Results for 'Mathematical sciences'

949 found
Order:
  1. Creating a Warmer Environment for Women in the Mathematical Sciences and in Philosophy.Samantha Brennan & Rob Corless - unknown
    Speaking from our experience as department chairs in fields in which women are traditionally underrepresented, we offer reflections and advice on how one might move beyond the chilly climate and create a warmer environment for women students and faculty members.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Mathematics, Narratives and Life: Reconciling Science and the Humanities.Arran Gare - 2024 - Cosmos and History 20 (1):133-155.
    The triumph of scientific materialism in the Seventeenth Century not only bifurcated nature into matter and mind and primary and secondary qualities, as Alfred North Whitehead pointed out in Science and the Modern World. It divided science and the humanities. The core of science is the effort to comprehend the cosmos through mathematics. The core of the humanities is the effort to comprehend history and human nature through narratives. The life sciences can be seen as the zone in which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Axioms, Definitions, and the Pragmatic a priori: Peirce and Dewey on the “Foundations” of Mathematical Science.Bradley C. Dart - 2024 - European Journal of Pragmatism and American Philosophy 16 (1).
    Peirce and Dewey were generally more concerned with the process of scientific activity than purely mathematical work. However, their accounts of knowledge production afford some insights into the epistemology of mathematical postulates, especially definition and axioms. Their rejection of rationalist metaphysics and their emphasis on continuity in inquiry provides the pretext for the pragmatic a priori – hypothetical and operational assumptions whose justification relies on their fruitfulness in the long run. This paper focuses on the application of this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Mathematics and Statistics in the Social Sciences.Stephan Hartmann & Jan Sprenger - 2011 - In Ian C. Jarvie & Jesus Zamora-Bonilla (eds.), The SAGE Handbook of the Philosophy of Social Sciences. London: Sage Publications. pp. 594-612.
    Over the years, mathematics and statistics have become increasingly important in the social sciences1 . A look at history quickly confirms this claim. At the beginning of the 20th century most theories in the social sciences were formulated in qualitative terms while quantitative methods did not play a substantial role in their formulation and establishment. Moreover, many practitioners considered mathematical methods to be inappropriate and simply unsuited to foster our understanding of the social domain. Notably, the famous Methodenstreit (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Extreme Science: Mathematics as the Science of Relations as such.R. S. D. Thomas - 2008 - In Bonnie Gold & Roger A. Simons (eds.), Proof and Other Dilemmas: Mathematics and Philosophy. Mathematical Association of America. pp. 245.
    This paper sets mathematics among the sciences, despite not being empirical, because it studies relations of various sorts, like the sciences. Each empirical science studies the relations among objects, which relations determining which science. The mathematical science studies relations as such, regardless of what those relations may be or be among, how relations themselves are related. This places it at the extreme among the sciences with no objects of its own (A Subject with no Object, by (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  7. Mathematical Metaphors in Natorp’s Neo-Kantian Epistemology and Philosophy of Science.Thomas Mormann - 2005 - In Falk Seeger, Johannes Lenard & Michael H. G. Hoffmann (eds.), Activity and Sign. Grounding Mathematical Education. Springer.
    A basic thesis of Neokantian epistemology and philosophy of science contends that the knowing subject and the object to be known are only abstractions. What really exists, is the relation between both. For the elucidation of this “knowledge relation ("Erkenntnisrelation") the Neokantians of the Marburg school used a variety of mathematical metaphors. In this con-tribution I reconsider some of these metaphors proposed by Paul Natorp, who was one of the leading members of the Marburg school. It is shown that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Science of Knowing: Mathematics.Venkata Rayudu Posina - manuscript
    The 'Science of Knowing: Mathematics' textbook is the first book to put forward and substantiate the thesis that the mathematical understanding of mathematics, as exemplified in F. William Lawvere's Functorial Semantics, constitutes the science of knowing i.e. cognitive science. -/- This is a textbook, i.e. teaching material.
    Download  
     
    Export citation  
     
    Bookmark  
  9. An Aristotelian Realist Philosophy of Mathematics: Mathematics as the science of quantity and structure.James Franklin - 2014 - London and New York: Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are parts of the physical world and (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  10. Mathematics as the Science of Pure Structure.John-Michael Kuczynski - manuscript
    A brief but rigorous description of the logical structure of mathematical truth.
