CNIA 2019.
    Le déficit d’explicabilité des techniques d’apprentissage machine (AM) pose des problèmes opérationnels, juridiques et éthiques. Un des principaux objectifs de notre projet est de fournir des explications éthiques des sorties générées par une application fondée sur de l’AM, considérée comme une boîte noire. La première étape de ce projet, présentée dans cet article, consiste à montrer que la validation de ces boîtes noires diffère épistémologiquement de celle mise en place dans le cadre d’une modélisation mathématique et causale d’un phénomène (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Interprétabilité et explicabilité de phénomènes prédits par de l’apprentissage machine.Christophe Denis & Franck Varenne - 2022 - Revue Ouverte d'Intelligence Artificielle 3 (3-4):287-310.
    Le déficit d’explicabilité des techniques d’apprentissage machine (AM) pose des problèmes opérationnels, juridiques et éthiques. Un des principaux objectifs de notre projet est de fournir des explications éthiques des sorties générées par une application fondée sur de l’AM, considérée comme une boîte noire. La première étape de ce projet, présentée dans cet article, consiste à montrer que la validation de ces boîtes noires diffère épistémologiquement de celle mise en place dans le cadre d’une modélisation mathéma- tique et causale d’un (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. The Relations Between Pedagogical and Scientific Explanations of Algorithms: Case Studies from the French Administration.Maël Pégny - manuscript
    The opacity of some recent Machine Learning (ML) techniques have raised fundamental questions on their explainability, and created a whole domain dedicated to Explainable Artificial Intelligence (XAI). However, most of the literature has been dedicated to explainability as a scientific problem dealt with typical methods of computer science, from statistics to UX. In this paper, we focus on explainability as a pedagogical problem emerging from the interaction between lay users and complex technological systems. We defend an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. ANNs and Unifying Explanations: Reply to Erasmus, Brunet, and Fisher.Yunus Prasetya - 2022 - Philosophy and Technology 35 (2):1-9.
    In a recent article, Erasmus, Brunet, and Fisher (2021) argue that Artificial Neural Networks (ANNs) are explainable. They survey four influential accounts of explanation: the Deductive-Nomological model, the Inductive-Statistical model, the Causal-Mechanical model, and the New-Mechanist model. They argue that, on each of these accounts, the features that make something an explanation is invariant with regard to the complexity of the explanans and the explanandum. Therefore, they conclude, the complexity of ANNs (and other Machine Learning models) does (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. The Use of Machine Learning Methods for Image Classification in Medical Data.Destiny Agboro - forthcoming - International Journal of Ethics.
    Integrating medical imaging with computing technologies, such as Artificial Intelligence (AI) and its subsets: Machine learning (ML) and Deep Learning (DL) has advanced into an essential facet of present-day medicine, signaling a pivotal role in diagnostic decision-making and treatment plans (Huang et al., 2023). The significance of medical imaging is escalated by its sustained growth within the realm of modern healthcare (Varoquaux and Cheplygina, 2022). Nevertheless, the ever-increasing volume of medical images compared to the availability of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Epistemic virtues of harnessing rigorous machine learning systems in ethically sensitive domains.Thomas F. Burns - 2023 - Journal of Medical Ethics 49 (8):547-548.
    Some physicians, in their care of patients at risk of misusing opioids, use machine learning (ML)-based prediction drug monitoring programmes (PDMPs) to guide their decision making in the prescription of opioids. This can cause a conflict: a PDMP Score can indicate a patient is at a high risk of opioid abuse while a patient expressly reports oppositely. The prescriber is then left to balance the credibility and trust of the patient with the PDMP Score. Pozzi1 argues that a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. The Use and Misuse of Counterfactuals in Ethical Machine Learning.Atoosa Kasirzadeh & Andrew Smart - 2021 - In Atoosa Kasirzadeh & Andrew Smart (eds.), ACM Conference on Fairness, Accountability, and Transparency (FAccT 21).
