Results for 'Mathematical Infinite'

945 found
Order:
  1. Bolzano’s Mathematical Infinite.Anna Bellomo & Guillaume Massas - 2021 - Review of Symbolic Logic:1-55.
    Bernard Bolzano (1781–1848) is commonly thought to have attempted to develop a theory of size for infinite collections that follows the so-called part–whole principle, according to which the whole is always greater than any of its proper parts. In this paper, we develop a novel interpretation of Bolzano’s mature theory of the infinite and show that, contrary to mainstream interpretations, it is best understood as a theory of infinite sums. Our formal results show that Bolzano’s infinite (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Do Abstract Mathematical Axioms About Infinite Sets Apply To The Real, Physical Universe?Roger Granet - manuscript
    Suppose one has a system, the infinite set of positive integers, P, and one wants to study the characteristics of a subset (or subsystem) of that system, the infinite subset of odd positives, O, relative to the overall system. In mathematics, this is done by pairing off each odd with a positive, using a function such as O=2P+1. This puts the odds in a one-to-one correspondence with the positives, thereby, showing that the subset of odds and the original (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Numerical computations and mathematical modelling with infinite and infinitesimal numbers.Yaroslav Sergeyev - 2009 - Journal of Applied Mathematics and Computing 29:177-195.
    Traditional computers work with finite numbers. Situations where the usage of infinite or infinitesimal quantities is required are studied mainly theoretically. In this paper, a recently introduced computational methodology (that is not related to the non-standard analysis) is used to work with finite, infinite, and infinitesimal numbers numerically. This can be done on a new kind of a computer – the Infinity Computer – able to work with all these types of numbers. The new computational tools both give (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Presences of the Infinite: J.M. Coetzee and Mathematics.Peter Johnston - 2013 - Dissertation, Royal Holloway, University of London
    This thesis articulates the resonances between J. M. Coetzee's lifelong engagement with mathematics and his practice as a novelist, critic, and poet. Though the critical discourse surrounding Coetzee's literary work continues to flourish, and though the basic details of his background in mathematics are now widely acknowledged, his inheritance from that background has not yet been the subject of a comprehensive and mathematically- literate account. In providing such an account, I propose that these two strands of his intellectual trajectory not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. A Mathematical Model of Divine Infinity.Eric Steinhart - 2009 - Theology and Science 7 (3):261-274.
    Mathematics is obviously important in the sciences. And so it is likely to be equally important in any effort that aims to understand God in a scientifically significant way or that aims to clarify the relations between science and theology. The degree to which God has any perfection is absolutely infinite. We use contemporary mathematics to precisely define that absolute infinity. For any perfection, we use transfinite recursion to define an endlessly ascending series of degrees of that perfection. That (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Leibniz, Mathematics and the Monad.Simon Duffy - 2010 - In Sjoerd van Tuinen & Niamh McDonnell (eds.), Deleuze and The fold: a critical reader. New York: Palgrave-Macmillan. pp. 89--111.
    The reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold provides a systematic account of the structure of Leibniz’s metaphysics in terms of its mathematical foundations. However, in doing so, Deleuze draws not only upon the mathematics developed by Leibniz—including the law of continuity as reflected in the calculus of infinite series and the infinitesimal calculus—but also upon developments in mathematics made by a number of Leibniz’s contemporaries—including Newton’s method of fluxions. He also draws upon a number (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  7. On Infinite Number and Distance.Jeremy Gwiazda - 2012 - Constructivist Foundations 7 (2):126-130.
    Context: The infinite has long been an area of philosophical and mathematical investigation. There are many puzzles and paradoxes that involve the infinite. Problem: The goal of this paper is to answer the question: Which objects are the infinite numbers (when order is taken into account)? Though not currently considered a problem, I believe that it is of primary importance to identify properly the infinite numbers. Method: The main method that I employ is conceptual analysis. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Infinite graphs in systematic biology, with an application to the species problem.Samuel A. Alexander - 2013 - Acta Biotheoretica 61 (2):181--201.
