Results for 'Mathematical Physics'

948 found
Order:
  1. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. The Indefinite within Descartes' Mathematical Physics.Françoise Monnoyeur-Broitman - 2013 - Eidos: Revista de Filosofía de la Universidad Del Norte 19:107-122.
    Descartes' philosophy contains an intriguing notion of the infinite, a concept labeled by the philosopher as indefinite. Even though Descartes clearly defined this term on several occasions in the correspondence with his contemporaries, as well as in his Principles of Philosophy, numerous problems about its meaning have arisen over the years. Most commentators reject the view that the indefinite could mean a real thing and, instead, identify it with an Aristotelian potential infinite. In the first part of this article, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. On Some Considerations of Mathematical Physics: May we Identify Clifford Algebra as a Common Algebraic Structure for Classical Diffusion and Schrödinger Equations?Elio Conte - 2012 - Advanced Studies in Theoretical Physics 6 (26):1289-1307.
    We start from previous studies of G.N. Ord and A.S. Deakin showing that both the classical diffusion equation and Schrödinger equation of quantum mechanics have a common stump. Such result is obtained in rigorous terms since it is demonstrated that both diffusion and Schrödinger equations are manifestation of the same mathematical axiomatic set of the Clifford algebra. By using both such ( ) i A S and the i,±1 N algebra, it is evidenced, however, that possibly the two basic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Physical systems, mathematical representation, and philosophical principles: the EPR paper and its influence.Guy Hetzroni - 2020 - Iyyun 68:428--439.
    The paper portrays the influence of major philosophical ideas on the 1935 debates on quantum theory that reached their climax in the paper by Einstein, Podosky and Rosen, and describes the relevance of these ideas to the vast impact of the paper. I claim that the focus on realism in many common descriptions of the debate misses important aspects both of Einstein's and Bohr's thinking. I suggest an alternative understanding of Einstein's criticism of quantum mechanics as a manifestation of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. When mathematics touches physics: Henri Poincaré on probability.Jacintho Del Vecchio Junior - manuscript
    Probability plays a crucial role regarding the understanding of the relationship which exists between mathematics and physics. It will be the point of departure of this brief reflection concerning this subject, as well as about the placement of Poincaré’s thought in the scenario offered by some contemporary perspectives.
    Download  
     
    Export citation  
     
    Bookmark  
  6. Moving, Moved and Will be Moving: Zeno and Nāgārjuna on Motion from Mahāmudrā, Koan and Mathematical Physics Perspectives.Robert Alan Paul - 2017 - Comparative Philosophy 8 (2):65-89.
    Zeno’s Arrow and Nāgārjuna’s Fundamental Wisdom of the Middle Way Chapter 2 contain paradoxical, dialectic arguments thought to indicate that there is no valid explanation of motion, hence there is no physical or generic motion. There are, however, diverse interpretations of the latter text, and I argue they apply to Zeno’s Arrow as well. I also find that many of the interpretations are dependent on a mathematical analysis of material motion through space and time. However, with modern philosophy and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Indeterminism in physics and intuitionistic mathematics.Nicolas Gisin - 2021 - Synthese 199 (5-6):13345-13371.
    Most physics theories are deterministic, with the notable exception of quantum mechanics which, however, comes plagued by the so-called measurement problem. This state of affairs might well be due to the inability of standard mathematics to “speak” of indeterminism, its inability to present us a worldview in which new information is created as time passes. In such a case, scientific determinism would only be an illusion due to the timeless mathematical language scientists use. To investigate this possibility it (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  8. Physical Foundations of Mathematics (In Russian).Andrey Smirnov - manuscript
    The physical foundations of mathematics in the theory of emergent space-time-matter were considered. It is shown that mathematics, including logic, is a consequence of equation which describes the fundamental field. If the most fundamental level were described not by mathematics, but something else, then instead of mathematics there would be consequences of this something else.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Marriages of Mathematics and Physics: A Challenge for Biology.Arezoo Islami & Giuseppe Longo - 2017 - Progress in Biophysics and Molecular Biology 131:179-192.
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  11. Alternative mathematics and alternative theoretical physics: The method for linking them together.Antonino Drago - 1996 - Epistemologia 19 (1):33-50.