    The use of counterfactuals for considerations of algorithmic fairness and explainability is gaining prominence within the machine learning community and industry. This paper argues for more caution with the use of counterfactuals when the facts to be considered are social categories such as race or gender. We review a broad body of papers from philosophy and social sciences on social ontology and the semantics of counterfactuals, and we conclude that the counterfactual approach in machine learning fairness (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. Disciplining Deliberation: A Sociotechnical Perspective on Machine Learning Trade-offs.Sina Fazelpour - 2021
    This paper focuses on two highly publicized formal trade-offs in the field of responsible artificial intelligence (AI) -- between predictive accuracy and fairness and between predictive accuracy and interpretability. These formal trade-offs are often taken by researchers, practitioners, and policy-makers to directly imply corresponding tensions between underlying values. Thus interpreted, the trade-offs have formed a core focus of normative engagement in AI governance, accompanied by a particular division of labor along disciplinary lines. This paper argues against this prevalent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Machine intelligence: a chimera.Mihai Nadin - 2019 - AI and Society 34 (2):215-242.
    The notion of computation has changed the world more than any previous expressions of knowledge. However, as know-how in its particular algorithmic embodiment, computation is closed to meaning. Therefore, computer-based data processing can only mimic life’s creative aspects, without being creative itself. AI’s current record of accomplishments shows that it automates tasks associated with intelligence, without being intelligent itself. Mistaking the abstract for the concrete has led to the religion of “everything is an output of computation”—even the humankind that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  18. Explicability of artificial intelligence in radiology: Is a fifth bioethical principle conceptually necessary?Frank Ursin, Cristian Timmermann & Florian Steger - 2022 - Bioethics 36 (2):143-153.
    Recent years have witnessed intensive efforts to specify which requirements ethical artificial intelligence (AI) must meet. General guidelines for ethical AI consider a varying number of principles important. A frequent novel element in these guidelines, that we have bundled together under the term explicability, aims to reduce the black-box character of machine learning algorithms. The centrality of this element invites reflection on the conceptual relation between explicability and the four bioethical principles. This is important because the application (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  19. What we owe to decision-subjects: beyond transparency and explanation in automated decision-making.David Gray Grant, Jeff Behrends & John Basl - 2023 - Philosophical Studies 2003:1-31.
    The ongoing explosion of interest in artificial intelligence is fueled in part by recently developed techniques in machine learning. Those techniques allow automated systems to process huge amounts of data, utilizing mathematical methods that depart from traditional statistical approaches, and resulting in impressive advancements in our ability to make predictions and uncover correlations across a host of interesting domains. But as is now widely discussed, the way that those systems arrive at their outputs is often opaque, even (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. Making Sense of Raw Input.Richard Evans, Matko Bošnjak, Lars Buesing, Kevin Ellis, David Pfau, Pushmeet Kohli & Marek Sergot - 2021 - Artificial Intelligence 299 (C):103521.
    How should a machine intelligence perform unsupervised structure discovery over streams of sensory input? One approach to this problem is to cast it as an apperception task [1]. Here, the task is to construct an explicit interpretable theory that both explains the sensory sequence and also satisfies a set of unity conditions, designed to ensure that the constituents of the theory are connected in a relational structure. However, the original formulation of the apperception task had one fundamental limitation: (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. What Can Artificial Intelligence Do for Scientific Realism?Petr Spelda & Vit Stritecky - 2020 - Axiomathes 31 (1):85-104.
    The paper proposes a synthesis between human scientists and artificial representation learning models as a way of augmenting epistemic warrants of realist theories against various anti-realist attempts. Towards this end, the paper fleshes out unconceived alternatives not as a critique of scientific realism but rather a reinforcement, as it rejects the retrospective interpretations of scientific progress, which brought about the problem of alternatives in the first place. By utilising adversarial machine learning, the synthesis explores possibility spaces of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. AISC 17 Talk: The Explanatory Problems of Deep Learning in Artificial Intelligence and Computational Cognitive Science: Two Possible Research Agendas.Antonio Lieto - 2018 - In Proceedings of AISC 2017.
