Results for 'Turing Equivalent'

951 found
Order:
  1. Turing's two tests for intelligence.Susan G. Sterrett - 1999 - Minds and Machines 10 (4):541-559.
    On a literal reading of `Computing Machinery and Intelligence'', Alan Turing presented not one, but two, practical tests to replace the question `Can machines think?'' He presented them as equivalent. I show here that the first test described in that much-discussed paper is in fact not equivalent to the second one, which has since become known as `the Turing Test''. The two tests can yield different results; it is the first, neglected test that provides the more (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  2. The x86 language has Turing Complete memory access.P. Olcott - manuscript
    An abstract machine having a tape head that can be advanced in 0 to 0x7FFFFFFF increments an unlimited number of times specifies a model of computation that has access to unlimited memory. The technical name for memory addressing based on displacement from the current memory address is relative addressing.
    Download  
     
    Export citation  
     
    Bookmark  
  3. Arithmetic logical Irreversibility and the Halting Problem (Revised and Fixed version).Yair Lapin - manuscript
    The Turing machine halting problem can be explained by several factors, including arithmetic logic irreversibility and memory erasure, which contribute to computational uncertainty due to information loss during computation. Essentially, this means that an algorithm can only preserve information about an input, rather than generate new information. This uncertainty arises from characteristics such as arithmetic logical irreversibility, Landauer's principle, and memory erasure, which ultimately lead to a loss of information and an increase in entropy. To measure this uncertainty and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Cognitivism about Epistemic Modality and Hyperintensionality.David Elohim - manuscript
    This essay aims to vindicate the thesis that cognitive computational properties are abstract objects implemented in physical systems. I avail of Voevodsky's Univalence Axiom and function type equivalence in Homotopy Type Theory, in order to specify an abstraction principle for epistemic (hyper-)intensions. The homotopic abstraction principle for epistemic (hyper-)intensions provides an epistemic conduit for our knowledge of (hyper-)intensions as abstract objects. Higher observational type theory might be one way to make first-order abstraction principles defined via inference rules, although not higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Against digital ontology.Luciano Floridi - 2009 - Synthese 168 (1):151 - 178.
    The paper argues that digital ontology (the ultimate nature of reality is digital, and the universe is a computational system equivalent to a Turing Machine) should be carefully distinguished from informational ontology (the ultimate nature of reality is structural), in order to abandon the former and retain only the latter as a promising line of research. Digital vs. analogue is a Boolean dichotomy typical of our computational paradigm, but digital and analogue are only “modes of presentation” of Being (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  7. The Boundary between Mind and Machine.Dingzhou Fei - 2018 - Journal of Human Cognition 2 (1):5-15.
    The mind-body problem is one of the important topics in philosophy of mind and cognitive science. Following the analytical tradition of linguistic and logical analysis, we focus on two aspects of the mind- body problem: one is around Gödel's incompleteness theorem, and the other is on cognitive logic, especially on the question of whether Epistemological Arithmetic and machines are private. In the former case, in response to the popular view that the Gödel Incompleteness Theorem supports dualism in the mind-body problem, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is not Turing machine (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. A Hyperintensional Two-Dimensionalist Solution to the Access Problem.David Elohim - manuscript
    I argue that the two-dimensional hyperintensions of epistemic topic-sensitive two-dimensional truthmaker semantics provide a compelling solution to the access problem. -/- I countenance an abstraction principle for epistemic hyperintensions based on Voevodsky's Univalence Axiom and function type equivalence in Homotopy Type Theory. The truth of my first-order abstraction principle for hyperintensions is grounded in its being possibly recursively enumerable i.e. Turing computable and the Turing machine being physically implementable. I apply, further, modal rationalism in modal epistemology to solve (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Un altro ritratto di cartone animato della mente dai metafisici riduzionisti -un recensione di Peter Carruthers 'L'opacità della mente' (The Opacity of Mind) (2011) (recensione rivista 2019).Michael Richard Starks - 2020 - In Benvenuti all'inferno sulla Terra: Bambini, Cambiamenti climatici, Bitcoin, Cartelli, Cina, Democrazia, Diversità, Disgenetica, Uguaglianza, Pirati Informatici, Diritti umani, Islam, Liberalismo, Prosperità, Web, Caos, Fame, Malattia, Violenza, Intellige. Las Vegas, NV USA: Reality Press. pp. 124-149.
