Results for 'mathematical-philosophical invariant'

950 found
Order:
  1. The Idea of Continuity as Mathematical-Philosophical Invariant.Eldar Amirov - 2019 - Metafizika 2 (4):87-100.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Invariance as a basis for necessity and laws.Gila Sher - 2021 - Philosophical Studies 178 (12):3945-3974.
    Many philosophers are baffled by necessity. Humeans, in particular, are deeply disturbed by the idea of necessary laws of nature. In this paper I offer a systematic yet down to earth explanation of necessity and laws in terms of invariance. The type of invariance I employ for this purpose generalizes an invariance used in meta-logic. The main idea is that properties and relations in general have certain degrees of invariance, and some properties/relations have a stronger degree of invariance than others. (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  3. (1 other version)Invariance and Logicality in Perspective.Gila Sher - 2021 - In Gil Sagi & Jack Woods (eds.), The Semantic Conception of Logic : Essays on Consequence, Invariance, and Meaning. New York, NY: Cambridge University Press. pp. 13-34.
    Although the invariance criterion of logicality first emerged as a criterion of a purely mathematical interest, it has developed into a criterion of considerable linguistic and philosophical interest. In this paper I compare two different perspectives on this criterion. The first is the perspective of natural language. Here, the invariance criterion is measured by its success in capturing our linguistic intuitions about logicality and explaining our logical behavior in natural-linguistic settings. The second perspective is more theoretical. Here, the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. The Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: The physical, Mathematical and Philosophical Interpretations.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (3):1-22.
    A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture can be generalized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is not Turing machine (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Two deductions: (1) from the totality to quantum information conservation; (2) from the latter to dark matter and dark energy.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (28):1-47.
    The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Both Classical & Quantum Information; Both Bit & Qubit: Both Physical & Transcendental Time.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (22):1-24.
    Information can be considered as the most fundamental, philosophical, physical and mathematical concept originating from the totality by means of physical and mathematical transcendentalism (the counterpart of philosophical transcendentalism). Classical and quantum information, particularly by their units, bit and qubit, correspond and unify the finite and infinite. As classical information is relevant to finite series and sets, as quantum information, to infinite ones. A fundamental joint relativity of the finite and infinite, of the external and internal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  9. The Formalist Picture of Cognition. Towards a Total Demystification.Karlis Podnieks - manuscript
    This paper represents a philosophical experiment inspired by the formalist philosophy of mathematics. In the formalist picture of cognition, the principal act of knowledge generation is represented as tentative postulation – as introduction of a new knowledge construct followed by exploration of the consequences that can be derived from it. Depending on the result, the new construct may be accepted as normative, rejected, modified etc. Languages and means of reasoning are generated and selected in a similar process. In the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Category theory and the foundations of mathematics: Philosophical excavations.Jean-Pierre Marquis - 1995 - Synthese 103 (3):421 - 447.
    The aim of this paper is to clarify the role of category theory in the foundations of mathematics. There is a good deal of confusion surrounding this issue. A standard philosophical strategy in the face of a situation of this kind is to draw various distinctions and in this way show that the confusion rests on divergent conceptions of what the foundations of mathematics ought to be. This is the strategy adopted in the present paper. It is divided into (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  11. “The Diagram is More Important Than is Ordinarily Believed”: A Picture of Lonergan’s Cognitional Structure.Ryan Miller - 2021 - The Lonergan Review 12:51-78.
    In his article “Insight: Genesis and Ongoing Context,” Fred Crowe calls out Lonergan’s line “the diagram is more important than…is ordinarily believed” as the “philosophical understatement of the century.” Sixteen pages later he identifies elaborating an invariant cognitional theory to underlie generalized emergent probability and thus “the immanent order of the universe of proportionate being,” as “our challenge,” “but given the difficulty” he does not “see any prospect for an immediate answer.” Could this have something to do with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. The time asymmetry of quantum mechanics and concepts of physical directionality of time Part 1.Andrew Thomas Holster - manuscript
    This is Part 1 of a four part paper, intended to redress some of the most fundamental confusions in the subject of physical time directionality, and represent the concepts accurately. There are widespread fallacies in the subject that need to be corrected in introductory courses for physics students and philosophers. We start in Part 1 by analysing the time reversal symmetry of quantum probability laws. Time reversal symmetry is defined as the property of invariance under the time reversal transformation, T: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Group Knowledge and Mathematical Collaboration: A Philosophical Examination of the Classification of Finite Simple Groups.Joshua Habgood-Coote & Fenner Stanley Tanswell - 2023 - Episteme 20 (2):281-307.
