Results for 'logic, foundations of mathematics, paraconsistentcy, randomness, '

952 found
Order:
  1. (1 other version)What Do Paraconsistent, Undecidable, Random, Computable and Incomplete mean? A Review of Godel's Way: Exploits into an undecidable world by Gregory Chaitin, Francisco A Doria , Newton C.A. da Costa 160p (2012).Michael Starks - 2017 - Philosophy, Human Nature and the Collapse of Civilization -- Articles and Reviews 2006-2017 3rd Ed 686p(2017).
    In ‘Godel’s Way’ three eminent scientists discuss issues such as undecidability, incompleteness, randomness, computability and paraconsistency. I approach these issues from the Wittgensteinian viewpoint that there are two basic issues which have completely different solutions. There are the scientific or empirical issues, which are facts about the world that need to be investigated observationally and philosophical issues as to how language can be used intelligibly (which include certain questions in mathematics and logic), which need to be decided by looking at (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Physical Foundations of Mathematics (In Russian).Andrey Smirnov - manuscript
    The physical foundations of mathematics in the theory of emergent space-time-matter were considered. It is shown that mathematics, including logic, is a consequence of equation which describes the fundamental field. If the most fundamental level were described not by mathematics, but something else, then instead of mathematics there would be consequences of this something else.
    Download  
     
    Export citation  
     
    Bookmark  
  3.  56
    Foundations of Mathematics.Kliment Babushkovski - manuscript
    Analytical philosophy defines mathematics as an extension of logic. This research will restructure the progress in mathematical philosophy made by analytical thinkers like Wittgenstein, Russell, and Frege. We are setting up a new theory of mathematics and arithmetic’s familiar to Wittgenstein’s philosophy of language. The analytical theory proposed here proves that mathematics can be defined with non-logical terms, like numbers, theorems, and operators. We’ll explain the role of the arithmetical operators and geometrical theorems to be foundational in mathematics. Our position (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2021 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work as computational (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  5. Categorical foundations of mathematics or how to provide foundations for abstract mathematics.Jean-Pierre Marquis - 2013 - Review of Symbolic Logic 6 (1):51-75.
    Fefermans argument is indeed convincing in a certain context, it can be dissolved entirely by modifying the context appropriately.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  6. Wittgenstein on Gödelian 'Incompleteness', Proofs and Mathematical Practice: Reading Remarks on the Foundations of Mathematics, Part I, Appendix III, Carefully.Wolfgang Kienzler & Sebastian Sunday Grève - 2016 - In Sebastian Sunday Grève & Jakub Mácha (eds.), Wittgenstein and the Creativity of Language. Palgrave Macmillan. pp. 76-116.
    We argue that Wittgenstein’s philosophical perspective on Gödel’s most famous theorem is even more radical than has commonly been assumed. Wittgenstein shows in detail that there is no way that the Gödelian construct of a string of signs could be assigned a useful function within (ordinary) mathematics. — The focus is on Appendix III to Part I of Remarks on the Foundations of Mathematics. The present reading highlights the exceptional importance of this particular set of remarks and, more specifically, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  7. Logical Foundations of Local Gauge Symmetry and Symmetry Breaking.Yingrui Yang - 2022 - Journal of Human Cognition 6 (1):18-23.
    The present paper intends to report two results. It is shown that the formula P(x)=∀y∀z[¬G(x, y)→¬M(z)] provides the logic underlying gauge symmetry, where M denotes the predicate of being massive. For the logic of spontaneous symmetry breaking, by Higgs mechanism, we have P(x)=∀y∀z[G(x, y)→M(z)]. Notice that the above two formulas are not logically equivalent. The results are obtained by integrating four components, namely, gauge symmetry and Higgs mechanism in quantum field theory, and Gödel's incompleteness theorem and Tarski's indefinability theorem in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Logic. of Descriptions. A New Approach to the Foundations of Mathematics and Science.Joanna Golińska-Pilarek & Taneli Huuskonen - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40):63-94.
    We study a new formal logic LD introduced by Prof. Grzegorczyk. The logic is based on so-called descriptive equivalence, corresponding to the idea of shared meaning rather than shared truth value. We construct a semantics for LD based on a new type of algebras and prove its soundness and completeness. We further show several examples of classical laws that hold for LD as well as laws that fail. Finally, we list a number of open problems. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  9. Hilbert's different aims for the foundations of mathematics.Besim Karakadılar - manuscript
    The foundational ideas of David Hilbert have been generally misunderstood. In this dissertation prospectus, different aims of Hilbert are summarized and a new interpretation of Hilbert's work in the foundations of mathematics is roughly sketched out. Hilbert's view of the axiomatic method, his response to criticisms of set theory and intuitionist criticisms of the classical foundations of mathematics, and his view of the role of logical inference in mathematical reasoning are briefly outlined.
    Download  
     
