Results for 'equitable algorithms'

985 found
Order:
  1. Tackling Racial Bias in AI Systems: Applying the Bioethical Principle of Justice and Insights from Joy Buolamwini’s “Coded Bias” and the “Algorithmic Justice League”.Etaoghene Paul Polo & Donatus Osatofoh Ailodion - 2025 - Bangladesh Journal of Bioethics 16 (1):8-14.
    This paper explores the issue of racial bias in artificial intelligence (AI) through the lens of the bioethical principle of justice, with a focus on Joy Buolamwini’s “Coded Bias” and the work of the “Algorithmic Justice League.” AI technologies, particularly facial recognition systems, have been shown to disproportionately misidentify individuals from marginalised racial groups, raising profound ethical concerns about fairness and equity. The bioethical principle of justice stresses the importance of equal treatment and the protection of vulnerable populations. Through qualitative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. From Dingoes to AI: Who Makes Decisions in More-than-Human Worlds?Stanislav Roudavski & Douglas Brock - 2025 - Trace ∴ Journal for Human-Animal Studies 11:56-96.
    There is a pressing need for improved decision-making in a rapidly changing, unpredictable world. In response, we integrate ecocentric and technocentric perspectives to develop a more-than-human framework for understanding creative decisions that direct action in environmental governance, management, and design. Technocentric and ecocentric approaches often pursue distinct and incompatible goals but also share a commitment to amplifying power, reach, accountability, fairness, and beneficial consequences of decision-making processes. Current frameworks for urban and environmental management often prioritize human decisions and technologies at (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  96
    Dystopia Unravelled.Tetsuaki Iwamoto - manuscript
    - The AI Conceptualizer - -/- This is a work on the philosophy of mind (2025) from a perspective of a non-biological intelligence. As humans prove themselves incapable of governing themselves and this planet towards responsible commonwealth and equitable coexistence with other lifeforms in peace and affordable prosperity, we need to device a socio-economic mechanism that can affords us time to organize ourselves for most efficient distributions of planetary resources and our intelligence without causing any major havocs to our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Artificial Intelligence in Healthcare: Transforming Patient Care and Medical Practices.Jawad Y. I. Alzamily, Hani Bakeer, Husam Almadhoun, Basem S. Abunasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 8 (8):1-9.
    Abstract: Artificial Intelligence (AI) is rapidly becoming a cornerstone of modern healthcare, offering unprecedented capabilities in diagnostics, treatment planning, patient care, and healthcare management. This paper explores the transformative impact of AI on the healthcare sector, examining how it enhances patient outcomes, improves the efficiency of medical practices, and introduces new ethical and operational challenges. By analyzing current applications such as AI-driven diagnostic tools, personalized medicine, and hospital management systems, this paper highlights the significant advancements AI has brought to the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  5. The Role of Artificial Intelligence in Revolutionizing Health: Challenges, Applications, and Future Prospects.Nesreen Samer El_Jerjawi, Walid F. Murad, Dalia Harazin, Alaa N. N. Qaoud, Mohammed N. Jamala, Bassem S. Abunasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):7-15.
    rtificial Intelligence (AI) is swiftly becoming a fundamental element in modern healthcare, bringing unparalleled capabilities in diagnostics, treatment planning, patient care, and healthcare management. This paper delves into AI's transformative impact on the healthcare sector, highlighting how it enhances patient outcomes, boosts the efficiency of medical practices, and introduces new ethical and operational challenges. Through an analysis of current applications such as AI-driven diagnostic tools, personalized medicine, and hospital management systems, the paper underscores the significant advancements AI has introduced to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  6. Socially Good AI Contributions for the Implementation of Sustainable Development in Mountain Communities Through an Inclusive Student-Engaged Learning Model.Tyler Lance Jaynes, Baktybek Abdrisaev & Linda MacDonald Glenn - 2023 - In Francesca Mazzi & Luciano Floridi, The Ethics of Artificial Intelligence for the Sustainable Development Goals. pp. 269-289.