    In this paper we apply social epistemology to mathematical proofs and their role in mathematical knowledge. The most famous modern collaborative mathematical proof effort is the Classification of Finite Simple Groups. The history and sociology of this proof have been well-documented by Alma Steingart (2012), who highlights a number of surprising and unusual features of this collaborative endeavour that set it apart from smaller-scale pieces of mathematics. These features raise a number of interesting philosophical issues, but (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  14. Symmetry, Invariance, and Imprecise Probability.Zachary Goodsell & Jacob M. Nebel - forthcoming - Mind.
    It is tempting to think that a process of choosing a point at random from the surface of a sphere can be probabilistically symmetric, in the sense that any two regions of the sphere which differ by a rotation are equally likely to include the chosen point. Isaacs, Hájek, and Hawthorne (2022) argue from such symmetry principles and the mathematical paradoxes of measure to the existence of imprecise chances and the rationality of imprecise credences. Williamson (2007) has argued from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Philosophical Inquiry of Mathematics: The Concept of “The Blue Print” and the Relationship Between Mathematics and Goodness.Hajime Takata Hajime - manuscript
    I introduce the concept of “The Blue Print” as the ultimate reality and declare its existence. “The Blue Print” means God’s blueprint. Once we accept the existence of “The Blue Print”, the world will be truly recognized as mathematics. From this perspective, this essay also discusses the relationship between life and mathematics, or more broadly, the relationship between ethics or goodness and mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  16. Invariance or equivalence: a tale of two principles.Caspar Jacobs - 2021 - Synthese 199 (3-4):9337-9357.
    The presence of symmetries in physical theories implies a pernicious form of underdetermination. In order to avoid this theoretical vice, philosophers often espouse a principle called Leibniz Equivalence, which states that symmetry-related models represent the same state of affairs. Moreover, philosophers have claimed that the existence of non-trivial symmetries motivates us to accept the Invariance Principle, which states that quantities that vary under a theory’s symmetries aren’t physically real. Leibniz Equivalence and the Invariance Principle are often seen as part of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  17. Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. The philosophical implications of the loophole-free violation of Bell’s inequality: Quantum entanglement, timelessness, triple-aspect monism, mathematical Platonism and scientific morality.Gilbert B. Côté - manuscript
    The demonstration of a loophole-free violation of Bell's inequality by Hensen et al. (2015) leads to the inescapable conclusion that timelessness and abstractness exist alongside space-time. This finding is in full agreement with the triple-aspect monism of reality, with mathematical Platonism, free will and the eventual emergence of a scientific morality.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Invariance and ontology in relativistic physics.Hans Halvorson - manuscript
    Some philosophers say that in special relativity, four-dimensional stuff is invariant in some sense that three-dimensional stuff is not. I show that this claim is false.
    Download  
     
    Export citation  
     
    Bookmark  
  20. Circularities In The Contemporary Philosophical Accounts Of The Applicability Of Mathematics In The Physical Universe.Catalin Barboianu - 2015 - Revista de Filosofie 61 (5):517-542.
    Contemporary philosophical accounts of the applicability of mathematics in physical sciences and the empirical world are based on formalized relations between the mathematical structures and the physical systems they are supposed to represent within the models. Such relations were constructed both to ensure an adequate representation and to allow a justification of the validity of the mathematical models as means of scientific inference. This article puts in evidence the various circularities (logical, epistemic, and of definition) that are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Invariance, intrinsicality and perspicuity.Caspar Jacobs - 2022 - Synthese 200 (2):1-17.