    Endowing artificial systems with explanatory capacities about the reasons guiding their decisions, represents a crucial challenge and research objective in the current fields of Artificial Intelligence (AI) and Computational Cognitive Science [Langley et al., 2017]. Current mainstream AI systems, in fact, despite the enormous progresses reached in specific tasks, mostly fail to provide a transparent account of the reasons determining their behavior (both in cases of a successful or unsuccessful output). This is due to the fact that the classical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. The need for a system view to regulate artificial intelligence/machine learning-based software as medical device.Sara Gerke, Boris Babic, Theodoros Evgeniou & I. Glenn Cohen - 2020 - Nature Digital Medicine 53 (3):1-4.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24. A Theory Explains Deep Learning.Kenneth Kijun Lee & Chase Kihwan Lee - manuscript
    This is our journal for developing Deduction Theory and studying Deep Learning and Artificial intelligence. Deduction Theory is a Theory of Deducing World’s Relativity by Information Coupling and Asymmetry. We focus on information processing, see intelligence as an information structure that relatively close object-oriented, probability-oriented, unsupervised learning, relativity information processing and massive automated information processing. We see deep learning and machine learning as an attempt to make all types of information processing relatively close (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. “Just” accuracy? Procedural fairness demands explainability in AI‑based medical resource allocation.Jon Rueda, Janet Delgado Rodríguez, Iris Parra Jounou, Joaquín Hortal-Carmona, Txetxu Ausín & David Rodríguez-Arias - 2022 - AI and Society:1-12.
    The increasing application of artificial intelligence (AI) to healthcare raises both hope and ethical concerns. Some advanced machine learning methods provide accurate clinical predictions at the expense of a significant lack of explainability. Alex John London has defended that accuracy is a more important value than explainability in AI medicine. In this article, we locate the trade-off between accurate performance and explainable algorithms in the context of distributive justice. We acknowledge that accuracy is cardinal from outcome-oriented (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26.  83
    Beyond Human: Deep Learning, Explainability and Representation.M. Beatrice Fazi - 2021 - Theory, Culture and Society 38 (7-8):55-77.
    This article addresses computational procedures that are no longer constrained by human modes of representation and considers how these procedures could be philosophically understood in terms of ‘algorithmic thought’. Research in deep learning is its case study. This artificial intelligence (AI) technique operates in computational ways that are often opaque. Such a black-box character demands rethinking the abstractive operations of deep learning. The article does so by entering debates about explainability in AI and assessing how technoscience and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Developing Artificial Human-Like Arithmetical Intelligence (and Why).Markus Pantsar - 2023 - Minds and Machines 33 (3):379-396.
    Why would we want to develop artificial human-like arithmetical intelligence, when computers already outperform humans in arithmetical calculations? Aside from arithmetic consisting of much more than mere calculations, one suggested reason is that AI research can help us explain the development of human arithmetical cognition. Here I argue that this question needs to be studied already in the context of basic, non-symbolic, numerical cognition. Analyzing recent machine learning research on artificial neural networks, I show how AI studies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. From Biological Synapses to "Intelligent" Robots.Birgitta Dresp-Langley - 2022 - Electronics 11:1-28.
    This selective review explores biologically inspired learning as a model for intelligent robot control and sensing technology on the basis of specific examples. Hebbian synaptic learning is discussed as a functionally relevant model for machine learning and intelligence, as explained on the basis of examples from the highly plastic biological neural networks of invertebrates and vertebrates. Its potential for adaptive learning and control without supervision, the generation of functional complexity, and control architectures based on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Understanding Biology in the Age of Artificial Intelligence.Adham El Shazly, Elsa Lawerence, Srijit Seal, Chaitanya Joshi, Matthew Greening, Pietro Lio, Shantung Singh, Andreas Bender & Pietro Sormanni - manuscript
    Modern life sciences research is increasingly relying on artificial intelligence (AI) approaches to model biological systems, primarily centered around the use of machine learning (ML) models. Although ML is undeniably useful for identifying patterns in large, complex data sets, its widespread application in biological sciences represents a significant deviation from traditional methods of scientific inquiry. As such, the interplay between these models and scientific understanding in biology is a topic with important implications for the future of scientific (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Shortcuts to Artificial Intelligence.Nello Cristianini - 2021 - In Marcello Pelillo & Teresa Scantamburlo (eds.), Machines We Trust: Perspectives on Dependable Ai. MIT Press.