    Export citation  
     
    Bookmark  
  10. Computability. Computable functions, logic, and the foundations of mathematics. [REVIEW]R. Zach - 2002 - History and Philosophy of Logic 23 (1):67-69.
    Epstein and Carnielli's fine textbook on logic and computability is now in its second edition. The readers of this journal might be particularly interested in the timeline `Computability and Undecidability' added in this edition, and the included wall-poster of the same title. The text itself, however, has some aspects which are worth commenting on.
    Download  
     
    Export citation  
     
    Bookmark  
  11. Sofia A. Yanovskaya: The Marxist Pioneer of Mathematical Logic in the Soviet Union.Dimitris Kilakos - 2019 - Transversal: International Journal for the Historiography of Science 6:49-64.
    K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern mathematics and their (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. (1 other version)Foundations of Intensional Logic.David Kaplan - 1964 - Dissertation, Ucla
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  13. The Axiom of choice in Quine's New Foundations for Mathematical Logic.Ernst P. Specker - 1954 - Journal of Symbolic Logic 19 (2):127-128.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  14. A NEW PHILOSOPHICAL FOUNDATION OF CONSTRUCTIVE MATHEMATICS.Antonino Drago - manuscript
    The current definition of Constructive mathematics as “mathematics within intuitionist logic” ignores two fundamental issues. First, the kind of organization of the theory at issue. I show that intuitionist logic governs a problem-based organization, whose model is alternative to that of the deductive-axiomatic organization, governed by classical logic. Moreover, this dichotomy is independent of that of the kind of infinity, either potential or actual, to which respectively correspond constructive mathematical and classical mathematical tools. According to this view a mathematical theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Proposition The foundation of logic.Mudasir Ahmad Tantray - 2016 - International Journal of Social Sciences and Humanities Invention 3 (2):1841-1846.
    Proposition are the material of our reasoning. Proposition are the basic building blocks of the world/thought. Proposition have intense relation with the world. World is a series of atomic facts and these facts are valued by the proposition although sentences explain the world of reality but can’t have any truth values, only proposition have truth values to describe the world in terms of assertions. Propositions are truth value bearers, the only quality of proposition is truth & falsity, that they are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. The modal logic of the countable random frame.Valentin Goranko & Bruce Kapron - 2003 - Archive for Mathematical Logic 42 (3):221-243.
    We study the modal logic M L r of the countable random frame, which is contained in and `approximates' the modal logic of almost sure frame validity, i.e. the logic of those modal principles which are valid with asymptotic probability 1 in a randomly chosen finite frame. We give a sound and complete axiomatization of M L r and show that it is not finitely axiomatizable. Then we describe the finite frames of that logic and show that it has the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature.Michael Epperson & Elias Zafiris - 2013 - Lanham: Lexington Books. Edited by Elias Zafiris.
    Foundations of Relational Realism presents an intuitive interpretation of quantum mechanics, based on a revised decoherent histories interpretation, structured within a category theoretic topological formalism. -/- If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably exceed the limits of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  20. Foundations of Metaphysical Cosmology : Type System and Computational Experimentation.Elliott Bonal - manuscript
    The ambition of this paper is extensive: to bring about a new paradigm and firm mathematical foundations to Metaphysics, to aid its progress from the realm of mystical speculation to the realm of scientific scrutiny. -/- More precisely, this paper aims to introduce the field of Metaphysical Cosmology. The Metaphysical Cosmos here refers to the complete structure containing all entities, both existent and non-existent, with the physical universe as a subset. Through this paradigm, future endeavours in Metaphysical Science could (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. LF: a Foundational Higher-Order Logic.Zachary Goodsell & Juhani Yli-Vakkuri - manuscript
    This paper presents a new system of logic, LF, that is intended to be used as the foundation of the formalization of science. That is, deductive validity according to LF is to be used as the criterion for assessing what follows from the verdicts, hypotheses, or conjectures of any science. In work currently in progress, we argue for the unique suitability of LF for the formalization of logic, mathematics, syntax, and semantics. The present document specifies the language and rules of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Anti-Realism and Anti-Revisionism in Wittgenstein’s Philosophy of Mathematics.Anderson Nakano - 2020 - Grazer Philosophische Studien 97 (3):451-474.