    Il materialismo, il riduzionismo, il comportamentalismo, il funzionalismo, la teoria dei sistemi dinamici e il computazionalismo sono punti di vista popolari, ma sono stati mostrati da Wittgenstein come incoerenti. Lo studio del comportamento comprende tutta la vitaumana, ma il comportamento è in gran parte automatico e inconscio e anche la parte cosciente, per lo più espressa nel linguaggio (che Wittgenstein equivale alla mente), non è perspicua, quindi è fondamentale avere un quadro che Searle chiama la struttura logica della razionalità (LSR) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Efficacy of Colistin Therapy in Patients with Hematological Malignancies: What if There is Colistin Resistance?Zeynep Ture, Gamze Kalın Unüvar, Hüseyin Nadir Kahveci, Muzaffer Keklik & Ayşegül Ulu Kilic - 2023 - European Journal of Therapeutics 29 (1):17-22.
    Objective: The objective of this study was to evaluate the clinical efficacy and appropriateness of colistin therapy in patients with hematological malignancies. -/- Methods: Age, gender, type of hematologic malignancy, and potential carbapenem-resistant microorganism risk factors were all noted in this retrospective study. In empirical and agent-specific treatment groups, differences in demographic features, risk factors, treatment responses, and side effects were compared. -/- Results: Sixty-three patients were included, 54% were male, and the median age was 49. In the last three (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Post-Turing Methodology: Breaking the Wall on the Way to Artificial General Intelligence.Albert Efimov - 2020 - Lecture Notes in Computer Science 12177.
    This article offers comprehensive criticism of the Turing test and develops quality criteria for new artificial general intelligence (AGI) assessment tests. It is shown that the prerequisites A. Turing drew upon when reducing personality and human consciousness to “suitable branches of thought” re-flected the engineering level of his time. In fact, the Turing “imitation game” employed only symbolic communication and ignored the physical world. This paper suggests that by restricting thinking ability to symbolic systems alone Turing (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  13. Rethinking Turing’s Test and the Philosophical Implications.Diane Proudfoot - 2020 - Minds and Machines 30 (4):487-512.
    In the 70 years since Alan Turing’s ‘Computing Machinery and Intelligence’ appeared in Mind, there have been two widely-accepted interpretations of the Turing test: the canonical behaviourist interpretation and the rival inductive or epistemic interpretation. These readings are based on Turing’s Mind paper; few seem aware that Turing described two other versions of the imitation game. I have argued that both readings are inconsistent with Turing’s 1948 and 1952 statements about intelligence, and fail to explain (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  14. The Turing Guide.Jack Copeland, Jonathan Bowen, Robin Wilson & Mark Sprevak (eds.) - 2017 - Oxford: Oxford University Press.
    This volume celebrates the various facets of Alan Turing (1912–1954), the British mathematician and computing pioneer, widely considered as the father of computer science. It is aimed at the general reader, with additional notes and references for those who wish to explore the life and work of Turing more deeply. -/- The book is divided into eight parts, covering different aspects of Turing’s life and work. -/- Part I presents various biographical aspects of Turing, some from (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  15. Turing Test, Chinese Room Argument, Symbol Grounding Problem. Meanings in Artificial Agents (APA 2013).Christophe Menant - 2013 - American Philosophical Association Newsletter on Philosophy and Computers 13 (1):30-34.
    The Turing Test (TT), the Chinese Room Argument (CRA), and the Symbol Grounding Problem (SGP) are about the question “can machines think?” We propose to look at these approaches to Artificial Intelligence (AI) by showing that they all address the possibility for Artificial Agents (AAs) to generate meaningful information (meanings) as we humans do. The initial question about thinking machines is then reformulated into “can AAs generate meanings like humans do?” We correspondingly present the TT, the CRA and the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  16. Turing test: 50 years later.Ayse Pinar Saygin, Ilyas Cicekli & Varol Akman - 2000 - Minds and Machines 10 (4):463-518.
    The Turing Test is one of the most disputed topics in artificial intelligence, philosophy of mind, and cognitive science. This paper is a review of the past 50 years of the Turing Test. Philosophical debates, practical developments and repercussions in related disciplines are all covered. We discuss Turing's ideas in detail and present the important comments that have been made on them. Within this context, behaviorism, consciousness, the 'other minds' problem, and similar topics in philosophy of mind (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  17. The Turing Machine on the Dissecting Table.Jana Horáková - 2013 - Teorie Vědy / Theory of Science 35 (2):269-288.