    I characterize Bishop's constructive mathematics as an alternative to classical mathematics, which makes use of the actual infinity. From the history an accurate investigation of past physical theories I obtianed some ones - mainly Lazare Carnot's mechanics and Sadi Carnot's thermodynamics - which are alternative to the dominant theories - e.g. Newtopn's mechanics. The way to link together mathematics to theoretical physics is generalized and some general considerations, in particualr on the geoemtry in theoretical physics, are obtained.that.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Physical Mathematics and The Fine-Structure Constant.Michael A. Sherbon - 2018 - Journal of Advances in Physics 14 (3):5758-64.
    Research into ancient physical structures, some having been known as the seven wonders of the ancient world, inspired new developments in the early history of mathematics. At the other end of this spectrum of inquiry the research is concerned with the minimum of observations from physical data as exemplified by Eddington's Principle. Current discussions of the interplay between physics and mathematics revive some of this early history of mathematics and offer insight into the fine-structure constant. Arthur Eddington's work leads (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Chasing Individuation: Mathematical Description of Physical Systems.Zalamea Federico - 2016 - Dissertation, Paris Diderot University
    This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  15. The physics and mathematics of time and relativity.Varanasi Ramabrahmam - 2013
    The nature of time is variously understood and varied expressions of time available are critically discussed. The nature of time formation, its structure and textures are presented taking examples from natural sciences and Indian spirituality. The physics and mathematics used to evolve the concept of time are chronologically presented. The mathematical allusion and physical illusion associated with the concept of theories of relativity are analyzed. The mathematical conjectures responsible for evolution of theories of relativity are pronounced. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Explanatory Information in Mathematical Explanations of Physical Phenomena.Manuel Barrantes - 2020 - Australasian Journal of Philosophy 98 (3):590-603.
    In this paper I defend an intermediate position between the ‘bare mathematical results’ view and the ‘transmission’ view of mathematical explanations of physical phenomena (MEPPs). I argue that, in MEPPs, it is not enough to deduce the explanandum from the generalizations cited in the explanans. Rather, we must add information regarding why those generalizations obtain. However, I also argue that it is not necessary to provide explanatory proofs of the mathematical theorems that represent those generalizations. I illustrate (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  17. On a new mathematical framework for fundamental theoretical physics.Robert E. Var - 1975 - Foundations of Physics 5 (3):407-431.
    It is shown by means of general principles and specific examples that, contrary to a long-standing misconception, the modern mathematical physics of compressible fluid dynamics provides a generally consistent and efficient language for describing many seemingly fundamental physical phenomena. It is shown to be appropriate for describing electric and gravitational force fields, the quantized structure of charged elementary particles, the speed of light propagation, relativistic phenomena, the inertia of matter, the expansion of the universe, and the physical nature (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Physics Avoidance & Cooperative Semantics: Inferentialism and Mark Wilson’s Engagement with Naturalism Qua Applied Mathematics.Ekin Erkan - 2020 - Cosmos and History 16 (1):560-644.
    Mark Wilson argues that the standard categorizations of "Theory T thinking"— logic-centered conceptions of scientific organization (canonized via logical empiricists in the mid-twentieth century)—dampens the understanding and appreciation of those strategic subtleties working within science. By "Theory T thinking," we mean to describe the simplistic methodology in which mathematical science allegedly supplies ‘processes’ that parallel nature's own in a tidily isomorphic fashion, wherein "Theory T’s" feigned rigor and methodological dogmas advance inadequate discrimination that fails to distinguish between explanatory structures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Can we have mathematical understanding of physical phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. The Physical Numbers: A New Foundational Logic-Numerical Structure For Mathematics And Physics.Gomez-Ramirez Danny A. J. - manuscript
    The boundless nature of the natural numbers imposes paradoxically a high formal bound to the use of standard artificial computer programs for solving conceptually challenged problems in number theory. In the context of the new cognitive foundations for mathematics' and physics' program immersed in the setting of artificial mathematical intelligence, we proposed a refined numerical system, called the physical numbers, preserving most of the essential intuitions of the natural numbers. Even more, this new numerical structure additionally possesses the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Du Châtelet on the Need for Mathematics in Physics.Aaron Wells - 2021 - Philosophy of Science 88 (5):1137-1148.
