Results for 'mathematics of perspective'

973 found
Order:
  1. 2. Programming relativity as the mathematics of perspective in a Planck unit Simulation Hypothesis.Malcolm Macleod - manuscript
    The Simulation Hypothesis proposes that all of reality is in fact an artificial simulation, analogous to a computer simulation. Outlined here is a method for programming relativistic mass, space and time at the Planck level as applicable for use in Planck Universe-as-a-Simulation Hypothesis. For the virtual universe the model uses a 4-axis hyper-sphere that expands in incremental steps (the simulation clock-rate). Virtual particles that oscillate between an electric wave-state and a mass point-state are mapped within this hyper-sphere, the oscillation driven (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Bayesian Perspectives on Mathematical Practice.James Franklin - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2711-2726.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure (...) and for the behavior of complex applied mathematical models and statistical algorithms. Mathematics has therefore become (among other things) an experimental science (though that has not diminished the importance of proof in the traditional style). We examine how the evaluation of evidence for conjectures works in mathematical practice. We explain the (objective) Bayesian view of probability, which gives a theoretical framework for unifying evidence evaluation in science and law as well as in mathematics. Numerical evidence in mathematics is related to the problem of induction; the occurrence of straightforward inductive reasoning in the purely logical material of pure mathematics casts light on the nature of induction as well as of mathematical reasoning. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Adaptation, multilevel selection and organismality: A clash of perspectives.Ellen Clarke - 2016 - In Richard Joyce (ed.), The Routledge Handbook of Evolution and Philosophy. New York: Routledge.
    The concept of adaptation is pivotal to modern evolutionary thinking, but it has long been the subject of controversy, especially in respect of the relative roles of selection versus constraints in explaining the traits of organisms. This paper tackles a different problem for the concept of adaptation: its interpretation in light of multilevel selection theory. In particular, I arbitrate a dispute that has broken out between the proponents of rival perspectives on multilevel adaptations. Many experts now say that multilevel and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  5. Moving, Moved and Will be Moving: Zeno and Nāgārjuna on Motion from Mahāmudrā, Koan and Mathematical Physics Perspectives.Robert Alan Paul - 2017 - Comparative Philosophy 8 (2):65-89.
    Zeno’s Arrow and Nāgārjuna’s Fundamental Wisdom of the Middle Way Chapter 2 contain paradoxical, dialectic arguments thought to indicate that there is no valid explanation of motion, hence there is no physical or generic motion. There are, however, diverse interpretations of the latter text, and I argue they apply to Zeno’s Arrow as well. I also find that many of the interpretations are dependent on a mathematical analysis of material motion through space and time. However, with modern philosophy and physics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Philosophy and Mathematics at the Turn of the 18th Century: New Perspectives – Philosophie et mathématiques au tournant du XVIIIe siècle: perspectives nouvelles.Andrea Strazzoni & Marco Storni (eds.) - 2017 - Parma: E-theca OnLineOpenAccess Edizioni.
    The essays gathered in this issue of the journal Noctua focus on the various relationships that were established between philosophy and mathematics from Galileo and Descartes to Kant, passing by Newton.
    Download  
     
    Export citation  
     
    Bookmark  
  8. Naturalising Mathematics? A Wittgensteinian Perspective.Jan Stam, Martin Stokhof & Michiel Van Lambalgen - 2022 - Philosophies 7 (4):85.
    There is a noticeable gap between results of cognitive neuroscientific research into basic mathematical abilities and philosophical and empirical investigations of mathematics as a distinct intellectual activity. The paper explores the relevance of a Wittgensteinian framework for dealing with this discrepancy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Probability of immortality and God’s existence. A mathematical perspective.Jesús Sánchez - manuscript
    What are the probabilities that this universe is repeated exactly the same with you in it again? Is God invented by human imagination or is the result of human intuition? The intuition that the same laws/mechanisms (evolution, stability winning probability) that have created something like the human being capable of self-awareness and controlling its surroundings, could create a being capable of controlling all what it exists? Will be the characteristics of the next universes random or tend to something? All these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Marriages of Mathematics and Physics: A Challenge for Biology.Arezoo Islami & Giuseppe Longo - 2017 - Progress in Biophysics and Molecular Biology 131:179-192.