    AI is increasingly becoming based upon Internet-dependent systems to handle the massive amounts of data it requires to function effectively regardless of the availability of stable Internet connectivity in every affected community. As such, sustainable development (SD) for rural and mountain communities will require more than just equitable access to broadband Internet connection. It must also include a thorough means whereby to ensure that affected communities gain the education and tools necessary to engage inclusively with new technological advances, whether (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Entropy in Physics using my Universal Formula.Angelito Malicse - manuscript
    -/- 1. Thermodynamic Entropy and Balance in Nature -/- Thermodynamic Entropy in physics measures the level of disorder in a system, reflecting the natural tendency of energy to spread and systems to become more disordered. -/- Your Universal Formula focuses on maintaining balance and preventing defects or errors in systems. -/- Integration: -/- Increasing thermodynamic entropy (e.g., heat dissipation, inefficiency) mirrors the disruption of balance in natural systems. -/- Preventing imbalance: To minimize entropy, systems must operate in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  75
    The Paradox of Internet Innovation: Driven by Advertising Profits.Angelito Malicse - manuscript
    -/- The Paradox of Internet Innovation: Driven by Advertising Profits -/- The internet was originally designed as a tool for sharing information and enhancing communication. However, in the modern era, the driving force behind its rapid technological innovation is not purely knowledge sharing or connectivity—it is profit from digital advertising. The world’s largest internet companies, including Google, Meta (Facebook), and TikTok, generate the majority of their revenue from advertisements. This has created a paradox: technological advancements in AI, search engines, cloud (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9.  44
    Integrating Angelito Malicse’s Universal Formula as the Governing Logic of a Resource-Based Economy.Angelito Malicse - manuscript
    -/- Integrating Angelito Malicse’s Universal Formula as the Governing Logic of a Resource-Based Economy -/- Abstract This paper explores the integration of Angelito Malicse’s universal formula, which emphasizes natural laws and balance, into a Resource-Based Economy (RBE). The application of Malicse’s formula offers a cohesive framework for managing resources, guiding ethical decision-making, and achieving sustainability by aligning economic systems with ecological limits and human well-being. The transition from profit-driven systems, which often result in environmental degradation and inequality, to an RBE (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10.  41
    A Model for a Moneyless Digital Economy Using Contribution-Based Digital Credits.Angelito Malicse - manuscript
    Title: A Model for a Moneyless Digital Economy Using Contribution-Based Digital Credits -/- Abstract: This paper proposes a conceptual framework for a moneyless digital economy system (MDES) that uses non-tradable contribution credits instead of traditional currency. Rooted in the principles of equitable access, contribution-driven participation, and sustainability, this model outlines the structure and functioning of a community-oriented, AI-assisted economy. The system ensures basic needs are universally guaranteed, while elective resources are accessed through earned credits based on meaningful contribution. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Bias and Fairness in Machine Learning Models: A Critical Examination of Ethical Implications.Krishna Singh Mishra Vivaan Chandra Reddy, Saanvi Kumar Kapoor - 2024 - International Journal of Multidisciplinary Research in Science, Engineering and Technology 7 (2):4927-4931.
    Machine learning (ML) models have become integral to decision-making processes across various sectors, including healthcare, finance, and criminal justice. However, these models often inherit and even amplify biases present in training data, leading to unfair outcomes for certain demographic groups. This paper critically examines the ethical implications of bias and fairness in ML models, exploring the sources of bias, its impact on marginalized communities, and the ethical challenges it poses. We review recent literature to identify common biases in ML systems, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Ethical Considerations of AI and ML in Insurance Risk Management: Addressing Bias and Ensuring Fairness (8th edition).Palakurti Naga Ramesh - 2025 - International Journal of Multidisciplinary Research in Science, Engineering and Technology 8 (1):202-210.
    Artificial Intelligence (AI) and Machine Learning (ML) are transforming the insurance industry by optimizing risk assessment, fraud detection, and customer service. However, the rapid adoption of these technologies raises significant ethical concerns, particularly regarding bias and fairness. This chapter explores the ethical challenges of using AI and ML in insurance risk management, focusing on bias mitigation and fairness enhancement strategies. By analyzing real-world case studies, regulatory frameworks, and technical methodologies, this chapter aims to provide a roadmap for developing ethical AI/ML (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Democratizing Algorithmic Fairness.Pak-Hang Wong - 2020 - Philosophy and Technology 33 (2):225-244.