    We argue that C. Darwin and more recently W. Hennig worked at times under the simplifying assumption of an eternal biosphere. So motivated, we explicitly consider the consequences which follow mathematically from this assumption, and the infinite graphs it leads to. This assumption admits certain clusters of organisms which have some ideal theoretical properties of species, shining some light onto the species problem. We prove a dualization of a law of T.A. Knight and C. Darwin, and sketch a decomposition (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  25
    Defining π via Infinite Densification of the Sweeping Net and Reverse Integration.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1 (1):7.
    We present a novel approach to defining the mathematical constant π through the infinite den- sification of a sweeping net, which approximates a circle as the net becomes infinitely dense. By developing and enhancing notation related to sweeping nets and saddle maps, we establish a rigor- ous framework for expressing π in terms of the densification process using reverse integration. This method, inspired by the concept that numbers ”come from infinity,” leverages a reverse integral approach to model the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Nothing Infinite: A Summary of Forever Finite.Kip Sewell - 2023 - Rond Media Library.
    In 'Forever Finite: The Case Against Infinity' (Rond Books, 2023), the author argues that, despite its cultural popularity, infinity is not a logical concept and consequently cannot be a property of anything that exists in the real world. This article summarizes the main points in 'Forever Finite', including its overview of what debunking infinity entails for conceptual thought in philosophy, mathematics, science, cosmology, and theology.
    Download  
     
    Export citation  
     
    Bookmark  
  11. What Do Infinite Sets Look Like? ? It Depends on the Perspective of the Observer.Roger Granet - manuscript
    Consider an infinite set of discrete, finite-sized solid balls (i.e., elements) extending in all directions forever. Here, infinite set is not meant so much in the abstract, mathematical sense but in more of a physical sense where the balls have physical size and physical location-type relationships with their neighbors. In this sense, the set is used as an analogy for our possibly infinite physical universe. Two observers are viewing this set. One observer is internal to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Nietzsche’s Philosophy of Mathematics.Eric Steinhart - 1999 - International Studies in Philosophy 31 (3):19-27.
    Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. For (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. From Pictures to Employments: Later Wittgenstein on 'the Infinite'.Philip Bold - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    With respect to the metaphysics of infinity, the tendency of standard debates is to either endorse or to deny the reality of ‘the infinite’. But how should we understand the notion of ‘reality’ employed in stating these options? Wittgenstein’s critical strategy shows that the notion is grounded in a confusion: talk of infinity naturally takes hold of one’s imagination due to the sway of verbal pictures and analogies suggested by our words. This is the source of various philosophical pictures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains.Yaroslav Sergeyev - 2009 - Nonlinear Analysis Series A 71 (12):e1688-e1707.
    The goal of this paper consists of developing a new (more physical and numerical in comparison with standard and non-standard analysis approaches) point of view on Calculus with functions assuming infinite and infinitesimal values. It uses recently introduced infinite and infinitesimal numbers being in accordance with the principle ‘The part is less than the whole’ observed in the physical world around us. These numbers have a strong practical advantage with respect to traditional approaches: they are representable at a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  16. Probability Modals and Infinite Domains.Adam Marushak - 2020 - Journal of Philosophical Logic 49 (5):1041-1055.
    Recent years have witnessed a proliferation of attempts to apply the mathematical theory of probability to the semantics of natural language probability talk. These sorts of “probabilistic” semantics are often motivated by their ability to explain intuitions about inferences involving “likely” and “probably”—intuitions that Angelika Kratzer’s canonical semantics fails to accommodate through a semantics based solely on an ordering of worlds and a qualitative ranking of propositions. However, recent work by Wesley Holliday and Thomas Icard has been widely thought (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. (1 other version)Overgeneration in the higher infinite.Salvatore Florio & Luca Incurvati - 2021 - In Gil Sagi & Jack Woods (eds.), The Semantic Conception of Logic : Essays on Consequence, Invariance, and Meaning. New York, NY: Cambridge University Press.