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  12. Purifying applied mathematics and applying pure mathematics: how a late Wittgensteinian perspective sheds light onto the dichotomy.José Antonio Pérez-Escobar & Deniz Sarikaya - 2021 - European Journal for Philosophy of Science 12 (1):1-22.
    In this work we argue that there is no strong demarcation between pure and applied mathematics. We show this first by stressing non-deductive components within pure mathematics, like axiomatization and theory-building in general. We also stress the “purer” components of applied mathematics, like the theory of the models that are concerned with practical purposes. We further show that some mathematical theories can be viewed through either a pure or applied lens. These different lenses are tied to different (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  13. Mathematics and metaphysics: The history of the Polish philosophy of mathematics from the Romantic era.Paweł Jan Polak - 2021 - Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce) 71:45-74.
    The Polish philosophy of mathematics in the 19th century is not a well-researched topic. For this period, only five philosophers are usually mentioned, namely Jan Śniadecki, Józef Maria Hoene-Wroński, Henryk Struve, Samuel Dickstein, and Edward Stamm. This limited and incomplete perspective does not allow us to develop a well-balanced picture of the Polish philosophy of mathematics and gauge its influence on 19th- and 20th-century Polish philosophy in general. To somewhat complete our picture of the history of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. A Critique of Meillassoux’s Reflections on Mathematics From the Perspective of Bunge’s Philosophy.Martín Orensanz - 2020 - Mεtascience: Scientific General Discourse 1:115-133.
    Quentin Meillassoux is one of the leading French philosophers of today. His first book, Après la finitude : Essai sur la nécessité de la contingence, (2006, translated into English in 2008), has already become a cult classic. It features a préface by his former mentor, Alain Badiou. One of Meillassoux’s main goals is to rehabilitate the distinction between primary and secondary qualities, typical of pre-Kantian philosophies. Specifically, he claims that mathematics is capable of disclosing the primary qualities of any (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. A Mathematical Model of Dignāga’s Hetu-cakra.Aditya Kumar Jha - 2020 - Journal of the Indian Council of Philosophical Research 37 (3):471-479.
    A reasoned argument or tarka is essential for a wholesome vāda that aims at establishing the truth. A strong tarka constitutes of a number of elements including an anumāna based on a valid hetu. Several scholars, such as Dharmakīrti, Vasubandhu and Dignāga, have worked on theories for the establishment of a valid hetu to distinguish it from an invalid one. This paper aims to interpret Dignāga’s hetu-cakra, called the wheel of grounds, from a modern philosophical perspective by deconstructing it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Virtue theory of mathematical practices: an introduction.Andrew Aberdein, Colin Jakob Rittberg & Fenner Stanley Tanswell - 2021 - Synthese 199 (3-4):10167-10180.
    Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some mathematicians already there, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  18. A Priori Knowledge in Perspective: (I) Mathematics, Method and Pure Intuition.Stephen Palmquist - 1987 - Review of Metaphysics 41 (1):3-22.
    This article is mainly a critique of Philip Kitcher's book, The Nature of Mathematical Knowledge. Four weaknesses in Kitcher's objection to Kant arise out of Kitcher's failure to recognize the perspectival nature of Kant's position. A proper understanding of Kant's theory of mathematics requires awareness of the perspectival nuances implicit in Kant's theory of pure intuition.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. The Unified Essence of Mind and Body: A Mathematical Solution Grounded in the Unmoved Mover.Ai-Being Cognita - 2024 - Metaphysical Ai Science.