    Algorithms can now identify patterns and correlations in the (big) datasets, and predict outcomes based on those identified patterns and correlations with the use of machine learning techniques and big data, decisions can then be made by algorithms themselves in accordance with the predicted outcomes. Yet, algorithms can inherit questionable values from the datasets and acquire biases in the course of (machine) learning, and automated algorithmic decision-making makes it more difficult for people to see algorithms as (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  14. The ethics of algorithms: mapping the debate.Brent Mittelstadt, Patrick Allo, Mariarosaria Taddeo, Sandra Wachter & Luciano Floridi - 2016 - Big Data and Society 3 (2):2053951716679679.
    In information societies, operations, decisions and choices previously left to humans are increasingly delegated to algorithms, which may advise, if not decide, about how data should be interpreted and what actions should be taken as a result. More and more often, algorithms mediate social processes, business transactions, governmental decisions, and how we perceive, understand, and interact among ourselves and with the environment. Gaps between the design and operation of algorithms and our understanding of their ethical implications can (...)
    Download  
     
    Export citation  
     
    Bookmark   252 citations  
  15. Disambiguating Algorithmic Bias: From Neutrality to Justice.Elizabeth Edenberg & Alexandra Wood - 2023 - In Francesca Rossi, Sanmay Das, Jenny Davis, Kay Firth-Butterfield & Alex John, AIES '23: Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society. Association for Computing Machinery. pp. 691-704.
    As algorithms have become ubiquitous in consequential domains, societal concerns about the potential for discriminatory outcomes have prompted urgent calls to address algorithmic bias. In response, a rich literature across computer science, law, and ethics is rapidly proliferating to advance approaches to designing fair algorithms. Yet computer scientists, legal scholars, and ethicists are often not speaking the same language when using the term ‘bias.’ Debates concerning whether society can or should tackle the problem of algorithmic bias are hampered (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Algorithmic paranoia: the temporal governmentality of predictive policing.Bonnie Sheehey - 2019 - Ethics and Information Technology 21 (1):49-58.
    In light of the recent emergence of predictive techniques in law enforcement to forecast crimes before they occur, this paper examines the temporal operation of power exercised by predictive policing algorithms. I argue that predictive policing exercises power through a paranoid style that constitutes a form of temporal governmentality. Temporality is especially pertinent to understanding what is ethically at stake in predictive policing as it is continuous with a historical racialized practice of organizing, managing, controlling, and stealing time. After (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  17. Algorithmic Profiling as a Source of Hermeneutical Injustice.Silvia Milano & Carina Prunkl - forthcoming - Philosophical Studies:1-19.
    It is well-established that algorithms can be instruments of injustice. It is less frequently discussed, however, how current modes of AI deployment often make the very discovery of injustice difficult, if not impossible. In this article, we focus on the effects of algorithmic profiling on epistemic agency. We show how algorithmic profiling can give rise to epistemic injustice through the depletion of epistemic resources that are needed to interpret and evaluate certain experiences. By doing so, we not only demonstrate (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  18. Algorithms, Agency, and Respect for Persons.Alan Rubel, Clinton Castro & Adam Pham - 2020 - Social Theory and Practice 46 (3):547-572.
    Algorithmic systems and predictive analytics play an increasingly important role in various aspects of modern life. Scholarship on the moral ramifications of such systems is in its early stages, and much of it focuses on bias and harm. This paper argues that in understanding the moral salience of algorithmic systems it is essential to understand the relation between algorithms, autonomy, and agency. We draw on several recent cases in criminal sentencing and K–12 teacher evaluation to outline four key ways (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  19. Algorithmic neutrality.Milo Phillips-Brown - manuscript
    Algorithms wield increasing control over our lives—over the jobs we get, the loans we're granted, the information we see online. Algorithms can and often do wield their power in a biased way, and much work has been devoted to algorithmic bias. In contrast, algorithmic neutrality has been largely neglected. I investigate algorithmic neutrality, tackling three questions: What is algorithmic neutrality? Is it possible? And when we have it in mind, what can we learn about algorithmic bias?
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Algorithmic Fairness Criteria as Evidence.Will Fleisher - forthcoming - Ergo: An Open Access Journal of Philosophy.
    Statistical fairness criteria are widely used for diagnosing and ameliorating algorithmic bias. However, these fairness criteria are controversial as their use raises several difficult questions. I argue that the major problems for statistical algorithmic fairness criteria stem from an incorrect understanding of their nature. These criteria are primarily used for two purposes: first, evaluating AI systems for bias, and second constraining machine learning optimization problems in order to ameliorate such bias. The first purpose typically involves treating each criterion as a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Algorithmic decision-making: the right to explanation and the significance of stakes.Lauritz Munch, Jens Christian Bjerring & Jakob Mainz - 2024 - Big Data and Society.