    Since the publication of the Remarks on the Foundations of Mathematics, Wittgenstein’s interpreters have endeavored to reconcile his general constructivist/anti-realist attitude towards mathematics with his confessed anti-revisionary philosophy. In this article, the author revisits the issue and presents a solution. The basic idea consists in exploring the fact that the so-called “non-constructive results” could be interpreted so that they do not appear non-constructive at all. The author substantiates this solution by showing how the translation of mathematical results, given by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Frege on the Foundation of Geometry in Intuition.Jeremy Shipley - 2015 - Journal for the History of Analytical Philosophy 3 (6).
    I investigate the role of geometric intuition in Frege’s early mathematical works and the significance of his view of the role of intuition in geometry to properly understanding the aims of his logicist project. I critically evaluate the interpretations of Mark Wilson, Jamie Tappenden, and Michael Dummett. The final analysis that I provide clarifies the relationship of Frege’s restricted logicist project to dominant trends in German mathematical research, in particular to Weierstrassian arithmetization and to the Riemannian conceptual/geometrical tradition at Göttingen. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  26. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. The Mereological Foundation of Megethology.Massimiliano Carrara & Enrico Martino - 2016 - Journal of Philosophical Logic 45 (2):227-235.
    In Mathematics is megethology. Philosophia Mathematica, 1, 3–23) David K. Lewis proposes a structuralist reconstruction of classical set theory based on mereology. In order to formulate suitable hypotheses about the size of the universe of individuals without the help of set-theoretical notions, he uses the device of Boolos’ plural quantification for treating second order logic without commitment to set-theoretical entities. In this paper we show how, assuming the existence of a pairing function on atoms, as the unique assumption non expressed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Poincaré on the Foundation of Geometry in the Understanding.Jeremy Shipley - 2017 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta. New York: Birkhäuser. pp. 19-37.
    This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, Poincaré, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view that geometry is the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. The Importance of Developing a Foundation for Naive Category Theory.Marcoen J. T. F. Cabbolet - 2015 - Thought: A Journal of Philosophy 4 (4):237-242.
    Recently Feferman has outlined a program for the development of a foundation for naive category theory. While Ernst has shown that the resulting axiomatic system is still inconsistent, the purpose of this note is to show that nevertheless some foundation has to be developed before naive category theory can replace axiomatic set theory as a foundational theory for mathematics. It is argued that in naive category theory currently a ‘cookbook recipe’ is used for constructing categories, and it is explicitly shown (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and of Everett’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. From the History of Physics to the Discovery of the Foundations of Physics,.Antonino Drago - manuscript
    FROM THE HISTORY OF PHYSICS TO THE DISCOVERY OF THE FOUNDATIONS OF PHYSICS By Antonino Drago, formerly at Naples University “Federico II”, Italy – drago@unina,.it (Size : 391.800 bytes 75,400 words) The book summarizes a half a century author’s work on the foundations of physics. For the forst time is established a level of discourse on theoretical physics which at the same time is philosophical in nature (kinds of infinity, kinds of organization) and formal (kinds of mathematics, kinds (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Laws of Thought and Laws of Logic after Kant.Lydia Patton - 2018 - In Sandra Lapointe (ed.), Logic from Kant to Russell. New York: Routledge. pp. 123-137.
    George Boole emerged from the British tradition of the “New Analytic”, known for the view that the laws of logic are laws of thought. Logicians in the New Analytic tradition were influenced by the work of Immanuel Kant, and by the German logicians Wilhelm Traugott Krug and Wilhelm Esser, among others. In his 1854 work An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Boole argues that the laws of thought acquire (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  38. Normativity and Mathematics: A Wittgensteinian Approach to the Study of Number.J. Robert Loftis - 1999 - Dissertation, Northwestern University
    I argue for the Wittgensteinian thesis that mathematical statements are expressions of norms, rather than descriptions of the world. An expression of a norm is a statement like a promise or a New Year's resolution, which says that someone is committed or entitled to a certain line of action. A expression of a norm is not a mere description of a regularity of human behavior, nor is it merely a descriptive statement which happens to entail a norms. The view can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. The Bounds of Logic: A Generalized Viewpoint.Gila Sher - 1991 - MIT Press.