    The Overgeneration Argument is a prominent objection against the model-theoretic account of logical consequence for second-order languages. In previous work we have offered a reconstruction of this argument which locates its source in the conflict between the neutrality of second-order logic and its alleged entanglement with mathematics. Some cases of this conflict concern small large cardinals. In this article, we show that in these cases the conflict can be resolved by moving from a set-theoretic implementation of the model-theoretic account to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Deleuze and the Mathematical Philosophy of Albert Lautman.Simon B. Duffy - 2009 - In Jon Roffe & Graham Jones (eds.), Deleuze’s Philosophical Lineage. Edinburgh University Press.
    In the chapter of Difference and Repetition entitled ‘Ideas and the synthesis of difference,’ Deleuze mobilizes mathematics to develop a ‘calculus of problems’ that is based on the mathematical philosophy of Albert Lautman. Deleuze explicates this process by referring to the operation of certain conceptual couples in the field of contemporary mathematics: most notably the continuous and the discontinuous, the infinite and the finite, and the global and the local. The two mathematical theories that Deleuze draws upon (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers.Yaroslav Sergeyev - 2007 - Chaos, Solitons and Fractals 33 (1):50-75.
    The paper considers a new type of objects – blinking fractals – that are not covered by traditional theories studying dynamics of self-similarity processes. It is shown that the new approach allows one to give various quantitative characteristics of the newly introduced and traditional fractals using infinite and infinitesimal numbers proposed recently. In this connection, the problem of the mathematical modelling of continuity is discussed in detail. A strong advantage of the introduced computational paradigm consists of its well-marked (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  20. The Indefinite within Descartes' Mathematical Physics.Françoise Monnoyeur-Broitman - 2013 - Eidos: Revista de Filosofía de la Universidad Del Norte 19:107-122.
    Descartes' philosophy contains an intriguing notion of the infinite, a concept labeled by the philosopher as indefinite. Even though Descartes clearly defined this term on several occasions in the correspondence with his contemporaries, as well as in his Principles of Philosophy, numerous problems about its meaning have arisen over the years. Most commentators reject the view that the indefinite could mean a real thing and, instead, identify it with an Aristotelian potential infinite. In the first part of this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Natorp's mathematical philosophy of science.Thomas Mormann - 2022 - Studia Kantiana 20 (2):65 - 82.
    This paper deals with Natorp’s version of the Marburg mathematical philosophy of science characterized by the following three features: The core of Natorp’s mathematical philosophy of science is contained in his “knowledge equation” that may be considered as a mathematical model of the “transcendental method” conceived by Natorp as the essence of the Marburg Neo-Kantianism. For Natorp, the object of knowledge was an infinite task. This can be elucidated in two different ways: Carnap, in the Aufbau, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Many-valued logics. A mathematical and computational introduction.Luis M. Augusto - 2020 - London: College Publications.
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. The Actual Infinite as a Day or the Games.Pascal Massie - 2007 - Review of Metaphysics 60 (3):573-596.
    It is commonly assumed that Aristotle denies any real existence to infinity. Nothing is actually infinite. If, in order to resolve Zeno’s paradoxes, Aristotle must talk of infinity, it is only in the sense of a potentiality that can never be actualized. Aristotle’s solution has been both praised for its subtlety and blamed for entailing a limitation of mathematic. His understanding of the infinite as simply indefinite (the “bad infinite” that fails to reach its accomplishment), his conception (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Using blinking fractals for mathematical modelling of processes of growth in biological systems.Yaroslav Sergeyev - 2011 - Informatica 22 (4):559–576.