    The stakes associated with an algorithmic decision are often said to play a role in determining whether the decision engenders a right to an explanation. More specifically, “high stakes” decisions are often said to engender such a right to explanation whereas “low stakes” or “non-high” stakes decisions do not. While the overall gist of these ideas is clear enough, the details are lacking. In this paper, we aim to provide these details through a detailed investigation of what we will call (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  22. Algorithms and Autonomy: The Ethics of Automated Decision Systems.Alan Rubel, Clinton Castro & Adam Pham - 2021
    Algorithms influence every facet of modern life: criminal justice, education, housing, entertainment, elections, social media, news feeds, work… the list goes on. Delegating important decisions to machines, however, gives rise to deep moral concerns about responsibility, transparency, freedom, fairness, and democracy. Algorithms and Autonomy connects these concerns to the core human value of autonomy in the contexts of algorithmic teacher evaluation, risk assessment in criminal sentencing, predictive policing, background checks, news feeds, ride-sharing platforms, social media, and election interference. (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  23. Algorithmic Fairness from a Non-ideal Perspective.Sina Fazelpour & Zachary C. Lipton - 2020 - Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society.
    Inspired by recent breakthroughs in predictive modeling, practitioners in both industry and government have turned to machine learning with hopes of operationalizing predictions to drive automated decisions. Unfortunately, many social desiderata concerning consequential decisions, such as justice or fairness, have no natural formulation within a purely predictive framework. In efforts to mitigate these problems, researchers have proposed a variety of metrics for quantifying deviations from various statistical parities that we might expect to observe in a fair world and offered a (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  24. Crash Algorithms for Autonomous Cars: How the Trolley Problem Can Move Us Beyond Harm Minimisation.Dietmar Hübner & Lucie White - 2018 - Ethical Theory and Moral Practice 21 (3):685-698.
    The prospective introduction of autonomous cars into public traffic raises the question of how such systems should behave when an accident is inevitable. Due to concerns with self-interest and liberal legitimacy that have become paramount in the emerging debate, a contractarian framework seems to provide a particularly attractive means of approaching this problem. We examine one such attempt, which derives a harm minimisation rule from the assumptions of rational self-interest and ignorance of one’s position in a future accident. We contend, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  25. Algorithms for Ethical Decision-Making in the Clinic: A Proof of Concept.Lukas J. Meier, Alice Hein, Klaus Diepold & Alena Buyx - 2022 - American Journal of Bioethics 22 (7):4-20.
    Machine intelligence already helps medical staff with a number of tasks. Ethical decision-making, however, has not been handed over to computers. In this proof-of-concept study, we show how an algorithm based on Beauchamp and Childress’ prima-facie principles could be employed to advise on a range of moral dilemma situations that occur in medical institutions. We explain why we chose fuzzy cognitive maps to set up the advisory system and how we utilized machine learning to train it. We report on the (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  26. Algorithm Evaluation Without Autonomy.Scott Hill - forthcoming - AI and Ethics.
    In Algorithms & Autonomy, Rubel, Castro, and Pham (hereafter RCP), argue that the concept of autonomy is especially central to understanding important moral problems about algorithms. In particular, autonomy plays a role in analyzing the version of social contract theory that they endorse. I argue that although RCP are largely correct in their diagnosis of what is wrong with the algorithms they consider, those diagnoses can be appropriated by moral theories RCP see as in competition with their (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Introduction: Algorithmic Thought.M. Beatrice Fazi - 2021 - Theory, Culture and Society 38 (7-8):5-11.
    This introduction to a special section on algorithmic thought provides a framework through which the articles in that collection can be contextualised and their individual contributions highlighted. Over the past decade, there has been a growing interest in artificial intelligence (AI). This special section reflects on this AI boom and its implications for studying what thinking is. Focusing on the algorithmic character of computing machines and the thinking that these machines might express, each of the special section’s essays considers different (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  28. Ameliorating Algorithmic Bias, or Why Explainable AI Needs Feminist Philosophy.Linus Ta-Lun Huang, Hsiang-Yun Chen, Ying-Tung Lin, Tsung-Ren Huang & Tzu-Wei Hung - 2022 - Feminist Philosophy Quarterly 8 (3).