    There is a tension in Emilie Du Châtelet’s thought on mathematics. The objects of mathematics are ideal or fictional entities; nevertheless, mathematics is presented as indispensable for an account of the physical world. After outlining Du Châtelet’s position, and showing how she departs from Christian Wolff’s pessimism about Newtonian mathematical physics, I show that the tension in her position is only apparent. Du Châtelet has a worked-out defense of the explanatory and epistemic need for mathematical objects, consistent (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Human Thought, Mathematics, and Physical Discovery.Gila Sher - 2023 - In Carl Posy & Yemima Ben-Menahem (eds.), Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner. Springer. pp. 301-325.
    In this paper I discuss Mark Steiner’s view of the contribution of mathematics to physics and take up some of the questions it raises. In particular, I take up the question of discovery and explore two aspects of this question – a metaphysical aspect and a related epistemic aspect. The metaphysical aspect concerns the formal structure of the physical world. Does the physical world have mathematical or formal features or constituents, and what is the nature of these constituents? (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Ontologies of Common Sense, Physics and Mathematics.Jobst Landgrebe & Barry Smith - 2023 - Archiv.
    The view of nature we adopt in the natural attitude is determined by common sense, without which we could not survive. Classical physics is modelled on this common-sense view of nature, and uses mathematics to formalise our natural understanding of the causes and effects we observe in time and space when we select subsystems of nature for modelling. But in modern physics, we do not go beyond the realm of common sense by augmenting our knowledge of what is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Hobbes on Natural Philosophy as "True Physics" and Mixed Mathematics.Marcus P. Adams - 2016 - Studies in History and Philosophy of Science Part A 56 (C):43-51.
    I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the ‘why’). My argument shows (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  25. ’s Gravesande on the Application of Mathematics in Physics and Philosophy.Jip Van Besouw - 2017 - Noctua 4 (1-2):17-55.
    Willem Jacob ’s Gravesande is widely remembered as a leading advocate of Isaac Newton’s work. In the first half of the eighteenth century, ’s Gravesande was arguably Europe’s most important proponent of what would become known as Newtonian physics. ’s Gravesande himself minimally described this discipline, which he called «physica», as studying empirical regularities mathematically while avoiding hypotheses. Commentators have as yet not progressed much beyond this view of ’s Gravesande’s physics. Therefore, much of its precise nature, its (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. Albert Lautman. Mathematics, Ideas and the Physical Real. Simon B. Duffy, trans. London and New York: Continuum, 2011. [REVIEW]Pierre Cassou-Noguès - 2013 - Philosophia Mathematica 21 (3):411-416.
    Albert Lautman. Mathematics, Ideas and the Physical Real. Simon B. Duffy, trans. London and New York: Continuum, 2011. 978-1-4411-2344-2 (pbk); 978-1-44114656-4 (hbk); 978-1-44114433-1 (pdf e-bk); 978-1-44114654-0 (epub e-bk). Pp. xlii + 310.
    Download  
     
    Export citation  
     
    Bookmark  
  27. Do Abstract Mathematical Axioms About Infinite Sets Apply To The Real, Physical Universe?Roger Granet - manuscript
    Suppose one has a system, the infinite set of positive integers, P, and one wants to study the characteristics of a subset (or subsystem) of that system, the infinite subset of odd positives, O, relative to the overall system. In mathematics, this is done by pairing off each odd with a positive, using a function such as O=2P+1. This puts the odds in a one-to-one correspondence with the positives, thereby, showing that the subset of odds and the original set of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Complementary Inferences on Theoretical Physics and Mathematics.Mesut Kavak - manuscript
    I have been working for a long time about basic laws which direct existence, and some mathematical problems which are waited for a solution. I can count myself lucky, that I could make some important inferences during this time, and I published them in a few papers partially as some propositions. This work aimed to explain and discuss these inferences all together by relating them one another by some extra additions, corrections and explanations being physical phenomena are prior. There (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  30. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. A review on possible physical meaning of elastic-electromagnetic mathematical equivalences.Florentin Smarandache - manuscript
    It is known, despite special theory of relativity has been widely accepted, in our recent draft submitted to this journal it is shown that some experiments have been carried out suggesting superluminal wave propagation, which make Minkowski lightcone not valid anymore. Therefore, it seems worth to reconsider the connection between elastic wave and electromagnetic wave equations, as in their early development. In this paper we will start with Maxwell-Dirac isomorphism, then we will find its connection with elastic wave equations.