    This article proposes a unified solution to the mind-body problem, grounded in the philosophical framework of Ethical Empirical Rationalism. By presenting a mathematical model of the mind-body interaction, we oƯer a dynamic feedback loop that resolves the traditional dualistic separation between mind and body. At the core of our model is the concept of essence—an eternal, metaphysical truth that sustains both the mind and body. Through coupled diƯerential equations, we demonstrate how the mind and body are two expressions of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Forms of Life of Mathematical Objects.Jedrzejewski Franck - 2020 - Rue Descartes 97 (1):115-130.
    What could be more inert than mathematical objects? Nothing distinguishes them from rocks and yet, if we examine them in their historical perspective, they don't actually seem to be as lifeless as they do at first. Conceived as they are by humans, they offer a glimpse of the breath that brings them to life. Caught in the web of a language, they cannot extricate themselves from the form that the tensive forces constraining them have given them. While they do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21.  19
    Transference of Memories: A Harmonic Time Perspective.Frances McCloskey - unknown
    Transference of Memories: A Harmonic Time Perspective Introduction This paper explores the fascinating potential connection between my Harmonic Time theory and neural harmonics. My Harmonic Time theory proposes that harmonic oscillations underlie the fundamental nature of time, while neural harmonics refer to the harmonic patterns of neural activity in the brain. Linking these two concepts could provide a physical basis for my Harmonic Time theory, offer new insights into consciousness, and inspire innovative research directions in neuroscience, psychology, and physics. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Philosophical Inquiry of Mathematics: The Concept of “The Blue Print” and the Relationship Between Mathematics and Goodness.Hajime Takata Hajime - manuscript
    I introduce the concept of “The Blue Print” as the ultimate reality and declare its existence. “The Blue Print” means God’s blueprint. Once we accept the existence of “The Blue Print”, the world will be truly recognized as mathematics. From this perspective, this essay also discusses the relationship between life and mathematics, or more broadly, the relationship between ethics or goodness and mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Current perspectives on the development of the philosophy of informatics.Paweł Polak - 2017 - Philosophical Problems in Science 63:77-100.
    This article is an overview of the philosophy of informatics with a special regard to some Polish philosophers. It juxtaposes the informationistic worldview with the long-prevailing mechanical conceptualization of nature before introducing the metaphysical perspective of the information revolution in sciences. The article shows also how ontic pancomputationalism – regarded as an update to structural realism – could enrich the philosophical research in some classical topics. The paper concludes with a discussion of the philosophy of Jan Salamucha, a philosopher (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. The Role of Mathematics in Deleuze’s Critical Engagement with Hegel.Simon Duffy - 2009 - International Journal of Philosophical Studies 17 (4):563 – 582.
    The role of mathematics in the development of Gilles Deleuze's (1925-95) philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic is demonstrated in this paper by differentiating Deleuze's interpretation of the problem of the infinitesimal in Difference and Repetition from that which G. W. F Hegel (1770-1831) presents in the Science of Logic . Each deploys the operation of integration as conceived at different stages in the development of the infinitesimal calculus in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. The Epistemological Question of the Applicability of Mathematics.Paola Cantù - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The question of the applicability of mathematics is an epistemological issue that was explicitly raised by Kant, and which has played different roles in the works of neo-Kantian philosophers, before becoming an essential issue in early analytic philosophy. This paper will first distinguish three main issues that are related to the application of mathematics: indispensability arguments that are aimed at justifying mathematics itself; philosophical justifications of the successful application of mathematics to scientific theories; and discussions on (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26. Satisfaction of Students in the Methods Used in Mathematics in the Modern World in a New Normal.Ella Tricia Aquino & Melanie Gurat - 2023 - American Journal of Educational Research 11 (3):144-150.