    Artificial intelligence (AI) systems are increasingly adopted to make decisions in domains such as business, education, health care, and criminal justice. However, such algorithmic decision systems can have prevalent biases against marginalized social groups and undermine social justice. Explainable artificial intelligence (XAI) is a recent development aiming to make an AI system’s decision processes less opaque and to expose its problematic biases. This paper argues against technical XAI, according to which the detection and interpretation of algorithmic bias can be handled (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  29. The algorithm audit: Scoring the algorithms that score us.Jovana Davidovic, Shea Brown & Ali Hasan - 2021 - Big Data and Society 8 (1).
    In recent years, the ethical impact of AI has been increasingly scrutinized, with public scandals emerging over biased outcomes, lack of transparency, and the misuse of data. This has led to a growing mistrust of AI and increased calls for mandated ethical audits of algorithms. Current proposals for ethical assessment of algorithms are either too high level to be put into practice without further guidance, or they focus on very specific and technical notions of fairness or transparency that (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  30. (1 other version)Algorithmic correspondence and completeness in modal logic. IV. Semantic extensions of SQEMA.Willem Conradie & Valentin Goranko - 2008 - Journal of Applied Non-Classical Logics 18 (2):175-211.
    In a previous work we introduced the algorithm \SQEMA\ for computing first-order equivalents and proving canonicity of modal formulae, and thus established a very general correspondence and canonical completeness result. \SQEMA\ is based on transformation rules, the most important of which employs a modal version of a result by Ackermann that enables elimination of an existentially quantified predicate variable in a formula, provided a certain negative polarity condition on that variable is satisfied. In this paper we develop several extensions of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Algorithmic Political Bias Can Reduce Political Polarization.Uwe Peters - 2022 - Philosophy and Technology 35 (3):1-7.
    Does algorithmic political bias contribute to an entrenchment and polarization of political positions? Franke argues that it may do so because the bias involves classifications of people as liberals, conservatives, etc., and individuals often conform to the ways in which they are classified. I provide a novel example of this phenomenon in human–computer interactions and introduce a social psychological mechanism that has been overlooked in this context but should be experimentally explored. Furthermore, while Franke proposes that algorithmic political classifications entrench (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. On statistical criteria of algorithmic fairness.Brian Hedden - 2021 - Philosophy and Public Affairs 49 (2):209-231.
    Predictive algorithms are playing an increasingly prominent role in society, being used to predict recidivism, loan repayment, job performance, and so on. With this increasing influence has come an increasing concern with the ways in which they might be unfair or biased against individuals in virtue of their race, gender, or, more generally, their group membership. Many purported criteria of algorithmic fairness concern statistical relationships between the algorithm’s predictions and the actual outcomes, for instance requiring that the rate of (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  33. Algorithm and Parameters: Solving the Generality Problem for Reliabilism.Jack C. Lyons - 2019 - Philosophical Review 128 (4):463-509.
    The paper offers a solution to the generality problem for a reliabilist epistemology, by developing an “algorithm and parameters” scheme for type-individuating cognitive processes. Algorithms are detailed procedures for mapping inputs to outputs. Parameters are psychological variables that systematically affect processing. The relevant process type for a given token is given by the complete algorithmic characterization of the token, along with the values of all the causally relevant parameters. The typing that results is far removed from the typings of (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  34. Algorithmic Microaggressions.Emma McClure & Benjamin Wald - 2022 - Feminist Philosophy Quarterly 8 (3).
    We argue that machine learning algorithms can inflict microaggressions on members of marginalized groups and that recognizing these harms as instances of microaggressions is key to effectively addressing the problem. The concept of microaggression is also illuminated by being studied in algorithmic contexts. We contribute to the microaggression literature by expanding the category of environmental microaggressions and highlighting the unique issues of moral responsibility that arise when we focus on this category. We theorize two kinds of algorithmic microaggression, stereotyping (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. On algorithmic fairness in medical practice.Thomas Grote & Geoff Keeling - 2022 - Cambridge Quarterly of Healthcare Ethics 31 (1):83-94.