    Download  
     
    Export citation  
     
    Bookmark  
  11. From Mathematics to Quantum Mechanics - On the Conceptual Unity of Cassirer’s Philosophy of Science.Thomas Mormann - 2015 - In J. Tyler Friedman & Sebastian Luft (eds.), The Philosophy of Ernst Cassirer: A Novel Assessment. Boston: De Gruyter. pp. 31-64.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  12. A New Role for Mathematics in Empirical Sciences.Atoosa Kasirzadeh - 2021 - Philosophy of Science 88 (4):686-706.
    Mathematics is often taken to play one of two roles in the empirical sciences: either it represents empirical phenomena or it explains these phenomena by imposing constraints on them. This article identifies a third and distinct role that has not been fully appreciated in the literature on applicability of mathematics and may be pervasive in scientific practice. I call this the “bridging” role of mathematics, according to which mathematics acts as a connecting scheme in our explanatory reasoning about why (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Natorp's mathematical philosophy of science.Thomas Mormann - 2022 - Studia Kantiana 20 (2):65 - 82.
    This paper deals with Natorp’s version of the Marburg mathematical philosophy of science characterized by the following three features: The core of Natorp’s mathematical philosophy of science is contained in his “knowledge equation” that may be considered as a mathematical model of the “transcendental method” conceived by Natorp as the essence of the Marburg Neo-Kantianism. For Natorp, the object of knowledge was an infinite task. This can be elucidated in two different ways: Carnap, in the Aufbau, contended (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Where Opposites Meet: Mathematics Between Science And Humanities.Ivano Zanzarella - 2019 - Scienza E Filosofia 22:302-321.
    The connection between science and mathematics is often considered necessary and insoluble. Therefore, a relationship between mathematics and humanities or arts is deemed exceptional or sometimes unnatural. Nevertheless, on the basis of historical, ontological and epistemological researches it can be noted that it’s impossible to warrant the immediate identification between mathematics and sciences on a deeper level than the practical one. Given the instrumentality and then the unnecessity of this connection, the relationship between mathematics and not-scientific disciplines is undeniable, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Volume Introduction – Method, Science and Mathematics: Neo-Kantianism and Analytic Philosophy.Scott Edgar - 2018 - Journal for the History of Analytical Philosophy 6 (3):1-10.
    Introduction to the Special Volume, “Method, Science and Mathematics: Neo-Kantianism and Analytic Philosophy,” edited by Scott Edgar and Lydia Patton. At its core, analytic philosophy concerns urgent questions about philosophy’s relation to the formal and empirical sciences, questions about philosophy’s relation to psychology and the social sciences, and ultimately questions about philosophy’s place in a broader cultural landscape. This picture of analytic philosophy shapes this collection’s focus on the history of the philosophy of mathematics, physics, and psychology. The (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. Mathematics for Cognitive Science.Venkata Rayudu Posina - manuscript
    That the state-of-affairs of cognitive science is not good is brought into figural salience in "What happened to cognitive science?" (Núñez et al., 2019). We extend their objective description of 'what's wrong' to a prescription of 'how to correct'. Cognitive science, in its quest to elucidate 'how we know', embraces a long list of subjects, while ignoring Mathematics (Fig. 1a, Núñez et al., 2019). Mathematics is known for making the unknown to be known (cf. solving for unknowns). This acknowledgement naturally (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Mathematical skepticism: a sketch with historian in foreground.Luciano Floridi - 1998 - In J. van der Zande & R. Popkin (eds.), The Skeptical Tradition around 1800. pp. 41–60.
    We know very little about mathematical skepticism in modem times. Imre Lakatos once remarked that “in discussing modem efforts to establish foundations for mathematical knowledge one tends to forget that these are but a chapter in the great effort to overcome skepticism by establishing foundations for knowledge in general." And in a sense he was clearly right: modem thought — with its new discoveries in mathematical sciences, the mathematization of physics, the spreading of Pyrrhonist doctrines, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19. Symmetry and Reformulation: On Intellectual Progress in Science and Mathematics.Josh Hunt - 2022 - Dissertation, University of Michigan
    Science and mathematics continually change in their tools, methods, and concepts. Many of these changes are not just modifications but progress---steps to be admired. But what constitutes progress? This dissertation addresses one central source of intellectual advancement in both disciplines: reformulating a problem-solving plan into a new, logically compatible one. For short, I call these cases of compatible problem-solving plans "reformulations." Two aspects of reformulations are puzzling. First, reformulating is often unnecessary. Given that we could already solve a problem using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Hobbes on the Order of Sciences: A Partial Defense of the Mathematization Thesis.Zvi Biener - 2016 - Southern Journal of Philosophy 54 (3):312-332.