    The current paradigm of Artificial Intelligence emerged as the result of a series of cultural innovations, some technical and some social. Among them are apparently small design decisions, that led to a subtle reframing of the field’s original goals, and are by now accepted as standard. They correspond to technical shortcuts, aimed at bypassing problems that were otherwise too complicated or too expensive to solve, while still delivering a viable version of AI. Far from being a series of separate (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Algorithms for Ethical Decision-Making in the Clinic: A Proof of Concept.Lukas J. Meier, Alice Hein, Klaus Diepold & Alena Buyx - 2022 - American Journal of Bioethics 22 (7):4-20.
    Machine intelligence already helps medical staff with a number of tasks. Ethical decision-making, however, has not been handed over to computers. In this proof-of-concept study, we show how an algorithm based on Beauchamp and Childress’ prima-facie principles could be employed to advise on a range of moral dilemma situations that occur in medical institutions. We explain why we chose fuzzy cognitive maps to set up the advisory system and how we utilized machine learning to train it. (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  32. Transparent, explainable, and accountable AI for robotics.Sandra Wachter, Brent Mittelstadt & Luciano Floridi - 2017 - Science (Robotics) 2 (6):eaan6080.
    To create fair and accountable AI and robotics, we need precise regulation and better methods to certify, explain, and audit inscrutable systems.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  33. Local explanations via necessity and sufficiency: unifying theory and practice.David Watson, Limor Gultchin, Taly Ankur & Luciano Floridi - 2022 - Minds and Machines 32:185-218.
    Necessity and sufficiency are the building blocks of all successful explanations. Yet despite their importance, these notions have been conceptually underdeveloped and inconsistently applied in explainable artificial intelligence (XAI), a fast-growing research area that is so far lacking in firm theoretical foundations. Building on work in logic, probability, and causality, we establish the central role of necessity and sufficiency in XAI, unifying seemingly disparate methods in a single formal framework. We provide a sound and complete algorithm for computing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Explaining Go: Challenges in Achieving Explainability in AI Go Programs.Zack Garrett - 2023 - Journal of Go Studies 17 (2):29-60.
    There has been a push in recent years to provide better explanations for how AIs make their decisions. Most of this push has come from the ethical concerns that go hand in hand with AIs making decisions that affect humans. Outside of the strictly ethical concerns that have prompted the study of explainable AIs (XAIs), there has been research interest in the mere possibility of creating XAIs in various domains. In general, the more accurate we make our models the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35.  60
    Intelligent Driver Drowsiness Detection System Using Optimized Machine Learning Models.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):397-405.
    : Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. The virtues of interpretable medical AI.Joshua Hatherley, Robert Sparrow & Mark Howard - 2024 - Cambridge Quarterly of Healthcare Ethics 33 (3).
    Artificial intelligence (AI) systems have demonstrated impressive performance across a variety of clinical tasks. However, notoriously, sometimes these systems are “black boxes.” The initial response in the literature was a demand for “explainable AI.” However, recently, several authors have suggested that making AI more explainable or “interpretable” is likely to be at the cost of the accuracy of these systems and that prioritizing interpretability in medical AI may constitute a “lethal prejudice.” In this paper, we defend (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Clinical applications of machine learning algorithms: beyond the black box.David S. Watson, Jenny Krutzinna, Ian N. Bruce, Christopher E. M. Griffiths, Iain B. McInnes, Michael R. Barnes & Luciano Floridi - 2019 - British Medical Journal 364:I886.
    Machine learning algorithms may radically improve our ability to diagnose and treat disease. For moral, legal, and scientific reasons, it is essential that doctors and patients be able to understand and explain the predictions of these models. Scalable, customisable, and ethical solutions can be achieved by working together with relevant stakeholders, including patients, data scientists, and policy makers.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  38. The Boundaries of Meaning: A Case Study in Neural Machine Translation.Yuri Balashov - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 66.