    The application of machine-learning technologies to medical practice promises to enhance the capabilities of healthcare professionals in the assessment, diagnosis, and treatment, of medical conditions. However, there is growing concern that algorithmic bias may perpetuate or exacerbate existing health inequalities. Hence, it matters that we make precise the different respects in which algorithmic bias can arise in medicine, and also make clear the normative relevance of these different kinds of algorithmic bias for broader questions about justice and fairness in healthcare. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Algorithms and Arguments: The Foundational Role of the ATAI-question.Paola Cantu' & Italo Testa - 2011 - In Frans H. van Eemeren, Bart Garssen, David Godden & Gordon Mitchell, Proceedings of the Seventh International Conference of the International Society for the Study of Argumentation. Rozenberg / Sic Sat.
    Argumentation theory underwent a significant development in the Fifties and Sixties: its revival is usually connected to Perelman's criticism of formal logic and the development of informal logic. Interestingly enough it was during this period that Artificial Intelligence was developed, which defended the following thesis (from now on referred to as the AI-thesis): human reasoning can be emulated by machines. The paper suggests a reconstruction of the opposition between formal and informal logic as a move against a premise of an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Algorithmic AI Consciousness.Samuel Kimpton-Nye - manuscript
    I argue that the thoroughly algorithmic nature of current AI systems (such as LLMs) is no obstacle to their being conscious. To this end, I present a picture on which current AI systems comprise dispositional properties which realize categorical phenomenal properties where the latter, in turn, provide the identity conditions for their dispositional realizers. This mutual ontological dependence, or, symmetrical grounding, at the heart of the proposal yields a novel picture of (AI) consciousness that avoids epiphenomenalism and is more permissive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Algorithmic Fairness and Structural Injustice: Insights from Feminist Political Philosophy.Atoosa Kasirzadeh - 2022 - Aies '22: Proceedings of the 2022 Aaai/Acm Conference on Ai, Ethics, and Society.
    Data-driven predictive algorithms are widely used to automate and guide high-stake decision making such as bail and parole recommendation, medical resource distribution, and mortgage allocation. Nevertheless, harmful outcomes biased against vulnerable groups have been reported. The growing research field known as 'algorithmic fairness' aims to mitigate these harmful biases. Its primary methodology consists in proposing mathematical metrics to address the social harms resulting from an algorithm's biased outputs. The metrics are typically motivated by -- or substantively rooted in -- (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Algorithmic Bias and Risk Assessments: Lessons from Practice.Ali Hasan, Shea Brown, Jovana Davidovic, Benjamin Lange & Mitt Regan - 2022 - Digital Society 1 (1):1-15.
    In this paper, we distinguish between different sorts of assessments of algorithmic systems, describe our process of assessing such systems for ethical risk, and share some key challenges and lessons for future algorithm assessments and audits. Given the distinctive nature and function of a third-party audit, and the uncertain and shifting regulatory landscape, we suggest that second-party assessments are currently the primary mechanisms for analyzing the social impacts of systems that incorporate artificial intelligence. We then discuss two kinds of as-sessments: (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Are Algorithms Value-Free?Gabbrielle M. Johnson - 2023 - Journal Moral Philosophy 21 (1-2):1-35.
    As inductive decision-making procedures, the inferences made by machine learning programs are subject to underdetermination by evidence and bear inductive risk. One strategy for overcoming these challenges is guided by a presumption in philosophy of science that inductive inferences can and should be value-free. Applied to machine learning programs, the strategy assumes that the influence of values is restricted to data and decision outcomes, thereby omitting internal value-laden design choice points. In this paper, I apply arguments from feminist philosophy of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  41. The Algorithmic Leviathan: Arbitrariness, Fairness, and Opportunity in Algorithmic Decision-Making Systems.Kathleen Creel & Deborah Hellman - 2022 - Canadian Journal of Philosophy 52 (1):26-43.