    It is now standard to interpret symmetry-related models of physical theories as representing the same state of affairs. Recently, a debate has sprung up around the question when this interpretational move is warranted. In particular, Møller-Nielsen :1253–1264, 2017) has argued that one is only allowed to interpret symmetry-related models as physically equivalent when one has a characterisation of their common content. I disambiguate two versions of this claim. On the first, a perspicuous interpretation is required: an account of the models’ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  22. (1 other version)Invariance and Necessity.Gila Sher - 2018 - In Gabriele Mras, Paul Weingartner & Bernhard Ritter (eds.), Philosophy of Logic and Mathematics: Proceedings of the 41st International Ludwig Wittgenstein Symposium. Berlin, Boston: De Gruyter. pp. 55-70.
    Properties and relations in general have a certain degree of invariance, and some types of properties/relations have a stronger degree of invariance than others. In this paper I will show how the degrees of invariance of different types of properties are associated with, and explain, the modal force of the laws governing them. This explains differences in the modal force of laws/principles of different disciplines, starting with logic and mathematics and proceeding to physics and biology.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Symmetry, Invariance and Ontology in Physics and Statistics.Julio Michael Stern - 2011 - Symmetry 3 (3):611-635.
    This paper has three main objectives: (a) Discuss the formal analogy between some important symmetry-invariance arguments used in physics, probability and statistics. Specifically, we will focus on Noether’s theorem in physics, the maximum entropy principle in probability theory, and de Finetti-type theorems in Bayesian statistics; (b) Discuss the epistemological and ontological implications of these theorems, as they are interpreted in physics and statistics. Specifically, we will focus on the positivist (in physics) or subjective (in statistics) interpretations vs. objective interpretations that (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  24. Physical systems, mathematical representation, and philosophical principles: the EPR paper and its influence.Guy Hetzroni - 2020 - Iyyun 68:428--439.
    The paper portrays the influence of major philosophical ideas on the 1935 debates on quantum theory that reached their climax in the paper by Einstein, Podosky and Rosen, and describes the relevance of these ideas to the vast impact of the paper. I claim that the focus on realism in many common descriptions of the debate misses important aspects both of Einstein's and Bohr's thinking. I suggest an alternative understanding of Einstein's criticism of quantum mechanics as a manifestation of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. A NEW PHILOSOPHICAL FOUNDATION OF CONSTRUCTIVE MATHEMATICS.Antonino Drago - manuscript
    The current definition of Constructive mathematics as “mathematics within intuitionist logic” ignores two fundamental issues. First, the kind of organization of the theory at issue. I show that intuitionist logic governs a problem-based organization, whose model is alternative to that of the deductive-axiomatic organization, governed by classical logic. Moreover, this dichotomy is independent of that of the kind of infinity, either potential or actual, to which respectively correspond constructive mathematical and classical mathematical tools. According to this view a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Covariance/invariance: A Cognitive Heuristic in Einstein's Relativity Theory Formation.Andrea Cerroni - 2000 - Foundations of Science 5 (2):209-224.
    Relativity Theory by Albert Einstein has been so far littleconsidered by cognitive scientists, notwithstanding its undisputedscientific and philosophical moment. Unfortunately, we don't have adiary or notebook as cognitively useful as Faraday's. But physicshistorians and philosophers have done a great job that is relevant bothfor the study of the scientist's reasoning and the philosophy ofscience. I will try here to highlight the fertility of a `triangulation'using cognitive psychology, history of science and philosophy of sciencein starting answering a clearly very complex (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  29. Mathematical Monsters.Andrew Aberdein - 2019 - In Diego Compagna & Stefanie Steinhart (eds.), Monsters, Monstrosities, and the Monstrous in Culture and Society. Vernon Press. pp. 391-412.