    Since the beginning of the twenty-first century there has been an increasing awareness that software rep- resents a blind spot in new media theory. The growing interest in software also influences the argument in this paper, which sets out from the assumption that Alan M. Turing's concept of the universal machine, the first theoretical description of a computer program, is a kind of bachelor machine. Previous writings based on a similar hypothesis have focused either on a comparison of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Revisiting Turing and His Test: Comprehensiveness, Qualia, and the Real World.Vincent C. Müller & Aladdin Ayesh (eds.) - 2012 - AISB.
    Proceedings of the papers presented at the Symposium on "Revisiting Turing and his Test: Comprehensiveness, Qualia, and the Real World" at the 2012 AISB and IACAP Symposium that was held in the Turing year 2012, 2–6 July at the University of Birmingham, UK. Ten papers. - http://www.pt-ai.org/turing-test --- Daniel Devatman Hromada: From Taxonomy of Turing Test-Consistent Scenarios Towards Attribution of Legal Status to Meta-modular Artificial Autonomous Agents - Michael Zillich: My Robot is Smarter than Your Robot: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Turing’s Three Senses of “Emotional”.Diane Proudfoot - 2014 - International Journal of Synthetic Emotions 5 (2):7-20.
    Turing used the expression “emotional” in three distinct ways: to state his philosophical theory of the concept of intelligence, to classify arguments for and against the possibility of machine intelligence, and to describe the education of a “child machine”. The remarks on emotion include several of the most important philosophical claims. This paper analyses these remarks and their significance for current research in Artificial Intelligence.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. On Turing Completeness, or Why We Are So Many (7th edition).Ramón Casares - manuscript
    Why are we so many? Or, in other words, Why is our species so successful? The ultimate cause of our success as species is that we, Homo sapiens, are the first and the only Turing complete species. Turing completeness is the capacity of some hardware to compute by software whatever hardware can compute. To reach the answer, I propose to see evolution and computing from the problem solving point of view. Then, solving more problems is evolutionarily better, computing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. A Minimal Turing Test: Reciprocal Sensorimotor Contingencies for Interaction Detection.Pamela Barone, Manuel G. Bedia & Antoni Gomila - 2020 - Frontiers in Human Neuroscience 14:481235.
    In the classical Turing test, participants are challenged to tell whether they are interacting with another human being or with a machine. The way the interaction takes place is not direct, but a distant conversation through computer screen messages. Basic forms of interaction are face-to-face and embodied, context-dependent and based on the detection of reciprocal sensorimotor contingencies. Our idea is that interaction detection requires the integration of proprioceptive and interoceptive patterns with sensorimotor patterns, within quite short time lapses, so (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Turing and Computationalism.Napoleon M. Mabaquiao - 2014 - Philosophia: International Journal of Philosophy (Philippine e-journal) 15 (1):50-62.
    Due to his significant role in the development of computer technology and the discipline of artificial intelligence, Alan Turing has supposedly subscribed to the theory of mind that has been greatly inspired by the power of the said technology which has eventually become the dominant framework for current researches in artificial intelligence and cognitive science, namely, computationalism or the computational theory of mind. In this essay, I challenge this supposition. In particular, I will try to show that there is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. A Turing Machine for Exponential Function.P. M. F. Lemos - manuscript
    This is a Turing Machine which computes the exponential function f(x,y) = xˆy. Instructions format and operation of this machine are intended to best reflect the basic conditions outlined by Alan Turing in his On Computable Numbers, with an Application to the Entscheidungsproblem (1936), using the simplest single-tape and single-symbol version, in essence due to Kleene (1952) and Carnielli & Epstein (2008). This machine is composed by four basic task machines: one which checks if exponent y is zero, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Turing’s imitation game: still an impossible challenge for all machines and some judges.Luciano Floridi, Mariarosaria Taddeo & Matteo Turilli - 2009 - Minds and Machines 19 (1):145–150.
    An Evaluation of the 2008 Loebner Contest.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  25. Turing and the evaluation of intelligence.Francesco Bianchini - 2014 - Isonomia: Online Philosophical Journal of the University of Urbino:1-18.
    The article deals with some ideas by Turing concerning the background and the birth of the well-known Turing Test, showing the evolution of the main question proposed by Turing on thinking machine. The notions he used, especially that one of imitation, are not so much exactly defined and shaped, but for this very reason they have had a deep impact in artificial intelligence and cognitive science research from an epistemological point of view. Then, it is suggested that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. What Theoretical Equivalence Could Not Be.Trevor Teitel - 2021 - Philosophical Studies 178 (12):4119-4149.