    The success of deep learning in natural language processing raises intriguing questions about the nature of linguistic meaning and ways in which it can be processed by natural and artificial systems. One such question has to do with subword segmentation algorithms widely employed in language modeling, machine translation, and other tasks since 2016. These algorithms often cut words into semantically opaque pieces, such as ‘period’, ‘on’, ‘t’, and ‘ist’ in ‘period|on|t|ist’. The system then represents the resulting segments in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Natural morphological computation as foundation of learning to learn in humans, other living organisms, and intelligent machines.Gordana Dodig-Crnkovic - 2020 - Philosophies 5 (3):17-32.
    The emerging contemporary natural philosophy provides a common ground for the integrative view of the natural, the artificial, and the human-social knowledge and practices. Learning process is central for acquiring, maintaining, and managing knowledge, both theoretical and practical. This paper explores the relationships between the present advances in understanding of learning in the sciences of the artificial, natural sciences, and philosophy. The question is, what at this stage of the development the inspiration from nature, specifically its computational models (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  40. Will intelligent machines become moral patients?Parisa Moosavi - 2023 - Philosophy and Phenomenological Research 109 (1):95-116.
    This paper addresses a question about the moral status of Artificial Intelligence (AI): will AIs ever become moral patients? I argue that, while it is in principle possible for an intelligent machine to be a moral patient, there is no good reason to believe this will in fact happen. I start from the plausible assumption that traditional artifacts do not meet a minimal necessary condition of moral patiency: having a good of one's own. I then argue that intelligent (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. (1 other version)Artificial virtuous agents: from theory to machine implementation.Jakob Stenseke - 2021 - AI and Society:1-20.
    Virtue ethics has many times been suggested as a promising recipe for the construction of artificial moral agents due to its emphasis on moral character and learning. However, given the complex nature of the theory, hardly any work has de facto attempted to implement the core tenets of virtue ethics in moral machines. The main goal of this paper is to demonstrate how virtue ethics can be taken all the way from theory to machine implementation. To achieve this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  42. An Unconventional Look at AI: Why Today’s Machine Learning Systems are not Intelligent.Nancy Salay - 2020 - In LINKs: The Art of Linking, an Annual Transdisciplinary Review, Special Edition 1, Unconventional Computing. pp. 62-67.
    Machine learning systems (MLS) that model low-level processes are the cornerstones of current AI systems. These ‘indirect’ learners are good at classifying kinds that are distinguished solely by their manifest physical properties. But the more a kind is a function of spatio-temporally extended properties — words, situation-types, social norms — the less likely an MLS will be able to track it. Systems that can interact with objects at the individual level, on the other hand, and that can sustain (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43.  39
    Privacy and Machine Learning- Based Artificial Intelligence: Philosophical, Legal, and Technical Investigations.Haleh Asgarinia - 2024 - Dissertation, Department of Philisophy, University of Twente
    This dissertation consists of five chapters, each written as independent research papers that are unified by an overarching concern regarding information privacy and machine learning-based artificial intelligence (AI). This dissertation addresses the issues concerning privacy and AI by responding to the following three main research questions (RQs): RQ1. ‘How does an AI system affect privacy?’; RQ2. ‘How effectively does the General Data Protection Regulation (GDPR) assess and address privacy issues concerning both individuals and groups?’; and RQ3. ‘How (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. (1 other version)Machine Learning and Irresponsible Inference: Morally Assessing the Training Data for Image Recognition Systems.Owen C. King - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 265-282.
    Just as humans can draw conclusions responsibly or irresponsibly, so too can computers. Machine learning systems that have been trained on data sets that include irresponsible judgments are likely to yield irresponsible predictions as outputs. In this paper I focus on a particular kind of inference a computer system might make: identification of the intentions with which a person acted on the basis of photographic evidence. Such inferences are liable to be morally objectionable, because of a way in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Explainable Artificial Intelligence (XAI) 2.0: A Manifesto of Open Challenges and Interdisciplinary Research Directions.Luca Longo, Mario Brcic, Federico Cabitza, Jaesik Choi, Roberto Confalonieri, Javier Del Ser, Riccardo Guidotti, Yoichi Hayashi, Francisco Herrera, Andreas Holzinger, Richard Jiang, Hassan Khosravi, Freddy Lecue, Gianclaudio Malgieri, Andrés Páez, Wojciech Samek, Johannes Schneider, Timo Speith & Simone Stumpf - 2024 - Information Fusion 106 (June 2024).