    Accounts of Hobbes’s ‘system’ of sciences oscillate between two extremes. On one extreme, the system is portrayed as wholly axiomtic-deductive, with statecraft being deduced in an unbroken chain from the principles of logic and first philosophy. On the other, it is portrayed as rife with conceptual cracks and fissures, with Hobbes’s statements about its deductive structure amounting to mere window-dressing. This paper argues that a middle way is found by conceiving of Hobbes’s _Elements of Philosophy_ on the model of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Unification and mathematical explanation in science.Sam Baron - 2021 - Synthese 199 (3-4):7339-7363.
    Mathematics clearly plays an important role in scientific explanation. Debate continues, however, over the kind of role that mathematics plays. I argue that if pure mathematical explananda and physical explananda are unified under a common explanation within science, then we have good reason to believe that mathematics is explanatory in its own right. The argument motivates the search for a new kind of scientific case study, a case in which pure mathematical facts and physical facts are explanatorily unified. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. A fresh look at research strategies in computational cognitive science: The case of enculturated mathematical problem solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach applies methods (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  23. MODERN SCIENCE EMPHASIZES MATHEMATICS. WHAT THE UNIVERSE LOOKS LIKE WHEN LOGIC IS EMPHASIZED (MATHS HAS A VITAL, BUT SECONDARY, ROLE IN THIS ARTICLE).Rodney Bartlett - 2013 - viXra.
    This article had its start with another article, concerned with measuring the speed of gravitational waves - "The Measurement of the Light Deflection from Jupiter: Experimental Results" by Ed Fomalont and Sergei Kopeikin (2003) - The Astrophysical Journal 598 (1): 704–711. This starting-point led to many other topics that required explanation or naturally seemed to follow on – Unification of gravity with electromagnetism and the 2 nuclear forces, Speed of electromagnetic waves, Energy of cosmic rays and UHECRs, Digital string theory, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Topics in Mathematical Consciousness Science.Johannes Kleiner - 2024 - Dissertation, Munich Center for Mathematical Philosophy & Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich
    The scientific study of consciousness, also referred to as consciousness science, is a young scientific field devoted to understanding how conscious experiences and the brain relate. It comprises a host of theories, experiments, and analyses that aim to investigate the problem of consciousness empirically, theoretically, and conceptually. This thesis addresses some of the questions that arise in these investigations from a formal and mathematical perspective. These questions concern theories of consciousness, experimental paradigms, methodology, and artificial consciousness. -/- Regarding theories (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Creating a New Mathematics.Arran Gare - 2016 - In Ronny Desmet (ed.), Intuition in Mathematics and Physics. pp. 146-164.
    The focus of this chapter is on efforts to create a new mathematics, with my prime interest being the role of mathematics in comprehending a world consisting first and foremost of processes, and examining what developments in mathematics are required for this. I am particularly interested in developments in mathematics able to do justice to the reality of life. Such mathematics could provide the basis for advancing ecology, human ecology and ecological economics and thereby assist in the transformation of society (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26. Mathematics, core of the past and hope of the future.James Franklin - 2018 - In Catherine A. Runcie & David Brooks (eds.), Reclaiming Education: Renewing Schools and Universities in Contemporary Western Society. Edwin H. Lowe Publishing. pp. 149-162.
    Mathematics has always been a core part of western education, from the medieval quadrivium to the large amount of arithmetic and algebra still compulsory in high schools. It is an essential part. Its commitment to exactitude and to rigid demonstration balances humanist subjects devoted to appreciation and rhetoric as well as giving the lie to postmodernist insinuations that all “truths” are subject to political negotiation. In recent decades, the character of mathematics has changed – or rather broadened: it has become (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Oswald Spengler and Martin Heidegger on Modern Science, Metaphysics, and Mathematics.Gregory Morgan Swer - 2017 - Idealistic Studies 47 (1 & 2):1-22.