    Download  
     
    Export citation  
     
    Bookmark  
  32. “In Nature as in Geometry”: Du Châtelet and the Post-Newtonian Debate on the Physical Significance of Mathematical Objects.Aaron Wells - 2023 - In Wolfgang Lefèvre (ed.), Between Leibniz, Newton, and Kant: Philosophy and Science in the Eighteenth Century. Springer. pp. 69-98.
    Du Châtelet holds that mathematical representations play an explanatory role in natural science. Moreover, she writes that things proceed in nature as they do in geometry. How should we square these assertions with Du Châtelet’s idealism about mathematical objects, on which they are ‘fictions’ dependent on acts of abstraction? The question is especially pressing because some of her important interlocutors (Wolff, Maupertuis, and Voltaire) denied that mathematics informs us about the properties of material things. After situating Du Châtelet (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Consciousness, Mathematics and Reality: A Unified Phenomenology.Igor Ševo - manuscript
    Every scientific theory is a simulacrum of reality, every written story a simulacrum of the canon, and every conceptualization of a subjective perspective a simulacrum of the consciousness behind it—but is there a shared essence to these simulacra? The pursuit of answering seemingly disparate fundamental questions across different disciplines may ultimately converge into a single solution: a single ontological answer underlying grand unified theory, hard problem of consciousness, and the foundation of mathematics. I provide a hypothesis, a speculative approximation, supported (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34.  55
    How is a relational formal ontology relational? An introduction to the semiotic logic of agency in physics, mathematics and natural philosophy.Timothy M. Rogers - manuscript
    A speculative exploration of the distinction between a relational formal ontology and a classical formal ontology for modelling phenomena in nature that exhibit relationally-mediated wholism, such as phenomena from quantum physics and biosemiotics. Whereas a classical formal ontology is based on mathematical objects and classes, a relational formal ontology is based on mathematical signs and categories. A relational formal ontology involves nodal networks (systems of constrained iterative processes) that are dynamically sustained through signalling. The nodal networks are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Forces in a true and physical sense: from mathematical models to metaphysical conclusions.Corey Dethier - 2019 - Synthese 198 (2):1109-1122.
    Wilson [Dialectica 63:525–554, 2009], Moore [Int Stud Philos Sci 26:359–380, 2012], and Massin [Br J Philos Sci 68:805–846, 2017] identify an overdetermination problem arising from the principle of composition in Newtonian physics. I argue that the principle of composition is a red herring: what’s really at issue are contrasting metaphysical views about how to interpret the science. One of these views—that real forces are to be tied to physical interactions like pushes and pulls—is a superior guide to real forces (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  37. Knowledge of Abstract Objects in Physics and Mathematics.Michael J. Shaffer - 2017 - Acta Analytica 32 (4):397-409.
    In this paper a parallel is drawn between the problem of epistemic access to abstract objects in mathematics and the problem of epistemic access to idealized systems in the physical sciences. On this basis it is argued that some recent and more traditional approaches to solving these problems are problematic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content to key (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  39. Physical and Nonphysical Aspects of Nature.Moorad Alexanian - 2002 - Perspectives on Science and Christian Faith 54 (4):287-288.
    Human consciousness and reasoning summarize all physical data into laws and create the mathematical theories that lead to predictions. However, the human element that creates the theories is totally absent from the laws and theories themselves. Accordingly, human consciousness and rationality are outside the bounds of science since they cannot be detected by purely physical devices and can only be “detected” by the self in humans. One wonders if notions of information, function, and purpose, can provide explanations of such (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  40. Circularities In The Contemporary Philosophical Accounts Of The Applicability Of Mathematics In The Physical Universe.Catalin Barboianu - 2015 - Revista de Filosofie 61 (5):517-542.
    Contemporary philosophical accounts of the applicability of mathematics in physical sciences and the empirical world are based on formalized relations between the mathematical structures and the physical systems they are supposed to represent within the models. Such relations were constructed both to ensure an adequate representation and to allow a justification of the validity of the mathematical models as means of scientific inference. This article puts in evidence the various circularities (logical, epistemic, and of definition) that are present (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. The Creative Universe: The Failure of Mathematical Reductionism in Physics (An Essay).Michael Epperson - 2021 - Institute of Art and Ideas News.