    Formal criteria of theoretical equivalence are mathematical mappings between specific sorts of mathematical objects, notably including those objects used in mathematical physics. Proponents of formal criteria claim that results involving these criteria have implications that extend beyond pure mathematics. For instance, they claim that formal criteria bear on the project of using our best mathematical physics as a guide to what the world is like, and also have deflationary implications for various debates in the metaphysics of physics. In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  27. Turing Machines and Semantic Symbol Processing: Why Real Computers Don’t Mind Chinese Emperors.Richard Yee - 1993 - Lyceum 5 (1):37-59.
    Philosophical questions about minds and computation need to focus squarely on the mathematical theory of Turing machines (TM's). Surrogate TM's such as computers or formal systems lack abilities that make Turing machines promising candidates for possessors of minds. Computers are only universal Turing machines (UTM's)—a conspicuous but unrepresentative subclass of TM. Formal systems are only static TM's, which do not receive inputs from external sources. The theory of TM computation clearly exposes the failings of two prominent critiques, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Turing's three philosophical lessons and the philosophy of information.Luciano Floridi - 2012 - Philosophical Transactions of the Royal Society A 370 (1971):3536-3542.
    In this article, I outline the three main philosophical lessons that we may learn from Turing’s work, and how they lead to a new philosophy of information. After a brief introduction, I discuss his work on the method of levels of abstraction (LoA), and his insistence that questions could be meaningfully asked only by specifying the correct LoA. I then look at his second lesson, about the sort of philosophical questions that seem to be most pressing today. Finally, I (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  29. Gödel Incompleteness and Turing Completeness.Ramón Casares - manuscript
    Following Post program, we will propose a linguistic and empirical interpretation of Gödel’s incompleteness theorem and related ones on unsolvability by Church and Turing. All these theorems use the diagonal argument by Cantor in order to find limitations in finitary systems, as human language, which can make “infinite use of finite means”. The linguistic version of the incompleteness theorem says that every Turing complete language is Gödel incomplete. We conclude that the incompleteness and unsolvability theorems find limitations in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Observability of Turing Machines: a refinement of the theory of computation.Yaroslav Sergeyev & Alfredo Garro - 2010 - Informatica 21 (3):425–454.
    The Turing machine is one of the simple abstract computational devices that can be used to investigate the limits of computability. In this paper, they are considered from several points of view that emphasize the importance and the relativity of mathematical languages used to describe the Turing machines. A deep investigation is performed on the interrelations between mechanical computations and their mathematical descriptions emerging when a human (the researcher) starts to describe a Turing machine (the object of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  31. (1 other version)Turing on the Integration of Human and Machine Intelligence.Susan Sterrett - 2017 - In Alisa Bokulich & Juliet Floyd (eds.), Philosophical Explorations of the Legacy of Alan Turing. Springer Verlag. pp. 323-338.
    Philosophical discussion of Alan Turing’s writings on intelligence has mostly revolved around a single point made in a paper published in the journal Mind in 1950. This is unfortunate, for Turing’s reflections on machine (artificial) intelligence, human intelligence, and the relation between them were more extensive and sophisticated. They are seen to be extremely well-considered and sound in retrospect. Recently, IBM developed a question-answering computer (Watson) that could compete against humans on the game show Jeopardy! There are hopes (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Can machines think? The controversy that led to the Turing test.Bernardo Gonçalves - 2023 - AI and Society 38 (6):2499-2509.
    Turing’s much debated test has turned 70 and is still fairly controversial. His 1950 paper is seen as a complex and multilayered text, and key questions about it remain largely unanswered. Why did Turing select learning from experience as the best approach to achieve machine intelligence? Why did he spend several years working with chess playing as a task to illustrate and test for machine intelligence only to trade it out for conversational question-answering in 1950? Why did (...) refer to gender imitation in a test for machine intelligence? In this article, I shall address these questions by unveiling social, historical and epistemological roots of the so-called Turing test. I will draw attention to a historical fact that has been only scarcely observed in the secondary literature thus far, namely that Turing’s 1950 test emerged out of a controversy over the cognitive capabilities of digital computers, most notably out of debates with physicist and computer pioneer Douglas Hartree, chemist and philosopher Michael Polanyi, and neurosurgeon Geoffrey Jefferson. Seen in its historical context, Turing’s 1950 paper can be understood as essentially a reply to a series of challenges posed to him by these thinkers arguing against his view that machines can think. Turing did propose gender learning and imitation as one of his various imitation tests for machine intelligence, and I argue here that this was done in response to Jefferson's suggestion that gendered behavior is causally related to the physiology of sex hormones. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  33. What is Metaphysical Equivalence?Kristie Miller - 2005 - Philosophical Papers 34 (1):45-74.