    The Bounds of Logic presents a new philosophical theory of the scope and nature of logic based on critical analysis of the principles underlying modern Tarskian logic and inspired by mathematical and linguistic development. Extracting central philosophical ideas from Tarski’s early work in semantics, Sher questions whether these are fully realized by the standard first-order system. The answer lays the foundation for a new, broader conception of logic. By generally characterizing logical terms, Sher establishes a fundamental result in semantics. Her (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  40. (9 other versions)Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science.Plamen L. Simeonov, Edwin Brezina, Ron Cottam, Andreé C. Ehresmann, Arran Gare, Ted Goranson, Jaime Gomez-­‐Ramirez, Brian D. Josephson, Bruno Marchal, Koichiro Matsuno, Robert S. Root-­Bernstein, Otto E. Rössler, Stanley N. Salthe, Marcin Schroeder, Bill Seaman & Pridi Siregar - 2012 - In Plamen L. Simeonov, Leslie S. Smith & Andrée C. Ehresmann (eds.), Integral Biomathics: Tracing the Road to Reality. Springer. pp. 328-427.
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. After Non-Euclidean Geometry: Intuition, Truth and the Autonomy of Mathematics.Janet Folina - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The mathematical developments of the 19th century seemed to undermine Kant’s philosophy. Non-Euclidean geometries challenged Kant’s view that there is a spatial intuition rich enough to yield the truth of Euclidean geometry. Similarly, advancements in algebra challenged the view that temporal intuition provides a foundation for both it and arithmetic. Mathematics seemed increasingly detached from experience as well as its form; moreover, with advances in symbolic logic, mathematical inference also seemed independent of intuition. This paper considers various philosophical responses to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle: Articles and Reviews 2006-2016.Michael Starks - 2016 - Michael Starks.
    This collection of articles was written over the last 10 years and the most important and longest within the last year. Also I have edited them to bring them up to date (2016). The copyright page has the date of this first edition and new editions will be noted there as I edit old articles or add new ones. All the articles are about human behavior (as are all articles by anyone about anything), and so about the limitations of having (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Review of: Garciadiego, A., "Emergence of...paradoxes...set theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. A Logico-Linguistic Inquiry into the Foundations of Physics: Part 1.Abhishek Majhi - 2022 - Axiomathes (NA):153-198.
    Physical dimensions like “mass”, “length”, “charge”, represented by the symbols [M], [L], [Q], are not numbers, but used as numbers to perform dimensional analysis in particular, and to write the equations of physics in general, by the physicist. The law of excluded middle falls short of explaining the contradictory meanings of the same symbols. The statements like “m tends to 0”, “r tends to 0”, “q tends to 0”, used by the physicist, are inconsistent on dimensional grounds because “m”, “r”, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Many-valued logics. A mathematical and computational introduction.Luis M. Augusto - 2020 - London: College Publications.
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Buying Logical Principles with Ontological Coin: The Metaphysical Lessons of Adding epsilon to Intuitionistic Logic.David DeVidi & Corey Mulvihill - 2017 - IfCoLog Journal of Logics and Their Applications 4 (2):287-312.
    We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, where one can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Universal Logic in terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space can be interpreted. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Review of S. Duffy, Virtual Mathematics: the Logic of Difference (Clinamen, 2006). [REVIEW]Colin McLarty - 2008 - Australasian Journal of Philosophy 86 (2):332-336.
    This book is important for philosophy of mathematics and for the study of French philosophy. French philosophers are more concerned than most Anglo-American with mathematical practice outside of foundations. This contradicts the fashionable claim that French intellectuals get science all wrong and we return below to a germane example from Sokal and Bricmont [1999]. The emphasis on practice goes back to mid-20th century French historians of science including those Kuhn cites as sources for his orientation in philosophy of science (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. A Phenomenology of Race in Frege's Logic.Joshua M. Hall - forthcoming - Humanities Bulletin.
    This article derives from a project attempting to show that Western formal logic, from Aristotle onward, has both been partially constituted by, and partially constitutive of, what has become known as racism. In the present article, I will first discuss, in light of Frege’s honorary role as founder of the philosophy of mathematics, Reuben Hersh’s What is Mathematics, Really? Second, I will explore how the infamous section of Frege’s 1924 diary (specifically the entries from March 10 to April 9) supports (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Computational reverse mathematics and foundational analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 952