    As systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications, understanding these black box models has become paramount. In response, Explainable AI (XAI) has emerged as a field of research with practical and ethical benefits across various domains. This paper not only highlights the advancements in XAI and its application in real-world scenarios but also addresses the ongoing challenges within XAI, emphasizing the need for broader perspectives and collaborative efforts. We bring together experts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Investigating some ethical issues of artificial intelligence in art (طرح و بررسی برخی از مسائلِ اخلاقیِ هوش مصنوعی در هنر).Ashouri Kisomi Mohammad Ali - 2024 - Metaphysics 16 (1):93-110.
    هدف از پژوهش حاضر، بررسی مسائل اخلاق هوش مصنوعی در حوزۀ هنر است. به‌این‌منظور، با تکیه بر فلسفه و اخلاق هوش مصنوعی، موضوعات اخلاقی که می‌تواند در حوزۀ هنر تأثیرگذار باشد، بررسی شده است. باتوجه‌به رشد و توسعۀ استفاده از هوش مصنوعی و ورود آن به حوزۀ هنر، نیاز است تا مباحث اخلاقی دقیق‌تر مورد توجه پژوهشگران هنر و فلسفه قرار گیرد. برای دست‌یابی به هدف پژوهش، با استفاده از روش تحلیلی‌ـ‌توصیفی، مفاهیمی همچون هوش مصنوعی، برخی تکنیک‌های آن و موضوعات (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. A hybrid Automated Intelligent COVID-19 Classification System Based on Neutrosophic Logic and Machine Learning Techniques Using Chest X-ray Images.Ibrahim Yasser, Aya A. Abd El-Khalek, A. A. Salama, Abeer Twakol, Mohy-Eldin Abo-Elsoud & Fahmi Khalifa - forthcoming - In Ibrahim Yasser, Aya A. Abd El-Khalek, A. A. Salama, Abeer Twakol, Mohy-Eldin Abo-Elsoud & Fahmi Khalifa (eds.), Advances in Data Science and Intelligent Data Communication Technologies for COVID-19 Pandemic (DSIDC-COVID-19) ,Studies in Systems, Decision and Control.
    Download  
     
    Export citation  
     
    Bookmark  
  48. Understanding Moral Responsibility in Automated Decision-Making: Responsibility Gaps and Strategies to Address Them.Andrea Berber & Jelena Mijić - 2024 - Theoria: Beograd 67 (3):177-192.
    This paper delves into the use of machine learning-based systems in decision-making processes and its implications for moral responsibility as traditionally defined. It focuses on the emergence of responsibility gaps and examines proposed strategies to address them. The paper aims to provide an introductory and comprehensive overview of the ongoing debate surrounding moral responsibility in automated decision-making. By thoroughly examining these issues, we seek to contribute to a deeper understanding of the implications of AI integration in society.
    Download  
     
    Export citation  
     
    Bookmark  
  49. Human-Aided Artificial Intelligence: Or, How to Run Large Computations in Human Brains? Towards a Media Sociology of Machine Learning.Rainer Mühlhoff - 2019 - New Media and Society 1.
    Today, artificial intelligence, especially machine learning, is structurally dependent on human participation. Technologies such as Deep Learning (DL) leverage networked media infrastructures and human-machine interaction designs to harness users to provide training and verification data. The emergence of DL is therefore based on a fundamental socio-technological transformation of the relationship between humans and machines. Rather than simulating human intelligence, DL-based AIs capture human cognitive abilities, so they are hybrid human-machine apparatuses. From a perspective (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Diachronic and synchronic variation in the performance of adaptive machine learning systems: the ethical challenges.Joshua Hatherley & Robert Sparrow - 2023 - Journal of the American Medical Informatics Association 30 (2):361-366.
    Objectives: Machine learning (ML) has the potential to facilitate “continual learning” in medicine, in which an ML system continues to evolve in response to exposure to new data over time, even after being deployed in a clinical setting. In this article, we provide a tutorial on the range of ethical issues raised by the use of such “adaptive” ML systems in medicine that have, thus far, been neglected in the literature. -/- Target audience: The target audiences for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 964