    Abstract Theories are metaphysically equivalent just if there is no fact of the matter that could render one theory true and the other false. In this paper I argue that if we are judiciously to resolve disputes about whether theories are equivalent or not, we need to develop testable criteria that will give us epistemic access to the obtaining of the relation of metaphysical equivalence holding between those theories. I develop such ?diagnostic? criteria. I argue that correctly inter-translatable (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  34. Mutual translatability, equivalence, and the structure of theories.Thomas William Barrett & Hans Halvorson - 2022 - Synthese 200 (3):1-36.
    This paper presents a simple pair of first-order theories that are not definitionally (nor Morita) equivalent, yet are mutually conservatively translatable and mutually 'surjectively' translatable. We use these results to clarify the overall geography of standards of equivalence and to show that the structural commitments that theories make behave in a more subtle manner than has been recognized.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  35. Semantic Equivalence and the Language of Philosophical Analysis.Jorge J. E. Gracia - manuscript
    For many years I have maintained that I learned to philosophize by translating Francisco Suárez’s Metaphysical Disputation V from Latin into English. This surely is a claim that must sound extraordinary to the members of this audience or even to most twentieth century philosophers. Who reads Suárez these days? And what could I learn from a sixteenth century scholastic writer that would help me in the twentieth century? I would certainly be surprised if one were to find any references to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Equivalent Worlds and Knowledge.Kristian D'Amato - manuscript
    One disturbing but telling demonstration of how definitions of knowledge can go wrong is due to Hawthorne.[1] Although properly intended as an attack on Dretske’s theory of conclusive reasons, it also works against Nozick’s conditional theory. Hawthorne provides a simple example: suppose, he declaims, that salmon induces hallucinations if eaten in great amounts. Suppose that, to be more precise, were you to eat it in amounts greater than 14 pounds at one go (never mind how that is humanly possible), it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Contradictions and falling bridges: what was Wittgenstein’s reply to Turing?Ásgeir Berg Matthíasson - 2020 - British Journal for the History of Philosophy 29 (3).
    In this paper, I offer a close reading of Wittgenstein's remarks on inconsistency, mostly as they appear in the Lectures on the Foundations of Mathematics. I focus especially on an objection to Wittgenstein's view given by Alan Turing, who attended the lectures, the so-called ‘falling bridges’-objection. Wittgenstein's position is that if contradictions arise in some practice of language, they are not necessarily fatal to that practice nor necessitate a revision of that practice. If we then assume that we have (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  38. Invariance or equivalence: a tale of two principles.Caspar Jacobs - 2021 - Synthese 199 (3-4):9337-9357.
    The presence of symmetries in physical theories implies a pernicious form of underdetermination. In order to avoid this theoretical vice, philosophers often espouse a principle called Leibniz Equivalence, which states that symmetry-related models represent the same state of affairs. Moreover, philosophers have claimed that the existence of non-trivial symmetries motivates us to accept the Invariance Principle, which states that quantities that vary under a theory’s symmetries aren’t physically real. Leibniz Equivalence and the Invariance Principle are often seen as part of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  39.  97
    Intertranslatability and Ground-Equivalence.Chanwoo Lee - forthcoming - Erkenntnis.
    When are logical theories equivalent? I discuss the notion of ground-equivalence between logical theories, which can be useful for various theoretical reasons, e.g., we expect ground-equivalent theories to have the same ontological bearing. I consider whether intertranslatability is an adequate criterion for ground-equivalence. Jason Turner recently offered an argument that first-order logic and predicate functor logic are ground-equivalent in virtue of their intertranslatability. I examine his argument and show that this can be generalized to other intertranslatable logical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Symmetry and Equivalence.Gordon Belot - 2013 - In Robert W. Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA. pp. 318-339.