    Many biological processes and objects can be described by fractals. The paper uses a new type of objects – blinking fractals – that are not covered by traditional theories considering dynamics of self-similarity processes. It is shown that both traditional and blinking fractals can be successfully studied by a recent approach allowing one to work numerically with infinite and infinitesimal numbers. It is shown that blinking fractals can be applied for modeling complex processes of growth of biological systems including (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  25. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. (1 other version)The Finite and the Infinite in Frege's Grundgesetze der Arithmetik.Richard Heck - 1998 - In Matthias Schirn (ed.), The Philosophy of mathematics today. New York: Clarendon Press.
    Discusses Frege's formal definitions and characterizations of infinite and finite sets. Speculates that Frege might have discovered the "oddity" in Dedekind's famous proof that all infinite sets are Dedekind infinite and, in doing so, stumbled across an axiom of countable choice.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. A mathematical theory of truth and an application to the regress problem.S. Heikkilä - forthcoming - Nonlinear Studies 22 (2).
    In this paper a class of languages which are formal enough for mathematical reasoning is introduced. Its languages are called mathematically agreeable. Languages containing a given MA language L, and being sublanguages of L augmented by a monadic predicate, are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of those languages. MTT makes them fully interpreted MA languages which posses their own truth predicates. MTT is shown to conform well with the eight norms formulated (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Mathematical Infinity, Its Inventors, Discoverers, Detractors, Defenders, Masters, Victims, Users, and Spectators.Edward G. Belaga - manuscript
    "The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925).
    Download  
     
    Export citation  
     
    Bookmark  
  30. The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area.Yaroslav Sergeyev - 2016 - Communications in Nonlinear Science and Numerical Simulation 31 (1-3):21–29.
    The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Numerical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer patented in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  31. Review of The Art of the Infinite by R. Kaplan, E. Kaplan 324p(2003).Michael Starks - 2016 - In Suicidal Utopian Delusions in the 21st Century: Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2017 2nd Edition Feb 2018. Las Vegas, USA: Reality Press. pp. 619.
    This book tries to present math to the millions and does a pretty good job. It is simple and sometimes witty but often the literary allusions intrude and the text bogs down in pages of relentless math--lovely if you like it and horrid if you don´t. If you already know alot of math you will still probably find the discussions of general math, geometry, projective geometry, and infinite series to be a nice refresher. If you don´t know any and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Matthew Handelman: The Mathematical Imagination: On the Origins and Promise of Critical Theory. [REVIEW]Francoise Monnoyeur - 2020 - Phenomenological Reviews 5.
    The Mathematical Imagination focuses on the role of mathematics and digital technologies in critical theory of culture. This book belongs to the history of ideas rather than to that of mathematics proper since it treats it on a metaphorical level to express phenomena of silence or discontinuity. In order to bring more readability and clarity to the non-specialist readers, I firstly present the essential concepts, background, and objectives of his book...
    Download  
     
    Export citation  
     
    Bookmark  
  33. A defense of Isaacson’s thesis, or how to make sense of the boundaries of finite mathematics.Pablo Dopico - 2024 - Synthese 203 (2):1-22.
    Daniel Isaacson has advanced an epistemic notion of arithmetical truth according to which the latter is the set of truths that we grasp on the basis of our understanding of the structure of natural numbers alone. Isaacson’s thesis is then the claim that Peano Arithmetic (PA) is the theory of finite mathematics, in the sense that it proves all and only arithmetical truths thus understood. In this paper, we raise a challenge for the thesis and show how it can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34.  34
    Duality and Infinity.Guillaume Massas - 2024 - Dissertation, University of California, Berkeley
    Many results in logic and mathematics rely on techniques that allow for concrete, often visual, representations of abstract concepts. A primary example of this phenomenon in logic is the distinction between syntax and semantics, itself an example of the more general duality in mathematics between algebra and geometry. Such representations, however, often rely on the existence of certain maximal objects having particular properties such as points, possible worlds or Tarskian first-order structures. -/- This dissertation explores an alternative to such representations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Kant’s Treatment of the Mathematical Antinomies in the First Critique and in the Prolegomena: A Comparison.Alberto Vanzo - 2005 - Croatian Journal of Philosophy 5 (3):505-531.