    This paper argues that Oswald Spengler has an innovative philosophical position on the nature and interrelation of mathematics and science. It further argues that his position in many ways parallels that of Martin Heidegger. Both held that an appreciation of the mathematical nature of contemporary science was critical to a proper appreciation of science, technology and modernity. Both also held that the fundamental feature of modern science is its mathematical nature, and that the mathematical operates as a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. Spinoza and the Philosophy of Science: Mathematics, Motion, and Being.Eric Schliesser - 1986, 2002
    This chapter argues that the standard conception of Spinoza as a fellow-travelling mechanical philosopher and proto-scientific naturalist is misleading. It argues, first, that Spinoza’s account of the proper method for the study of nature presented in the Theological-Political Treatise (TTP) points away from the one commonly associated with the mechanical philosophy. Moreover, throughout his works Spinoza’s views on the very possibility of knowledge of nature are decidedly sceptical (as specified below). Third, in the seventeenth-century debates over proper methods in the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  29. Editorial. Special Issue on Integral Biomathics: Life Sciences, Mathematics and Phenomenological Philosophy.Plamen L. Simeonov, Arran Gare, Seven M. Rosen & Denis Noble - 2015 - Progress in Biophysics and Molecular Biology 119 (3):208-218.
    The is the Editorial of the 2015 JPBMB Special Issue on Integral Biomathics: Life Sciences, Mathematics and Phenomenological Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Lakatos' Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science - Introduction to the Special Issue on Lakatos’ Undone Work.Sophie Nagler, Hannah Pillin & Deniz Sarikaya - 2022 - Kriterion - Journal of Philosophy 36:1-10.
    We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, which gave rise to this special issue. Lastly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Aristotle’s prohibition rule on kind-crossing and the definition of mathematics as a science of quantities.Paola Cantù - 2010 - Synthese 174 (2):225-235.
    The article evaluates the Domain Postulate of the Classical Model of Science and the related Aristotelian prohibition rule on kind-crossing as interpretative tools in the history of the development of mathematics into a general science of quantities. Special reference is made to Proclus’ commentary to Euclid’s first book of Elements , to the sixteenth century translations of Euclid’s work into Latin and to the works of Stevin, Wallis, Viète and Descartes. The prohibition rule on kind-crossing formulated by Aristotle in Posterior (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  32. (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of (...) theorems can cover at most one mathematical universe. Indispensability arguments may thus lose their central role in the debate about mathematical ontology. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Mathematical Modelling and Contrastive Explanation.Adam Morton - 1990 - Canadian Journal of Philosophy 20 (Supplement):251-270.
    Mathematical models provide explanations of limited power of specific aspects of phenomena. One way of articulating their limits here, without denying their essential powers, is in terms of contrastive explanation.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. History & Mathematics: Trends and Cycles.Leonid Grinin & Andrey Korotayev - 2014 - Volgograd: "Uchitel" Publishing House.
    The present yearbook (which is the fourth in the series) is subtitled Trends & Cycles. It is devoted to cyclical and trend dynamics in society and nature; special attention is paid to economic and demographic aspects, in particular to the mathematical modeling of the Malthusian and post-Malthusian traps' dynamics. An increasingly important role is played by new directions in historical research that study long-term dynamic processes and quantitative changes. This kind of history can hardly develop without the application of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. (1 other version)Agent-Based Modeling: The Right Mathematics for the Social Sciences?Paul Borrill & Leigh Tesfatsion - 2011 - In J. B. Davis & D. W. Hands (eds.), Elgar Companion to Recent Economic Methodology. Edward Elgar Publishers.
    This study provides a basic introduction to agent-based modeling (ABM) as a powerful blend of classical and constructive mathematics, with a primary focus on its applicability for social science research. The typical goals of ABM social science researchers are discussed along with the culture-dish nature of their computer experiments. The applicability of ABM for science more generally is also considered, with special attention to physics. Finally, two distinct types of ABM applications are summarized in order to illustrate concretely the duality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Mathematics' Poincare Conjecture and The Shape of the Universe.Rodney Bartlett - 2011 - Tomorrow's Science Today.
    intro to Part 1 - -/- Most people disliked mathematics when they were at school and they were absolutely correct to do so. This is because maths as we know it is severely incomplete. No matter how elaborated and complicated mathematical equations become, in today's world they're based on 1+1=2. This certainly conforms to the world our physical senses perceive and to the world scientific instruments detect. It has been of immeasurable value to all knowledge throughout history and has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37.  36
    Mathematizing Bodies. Leibniz on the Application of Mathematics to Nature, and its Metaphysical Ground.Lucia Oliveri - 2023 - Studia Leibnitiana 55 (1-2):190-208.