    Monsters lurk within mathematical as well as literary haunts. I propose to trace some pathways between these two monstrous habitats. I start from Jeffrey Jerome Cohen’s influential account of monster culture and explore how well mathematical monsters fit each of his seven theses. The mathematical monsters I discuss are drawn primarily from three distinct but overlapping domains. Firstly, late nineteenth-century mathematicians made numerous unsettling discoveries that threatened their understanding of their own discipline and challenged their intuitions. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  31. Supreme Mathematics: The Five Percenter Model of Divine Self-Realization and Its Commonalities to Interpretations of the Pythagorean Tetractys in Western Esotericism.Martin A. M. Gansinger - 2023 - Interdisciplinary Journal for Religion and Transformation in Contemporary Society 1 (1):1-22.
    This contribution aims to explore the historical predecessors of the Five Percenter model of self-realization, as popularized by Hip Hop artists such as Supreme Team, Rakim Allah, Brand Nubian, Wu-Tang Clan, or Sunz of Man. As compared to frequent considerations of the phenomenon as a creative mythological background for a socio-political struggle, Five Percenter teachings shall be discussed as contemporary interpretations of historical models of self-realization in various philosophical, religious, and esoteric systems. By putting the coded system of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Mathematics, core of the past and hope of the future.James Franklin - 2018 - In Catherine A. Runcie & David Brooks (eds.), Reclaiming Education: Renewing Schools and Universities in Contemporary Western Society. Edwin H. Lowe Publishing. pp. 149-162.
    Mathematics has always been a core part of western education, from the medieval quadrivium to the large amount of arithmetic and algebra still compulsory in high schools. It is an essential part. Its commitment to exactitude and to rigid demonstration balances humanist subjects devoted to appreciation and rhetoric as well as giving the lie to postmodernist insinuations that all “truths” are subject to political negotiation. In recent decades, the character of mathematics has changed – or rather broadened: it has become (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. (1 other version)The Necessity of Mathematics.Juhani Yli‐Vakkuri & John Hawthorne - 2018 - Noûs 52 (3):549-577.
    Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  34. Can we have mathematical understanding of physical phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Mathematical necessity and reality.James Franklin - 1989 - Australasian Journal of Philosophy 67 (3):286 – 294.
    Einstein, like most philosophers, thought that there cannot be mathematical truths which are both necessary and about reality. The article argues against this, starting with prima facie examples such as "It is impossible to tile my bathroom floor with regular pentagonal tiles." Replies are given to objections based on the supposedly purely logical or hypothetical nature of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  36. Deep Disagreement in Mathematics.Andrew Aberdein - 2023 - Global Philosophy 33 (1):1-27.
    Disagreements that resist rational resolution, often termed “deep disagreements”, have been the focus of much work in epistemology and informal logic. In this paper, I argue that they also deserve the attention of philosophers of mathematics. I link the question of whether there can be deep disagreements in mathematics to a more familiar debate over whether there can be revolutions in mathematics. I propose an affirmative answer to both questions, using the controversy over Shinichi Mochizuki’s work on the abc conjecture (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  37. Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Naturalising Mathematics? A Wittgensteinian Perspective.Jan Stam, Martin Stokhof & Michiel Van Lambalgen - 2022 - Philosophies 7 (4):85.
    There is a noticeable gap between results of cognitive neuroscientific research into basic mathematical abilities and philosophical and empirical investigations of mathematics as a distinct intellectual activity. The paper explores the relevance of a Wittgensteinian framework for dealing with this discrepancy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. A Model-Invariant Theory of Causation.J. Dmitri Gallow - 2021 - Philosophical Review 130 (1):45-96.
    I provide a theory of causation within the causal modeling framework. In contrast to most of its predecessors, this theory is model-invariant in the following sense: if the theory says that C caused (didn't cause) E in a causal model, M, then it will continue to say that C caused (didn't cause) E once we've removed an inessential variable from M. I suggest that, if this theory is true, then we should understand a cause as something which transmits deviant (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  40. Review of: Hodesdon, K. “Mathematica representation: playing a role”. Philosophical Studies (2014) 168:769–782. Mathematical Reviews. MR 3176431.John Corcoran - 2015 - MATHEMATICAL REVIEWS 2015:3176431.