    This paper discusses an apparent contrast between Kant’s accounts of the mathematical antinomies in the first Critique and in the Prolegomena. The Critique claims that the antitheses are infinite judgements. The Prolegomena seem to claim that they are negative judgements. For the Critique, theses and antitheses are false because they presuppose that the world has a determinate magnitude, and this is not the case. For the Prolegomena, theses and antitheses are false because they presuppose an inconsistent notion of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Three Essays on Later Wittgenstein's Philosophy of Mathematics: Reality, Determination, and Infinity.Philip Bold - 2022 - Dissertation, University of North Carolina, Chapel Hill
    This dissertation provides a careful reading of the later Wittgenstein’s philosophy of mathematics centered around three major themes: reality, determination, and infinity. The reading offered gives pride of place to Wittgenstein’s therapeutic conception of philosophy. This conception views questions often taken as fundamental in the philosophy of mathematics with suspicion and attempts to diagnose the confusions which lead to them. In the first essay, I explain Wittgenstein’s approach to perennial issues regarding the alleged reality to which mathematical truths or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Acts of Time: Cohen and Benjamin on Mathematics and History.Julia Ng - 2017 - Paradigmi. Rivista di Critica Filosofica 2017 (1):41-60.
    This paper argues that the principle of continuity that underlies Benjamin’s understanding of what makes the reality of a thing thinkable, which in the Kantian context implies a process of “filling time” with an anticipatory structure oriented to the subject, is of a different order than that of infinitesimal calculus—and that a “discontinuity” constitutive of the continuity of experience and (merely) counterposed to the image of actuality as an infinite gradation of ultimately thetic acts cannot be the principle on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. A theory of truth for a class of mathematical languages and an application.S. Heikkilä - manuscript
    In this paprer a class of so called mathematically acceptable (shortly MA) languages is introduced First-order formal languages containing natural numbers and numerals belong to that class. MA languages which are contained in a given fully interpreted MA language augmented by a monadic predicate are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of these languages. MTT makes them fully interpreted MA languages which posses their own truth predicates, yielding consequences to philosophy of mathematics. MTT (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Thoughts on Artificial Intelligence and the Origin of Life Resulting from General Relativity, with Neo-Darwinist Reference to Human Evolution and Mathematical Reference to Cosmology.Rodney Bartlett - manuscript
    When this article was first planned, writing was going to be exclusively about two things - the origin of life and human evolution. But it turned out to be out of the question for the author to restrict himself to these biological and anthropological topics. A proper understanding of them required answering questions like “What is the nature of the universe – the home of life – and how did it originate?”, “How can time travel be removed from fantasy and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Are the Barriers that Inhibit Mathematical Models of a Cyclic Universe, which Admits Broken Symmetries, Dark Energy, and an Expanding Multiverse, Illusory?Bhupinder Singh Anand - manuscript
    We argue the thesis that if (1) a physical process is mathematically representable by a Cauchy sequence; and (2) we accept that there can be no infinite processes, i.e., nothing corresponding to infinite sequences, in natural phenomena; then (a) in the absence of an extraneous, evidence-based, proof of `closure' which determines the behaviour of the physical process in the limit as corresponding to a `Cauchy' limit; (b) the physical process must tend to a discontinuity (singularity) which has not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. ‘+1’: Scholem and the Paradoxes of the Infinite.Julia Ng - 2014 - Rivista Italiana di Filosofia del Linguaggio 8 (2):196-210.