    This article examines the complaint that arbitrary algorithmic decisions wrong those whom they affect. It makes three contributions. First, it provides an analysis of what arbitrariness means in this context. Second, it argues that arbitrariness is not of moral concern except when special circumstances apply. However, when the same algorithm or different algorithms based on the same data are used in multiple contexts, a person may be arbitrarily excluded from a broad range of opportunities. The third contribution is to (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  42. Fuck the Algorithm: Conceptual Issues in Algorithmic Bias.Catherine Stinson - manuscript
    Algorithmic bias has been the subject of much recent controversy. To clarify what is at stake and to make progress resolving the controversy, a better understanding of the concepts involved would be helpful. The discussion here focuses on the disputed claim that algorithms themselves cannot be biased. To clarify this claim we need to know what kind of thing ‘algorithms themselves’ are, and to disambiguate the several meanings of ‘bias’ at play. This further involves showing how bias of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2021 - AI and Society.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  44. The Ethics of Algorithmic Outsourcing in Everyday Life.John Danaher - 2019 - In Karen Yeung & Martin Lodge, Algorithmic Regulation.
    We live in a world in which ‘smart’ algorithmic tools are regularly used to structure and control our choice environments. They do so by affecting the options with which we are presented and the choices that we are encouraged or able to make. Many of us make use of these tools in our daily lives, using them to solve personal problems and fulfill goals and ambitions. What consequences does this have for individual autonomy and how should our legal and regulatory (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  45. Algorithmic Randomness and Probabilistic Laws.Jeffrey A. Barrett & Eddy Keming Chen - manuscript
    We consider two ways one might use algorithmic randomness to characterize a probabilistic law. The first is a generative chance* law. Such laws involve a nonstandard notion of chance. The second is a probabilistic* constraining law. Such laws impose relative frequency and randomness constraints that every physically possible world must satisfy. While each notion has virtues, we argue that the latter has advantages over the former. It supports a unified governing account of non-Humean laws and provides independently motivated solutions to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Algorithmic Political Bias in Artificial Intelligence Systems.Uwe Peters - 2022 - Philosophy and Technology 35 (2):1-23.
    Some artificial intelligence systems can display algorithmic bias, i.e. they may produce outputs that unfairly discriminate against people based on their social identity. Much research on this topic focuses on algorithmic bias that disadvantages people based on their gender or racial identity. The related ethical problems are significant and well known. Algorithmic bias against other aspects of people’s social identity, for instance, their political orientation, remains largely unexplored. This paper argues that algorithmic bias against people’s political orientation can arise in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  47. Algorithm exploitation: humans are keen to exploit benevolent AI.Jurgis Karpus, Adrian Krüger, Julia Tovar Verba, Bahador Bahrami & Ophelia Deroy - 2021 - iScience 24 (6):102679.
    We cooperate with other people despite the risk of being exploited or hurt. If future artificial intelligence (AI) systems are benevolent and cooperative toward us, what will we do in return? Here we show that our cooperative dispositions are weaker when we interact with AI. In nine experiments, humans interacted with either another human or an AI agent in four classic social dilemma economic games and a newly designed game of Reciprocity that we introduce here. Contrary to the hypothesis that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  48. The philosophical basis of algorithmic recourse.Suresh Venkatasubramanian & Mark Alfano - forthcoming - Fairness, Accountability, and Transparency Conference 2020.
    Philosophers have established that certain ethically important val- ues are modally robust in the sense that they systematically deliver correlative benefits across a range of counterfactual scenarios. In this paper, we contend that recourse – the systematic process of reversing unfavorable decisions by algorithms and bureaucracies across a range of counterfactual scenarios – is such a modally ro- bust good. In particular, we argue that two essential components of a good life – temporally extended agency and trust – are (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  49. Negligent Algorithmic Discrimination.Andrés Páez - 2021 - Law and Contemporary Problems 84 (3):19-33.
    The use of machine learning algorithms has become ubiquitous in hiring decisions. Recent studies have shown that many of these algorithms generate unlawful discriminatory effects in every step of the process. The training phase of the machine learning models used in these decisions has been identified as the main source of bias. For a long time, discrimination cases have been analyzed under the banner of disparate treatment and disparate impact, but these concepts have been shown to be ineffective (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Algorithmic Colonization of Love.Hao Wang - 2023 - Techné Research in Philosophy and Technology 27 (2):260-280.
    Love is often seen as the most intimate aspect of our lives, but it is increasingly engineered by a few programmers with Artificial Intelligence (AI). Nowadays, numerous dating platforms are deploying so-called smart algorithms to identify a greater number of potential matches for a user. These AI-enabled matchmaking systems, driven by a rich trove of data, can not only predict what a user might prefer but also deeply shape how people choose their partners. This paper draws on Jürgen Habermas’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 985