    This 4-page review-essay—which is entirely reportorial and philosophically neutral as are my other contributions to MATHEMATICAL REVIEWS—starts with a short introduction to the philosophy known as mathematical structuralism. The history of structuralism traces back to George Boole (1815–1864). By reference to a recent article various feature of structuralism are discussed with special attention to ambiguity and other terminological issues. The review-essay includes a description of the recent article. The article’s 4-sentence summary is quoted in full and then analyzed. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Existence Is Not Relativistically Invariant—Part 1: Meta-ontology.Florian Marion - 2024 - Acta Analytica 39 (3):479-503.
    Metaphysicians who are aware of modern physics usually follow Putnam (1967) in arguing that Special Theory of Relativity is incompatible with the view that what exists is only what exists now or presently. Partisans of presentism (the motto ‘only present things exist’) had very difficult times since, and no presentist theory of time seems to have been able to satisfactorily counter the objection raised from Special Relativity. One of the strategies offered to the presentist consists in relativizing existence to inertial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Virtual Mathematics: the logic of difference.Simon Duffy (ed.) - 2006 - Clinamen.
    Of all twentieth century philosophers, it is Gilles Deleuze whose work agitates most forcefully for a worldview privileging becoming over being, difference over sameness; the world as a complex, open set of multiplicities. Nevertheless, Deleuze remains singular in enlisting mathematical resources to underpin and inform such a position, refusing the hackneyed opposition between ‘static’ mathematical logic versus ‘dynamic’ physical world. This is an international collection of work commissioned from foremost philosophers, mathematicians and philosophers of science, to address the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  45. (2 other versions)The Solution of the Invariant Subspace Problem. Part I. Complex Hilbert space.Jaykov Foukzon - 2022 - Journal of Advances in Mathematics and Computer Science 37 (10):51-89.
    The incompleteness of set theory ZFC leads one to look for natural extensions of ZFC in which one can prove statements independent of ZFC which appear to be "true". One approach has been to add large cardinal axioms. Or, one can investigate second-order expansions like Kelley-Morse class theory, KM or Tarski- Grothendieck set theory TG [1]-[3] It is a non-conservative extension of ZFC and is obtaineed from other axiomatic set theories by the inclusion of Tarski's axiom which implies the existence (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Mathematics and metaphysics: The history of the Polish philosophy of mathematics from the Romantic era.Paweł Jan Polak - 2021 - Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce) 71:45-74.
    The Polish philosophy of mathematics in the 19th century is not a well-researched topic. For this period, only five philosophers are usually mentioned, namely Jan Śniadecki, Józef Maria Hoene-Wroński, Henryk Struve, Samuel Dickstein, and Edward Stamm. This limited and incomplete perspective does not allow us to develop a well-balanced picture of the Polish philosophy of mathematics and gauge its influence on 19th- and 20th-century Polish philosophy in general. To somewhat complete our picture of the history of the Polish philosophy of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Mathematics and conceptual analysis.Antony Eagle - 2008 - Synthese 161 (1):67–88.
    Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  48. (1 other version)Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  49.  28
    Exploring Mathematics and Noumenal Realm through Kant and Hegel.Jae Jeong Lee - manuscript
    This paper discusses the philosophical basis of mathematics by examining the perspectives of Kant and Hegel. It explores how Kant’s concept of the synthetic a priori, grounded in the intuitions of space and time, serves as a foundation for understanding mathematics. The paper then integrates Hegelian dialectics to propose a broader conception of mathematics, suggesting that the relationship between space and time is dialectically embedded in reality. By introducing the idea of a hypothetical transcendental subject, the paper attempts to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50.  77
    (1 other version)Mathematics and society reunited: The social aspects of Brouwer's intuitionism.Kati Kish Bar-On - 2024 - Studies in History and Philosophy of Science 108:28-37.
    Brouwer's philosophy of mathematics is usually regarded as an intra-subjective, even solipsistic approach, an approach that also underlies his mathematical intuitionism, as he strived to create a mathematics that develops out of something inner and a-linguistic. Thus, points of connection between Brouwer's mathematical views and his views about and the social world seem improbable and are rarely mentioned in the literature. The current paper aims to challenge and change that. The paper employs a socially oriented prism to examine (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 950