    This article draws on several crucial and unpublished manuscripts from the Scholem Archive in exploration of Gershom Scholem's youthful statements on mathematics and its relation to extra-mathematical facts and, more broadly, to a concept of history that would prove to be consequential for Walter Benjamin's own thinking on "messianism" and a "futuristic politics." In context of critiquing the German Youth Movement's subsumption of active life to the nationalistic conditions of the "earth" during the First World War, Scholem turns to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Probability of immortality and God’s existence. A mathematical perspective.Jesús Sánchez - manuscript
    What are the probabilities that this universe is repeated exactly the same with you in it again? Is God invented by human imagination or is the result of human intuition? The intuition that the same laws/mechanisms (evolution, stability winning probability) that have created something like the human being capable of self-awareness and controlling its surroundings, could create a being capable of controlling all what it exists? Will be the characteristics of the next universes random or tend to something? All these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Infinity and the Sublime.Karin Verelst - 2013 - Journal of Interdisciplinary History of Ideas 2 (4):1-27.
    In their recent work, L. Graham and J.-M. Kantor discuss a remarkable connection between diverging conceptions of the mathematical infinite in Russia and France at the beginning of the twentieth century and the religious convictions of their respective authors. They expand much more on the Russian side of the cultural equation they propose; I do believe, however, that the French (or rather ‘West European’) side is more complex than it seems, and that digging deeper into it is worthwhile. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Surreal Decisions.Eddy Keming Chen & Daniel Rubio - 2020 - Philosophy and Phenomenological Research 100 (1):54-74.
    Although expected utility theory has proven a fruitful and elegant theory in the finite realm, attempts to generalize it to infinite values have resulted in many paradoxes. In this paper, we argue that the use of John Conway's surreal numbers shall provide a firm mathematical foundation for transfinite decision theory. To that end, we prove a surreal representation theorem and show that our surreal decision theory respects dominance reasoning even in the case of infinite values. We then (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  46.  15
    A New Way Out of Galileo's Paradox.Guillaume Massas - manuscript
    Galileo asked in his Dialogue of the Two New Sciences what relationship exists between the size of the set of all natural numbers and the size of the set of all square natural numbers. Although one is a proper subset of the other, suggesting that there are strictly fewer squares than natural numbers, the existence of a simple one-to-one correspondence between the two sets suggests that they have, in fact, the same size. Cantor famously based the modern notion of cardinality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. A Puzzle about Sums.Andrew Y. Lee - forthcoming - Oxford Studies in Metaphysics.
    A famous mathematical theorem says that the sum of an infinite series of numbers can depend on the order in which those numbers occur. Suppose we interpret the numbers in such a series as representing instances of some physical quantity, such as the weights of a collection of items. The mathematics seems to lead to the result that the weight of a collection of items can depend on the order in which those items are weighed. But that is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Size and Function.Bruno Whittle - 2018 - Erkenntnis 83 (4):853-873.
    Are there different sizes of infinity? That is, are there infinite sets of different sizes? This is one of the most natural questions that one can ask about the infinite. But it is of course generally taken to be settled by mathematical results, such as Cantor’s theorem, to the effect that there are infinite sets without bijections between them. These results settle the question, given an almost universally accepted principle relating size to the existence of functions. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  49. Biologically Unavoidable Sequences.Samuel Alexander - 2013 - Electronic Journal of Combinatorics 20 (1):1-13.
    A biologically unavoidable sequence is an infinite gender sequence which occurs in every gendered, infinite genealogical network satisfying certain tame conditions. We show that every eventually periodic sequence is biologically unavoidable (this generalizes König's Lemma), and we exhibit some biologically avoidable sequences. Finally we give an application of unavoidable sequences to cellular automata.
    Download  
     
    Export citation  
     
    Bookmark  
  50. THE CYBERPHYSICS OF TOMORROW'S WORLD.Rodney Bartlett - 2016 - Dissertation,
    This article would appeal to people interested in new ideas in sciences like physics, astronomy and mathematics that are not presented in a formal manner. -/- Biologists would also find the paragraphs about evolution interesting. I was afraid they'd think my ideas were a bit "out there". But I sent a short email about them last year to a London biologist who wrote an article for the journal Nature. She replied that it was "very interesting". -/- The world is fascinated (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 945