    There are two axes of Leibniz’s philosophy about bodies that are deeply inter- twined, as this paper shows: the scientific investigation of bodies due to the application of mathematics to nature – Leibniz’s mixed mathematics – and the issue of matter/bodies ide- alism. This intertwinement raises an issue: How did Leibniz frame the relationship between mathematics, natural sciences, and metaphysics? Due to the increasing application of mathe- matics to natural sciences, especially physics, philosophers of the early modern period (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Cassirer's Psychology of Relations: From the Psychology of Mathematics and Natural Science to the Psychology of Culture.Samantha Matherne - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    In spite of Ernst Cassirer’s criticisms of psychologism throughout Substance and Function, in the final chapter he issues a demand for a “psychology of relations” that can do justice to the subjective dimensions of mathematics and natural science. Although these remarks remain somewhat promissory, the fact that this is how Cassirer chooses to conclude Substance and Function recommends it as a topic worthy of serious consideration. In this paper, I argue that in order to work out the details of Cassirer’s (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Virtual Mathematics: the logic of difference.Simon Duffy (ed.) - 2006 - Clinamen.
    Of all twentieth century philosophers, it is Gilles Deleuze whose work agitates most forcefully for a worldview privileging becoming over being, difference over sameness; the world as a complex, open set of multiplicities. Nevertheless, Deleuze remains singular in enlisting mathematical resources to underpin and inform such a position, refusing the hackneyed opposition between ‘static’ mathematical logic versus ‘dynamic’ physical world. This is an international collection of work commissioned from foremost philosophers, mathematicians and philosophers of science, to address the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  40. Consciousness, Mathematics and Reality: A Unified Phenomenology.Igor Ševo - manuscript
    Every scientific theory is a simulacrum of reality, every written story a simulacrum of the canon, and every conceptualization of a subjective perspective a simulacrum of the consciousness behind it—but is there a shared essence to these simulacra? The pursuit of answering seemingly disparate fundamental questions across different disciplines may ultimately converge into a single solution: a single ontological answer underlying grand unified theory, hard problem of consciousness, and the foundation of mathematics. I provide a hypothesis, a speculative approximation, supported (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Mathematical Explanation: A Pythagorean Proposal.Sam Baron - 2024 - British Journal for the Philosophy of Science 75 (3):663-685.
    Mathematics appears to play an explanatory role in science. This, in turn, is thought to pave a way toward mathematical Platonism. A central challenge for mathematical Platonists, however, is to provide an account of how mathematical explanations work. I propose a property-based account: physical systems possess mathematical properties, which either guarantee the presence of other mathematical properties and, by extension, the physical states that possess them; or rule out other mathematical properties, and their associated (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  43. Mathematics, explanation and reductionism: exposing the roots of the Egyptianism of European civilization.Arran Gare - 2005 - Cosmos and History 1 (1):54-89.
    We have reached the peculiar situation where the advance of mainstream science has required us to dismiss as unreal our own existence as free, creative agents, the very condition of there being science at all. Efforts to free science from this dead-end and to give a place to creative becoming in the world have been hampered by unexamined assumptions about what science should be, assumptions which presuppose that if creative becoming is explained, it will be explained away as an illusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Walter Dubislav’s Philosophy of Science and Mathematics.Nikolay Milkov - 2016 - Hopos: The Journal of the International Society for the History of Philosophy of Science 6 (1):96-116.
    Walter Dubislav (1895–1937) was a leading member of the Berlin Group for scientific philosophy. This “sister group” of the more famous Vienna Circle emerged around Hans Reichenbach’s seminars at the University of Berlin in 1927 and 1928. Dubislav was to collaborate with Reichenbach, an association that eventuated in their conjointly conducting university colloquia. Dubislav produced original work in philosophy of mathematics, logic, and science, consequently following David Hilbert’s axiomatic method. This brought him to defend formalism in these disciplines as well (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  46. What Science Knows: And How It Knows It.James Franklin - 2009 - Encounter Books.
    In What Science Knows, the Australian philosopher and mathematician James Franklin explains in captivating and straightforward prose how science works its magic. It offers a semipopular introduction to an objective Bayesian/logical probabilist account of scientific reasoning, arguing that inductive reasoning is logically justified (though actually existing science sometimes falls short). Its account of mathematics is Aristotelian realist.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  47. Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  48. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  49. Mathematical Knowledge, the Analytic Method, and Naturalism.Fabio Sterpetti - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science. New York: Routledge. pp. 268-293.
    This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors tried to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 949