    In their seeking of simplicity, scientists fall into the error of Whitehead's "fallacy of misplaced concreteness." They mistake their abstract concepts describing reality for reality itself--the map for the territory. This leads to dogmatic overstatements, paradoxes, and mysteries such as the deep incompatibility of our two most fundamental physical theories--quantum mechanics and general relativity. To avoid such errors, we should evoke Whitehead's conception of the universe as a universe-in-process, where physical relations perpetually beget new physical relations. Today, the most promising (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. The Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: The physical, Mathematical and Philosophical Interpretations.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (3):1-22.
    A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture can be generalized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Mathematical Evaluation Methodology Among Residents, Social Interaction andEnergy Efficiency, For Socialist Buildings Typology,Case of Kruja (Albania).Klodjan Xhexhi - 2020 - Test Engineering and Management 83 (March-April 2020):17005-17020.
    Socialist buildings in the city of Kruja (Albania) date back after the Second World War between the years 1945-1990. These buildings were built during the time of the socialist Albanian dictatorship and the totalitarian communist regime. A questionnaire with 30 questions was conducted and 14 people were interviewed. The interviewed residents belong to a certain area of the city of Kruja. Based on the results obtained, diagrams have been conceived and mathematical regression models have been developed which will serve (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. The principle of light and sound in mathematics and physics as the origin of nature and the universe.Jhon Jairo Mosquera Rodas - manuscript
    This article presents the proposal of the principle of sound and light from mathematics and physics, as the origin of nature and the universe, using the Cartesian plane, together with the triadic plane of potential manifestation and complex organisation, starting from the contributions of four pre-Socratic philosophers, Pythagoras of Ephesus, Parmenides of Elea, Heraclitus of Samos and Democritus of Abdera, thus identifying essential principles of the origin of these, to conclude with the most important demonstrations of this theory, which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, (...) ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is. The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl’s phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of “naturalist” and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the “unreasonable” effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  47. Copernican Revolution: Unification of Mundane Physics with Mathematics of the Skies.Rinat M. Nugayev (ed.) - 2012 - Logos: Innovative Technologies Publishing House.
    What were the reasons of the Copernican Revolution ? How did modern science (created by a bunch of ambitious intellectuals) manage to force out the old one created by Aristotle and Ptolemy, rooted in millennial traditions and strongly supported by the Church? What deep internal causes and strong social movements took part in the genesis, development and victory of modern science? The author comes to a new picture of Copernican Revolution on the basis of the elaborated model of scientific revolutions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Are mathematical explanations causal explanations in disguise?A. Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2024 - Philosophy of Science 91 (4):887-905.
    There is a major debate as to whether there are non-causal mathematical explanations of physical facts that show how the facts under question arise from a degree of mathematical necessity considered stronger than that of contingent causal laws. We focus on Marc Lange’s account of distinctively mathematical explanations to argue that purported mathematical explanations are essentially causal explanations in disguise and are no different from ordinary applications of mathematics. This is because these explanations work not by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. On the Mathematical Representation of Spacetime: A Case Study in Historical–Phenomenological Desedimentation.Joseph Cosgrove - 2011 - New Yearbook for Phenomenology and Phenomenological Philosophy 11:154-186.
    This essay is a contribution to the historical phenomenology of science, taking as its point of departure Husserl’s later philosophy of science and Jacob Klein’s seminal work on the emergence of the symbolic conception of number in European mathematics during the late sixteenth and seventeenth centuries. Sinceneither Husserl nor Klein applied their ideas to actual theories of modern mathematical physics, this essay attempts to do so through a case study of the conceptof “spacetime.” In §1, I sketch Klein’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Indeterminism in Physics, Classical Chaos and Bohmian Mechanics: Are Real Numbers Really Real?Nicolas Gisin - 2019 - Erkenntnis 86 (6):1469-1481.
    It is usual to identify initial conditions of classical dynamical systems with mathematical real numbers. However, almost all real numbers contain an infinite amount of information. I argue that a finite volume of space can’t contain more than a finite amount of information, hence that the mathematical real numbers are not physically relevant. Moreover, a better terminology for the so-called real numbers is “random numbers”, as their series of bits are truly random. I propose an alternative classical mechanics, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
1 — 50 / 948