    This paper is concerned with the relation between two notions: that of two solutions or models of a theory being related by a symmetry of the theory and that of solutions or models being physically equivalent. A number of authors have recently discussed this relation, some taking an optimistic view, on which there is a suitable concept of the symmetry of a theory relative to which these two notions coincide, others taking a pessimistic view, on which there is no (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  41. Logically Equivalent False Universal Propositions with Different Counterexample Sets.John Corcoran - 2007 - Bulletin of Symbolic Logic 11:554-5.
    This paper corrects a mistake I saw students make but I have yet to see in print. The mistake is thinking that logically equivalent propositions have the same counterexamples—always. Of course, it is often the case that logically equivalent propositions have the same counterexamples: “every number that is prime is odd” has the same counterexamples as “every number that is not odd is not prime”. The set of numbers satisfying “prime but not odd” is the same as the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Intertranslatability, Theoretical Equivalence, and Perversion.Jack Woods - 2018 - Thought: A Journal of Philosophy 7 (1):58-68.
    I investigate syntactic notions of theoretical equivalence between logical theories and a recent objection thereto. I show that this recent criticism of syntactic accounts, as extensionally inadequate, is unwarranted by developing an account which is plausibly extensionally adequate and more philosophically motivated. This is important for recent anti-exceptionalist treatments of logic since syntactic accounts require less theoretical baggage than semantic accounts.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  43. Minimal Turing Test and Children's Education.Duan Zhang, Xiaoan Wu & Jijun He - 2022 - Journal of Human Cognition 6 (1):47-58.
    Considerable evidence proves that causal learning and causal understanding greatly enhance our ability to manipulate the physical world and are major factors that distinguish humans from other primates. How do we enable unintelligent robots to think causally, answer the questions raised with "why" and even understand the meaning of such questions? The solution is one of the keys to realizing artificial intelligence. Judea Pearl believes that to achieve human-like intelligence, researchers must start by imitating the intelligence of children, so he (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44.  86
    La thèse de Turing physique et l'informatique quantique.Florent Franchette - 2010 - RÉPHA, revue étudiante de philosophie analytique 2:19-24.
    Download  
     
    Export citation  
     
    Bookmark  
  45. Turing’s imitation game: still an impossible challenge for all machines and some judges––an evaluation of the 2008 Loebner contest. [REVIEW]Luciano Floridi & Mariarosaria Taddeo - 2009 - Minds and Machines 19 (1):145-150.
    An evaluation of the 2008 Loebner contest.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  46. Respecting boundaries: theoretical equivalence and structure beyond dynamics.William J. Wolf & James Read - 2023 - European Journal for Philosophy of Science 13 (4):1-28.
    A standard line in the contemporary philosophical literature has it that physical theories are equivalent only when they agree on their empirical content, where this empirical content is often understood as being encoded in the equations of motion of those theories. In this article, we question whether it is indeed the case that the empirical content of a theory is exhausted by its equations of motion, showing that (for example) considerations of boundary conditions play a key role in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Beyond Turing: Hypercomputation and Quantum Morphogenesis.Ignazio Licata - 2012 - Asia Pacific Mathematics Newsletter 2 (3):20-24.
    A Geometrical Approach to Quantum Information.
    Download  
     
    Export citation  
     
    Bookmark  
  48. Equivalence of the Frame and Halting Problems.Eric Dietrich & Chris Fields - 2020 - Algorithms 13 (175):1-9.
    The open-domain Frame Problem is the problem of determining what features of an open task environment need to be updated following an action. Here we prove that the open-domain Frame Problem is equivalent to the Halting Problem and is therefore undecidable. We discuss two other open-domain problems closely related to the Frame Problem, the system identification problem and the symbol-grounding problem, and show that they are similarly undecidable. We then reformulate the Frame Problem as a quantum decision problem, and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Davidson's no-priority thesis in defending the Turing Test.Mohammad Reza Vaez Shahrestani - 2012 - Procedia - Social and Behavioral Sciences 32:456-461.
    Turing does not provide an explanation for substituting the original question of his test – i.e., “Can machines think?” with “Can a machine pass the imitation game?” – resulting in an argumentative gap in his main thesis. In this article, I argue that a positive answer to the second question would mean attributing the ability of linguistic interactions to machines; while a positive answer to the original question would mean attributing the ability of thinking to machines. In such a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Turing vs. super-Turing: a defence of the Church-Turing thesis.Luciano Floridi - 1999 - In Philosophy and computing: an introduction. Routledge.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
1 — 50 / 951