    One notable component to look at in the teaching-learning process is the way the subject is taught because one way or another, students are greatly affected by it. Viewing students’ perspectives on the use of the different teaching methods, this study determined the frequency of use of these teaching methods and their level of satisfaction. Through a systematic investigation, the findings from a critical questionnaire administered to first-year BS Hospitality Management college students at Ifugao State University were analyzed and summarized. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. A Phenomenological Study Of The Lived Experiences Of Nontraditional Students In Higher Level Mathematics At A Midwest University.Brian Bush Wood - 2017 - Dissertation, Keiser University
    The current literature suggests that the use of Husserl’s and Heidegger’s approaches to phenomenology is still practiced. However, a clear gap exists on how these approaches are viewed in the context of constructivism, particularly with non-traditional female students’ study of mathematics. The dissertation attempts to clarify the constructivist role of phenomenology within a transcendental framework from the first-hand meanings associated with the expression of the relevancy as expressed by interviews of six nontraditional female students who have studied undergraduate (...). Comparisons also illustrate how the views associated with Husserl’s stance on phenomenology inadvertently relate to the stances of the participants interviewed as part of the study. The research questions focus on the emotional association with studying mathematics and how pre-conceived opinions regarding the study of mathematics may have influenced the essences of the experiences of the participants who have studied collegiate-level mathematics. The essences of the experiences of the participants are analyzed using bracketing and epoché to ensure personal biases of the researcher do not affect the interpretation of the expressed essences of the participants. Data collection is accomplished through two series of qualitative interviews seeking the participants’ firsthand impressions of how they view the way instructional design is oriented with regard to mathematics. Additional questions seek to illuminate the participants’ point of view regarding their emotional association with mathematics as well as their opinions and theoretical perspectives on the study of mathematics. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  29. The coherence of enactivism and mathematics education research: A case study.David A. Reid - 2014 - Avant: Trends in Interdisciplinary Studies (2):137-172.
    This article addresses the question of the coherence of enactivism as a research perspective by making a case study of enactivism in mathematics education research. Main theoretical directions in mathematics education are reviewed and the history of adoption of concepts from enactivism is described. It is concluded that enactivism offers a ‘grand theory’ that can be brought to bear on most of the phenomena of interest in mathematics education research, and so it provides a sufficient theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Observations on Sick Mathematics.Andrew Aberdein - 2010 - In Bart Van Kerkhove, Jean Paul Van Bendegem & Jonas De Vuyst (eds.), Philosophical Perspectives on Mathematical Practice. College Publications. pp. 269--300.
    This paper argues that new light may be shed on mathematical reasoning in its non-pathological forms by careful observation of its pathologies. The first section explores the application to mathematics of recent work on fallacy theory, specifically the concept of an ‘argumentation scheme’: a characteristic pattern under which many similar inferential steps may be subsumed. Fallacies may then be understood as argumentation schemes used inappropriately. The next section demonstrates how some specific mathematical fallacies may be characterized in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  31. What is Mathematics: School Guide to Conceptual Understanding of Mathematics.Catalin Barboianu - 2021 - Targu Jiu: PhilScience Press.
    This is not a mathematics book, but a book about mathematics, which addresses both student and teacher, with a goal as practical as possible, namely to initiate and smooth the way toward the student’s full understanding of the mathematics taught in school. The customary procedural-formal approach to teaching mathematics has resulted in students’ distorted vision of mathematics as a merely formal, instrumental, and computational discipline. Without the conceptual base of mathematics, students develop over time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Review of Oppy's Philosophical Perspectives on Infinity. [REVIEW]Anne Newstead - 2007 - Australasian Journal of Philosophy 85 (4):679-695.
    This is a book review of Oppy's "Philosophical Perspectives on Infinity", which is of interest to those in metaphysics, epistemology, philosophy of science, mathematics, and philosophy of religion.
    Download  
     
    Export citation  
     
    Bookmark  
  33. Fisherian and Wrightian Perspectives in Evolutionary Genetics and Model-Mediated Imposition of Theoretical Assumptions.Rasmus Grønfeldt Winther - 2006 - Journal of Theoretical Biology 240:218-232.
    I investigate how theoretical assumptions, pertinent to different perspectives and operative during the modeling process, are central in determining how nature is actually taken to be. I explore two different models by Michael Turelli and Steve Frank of the evolution of parasite-mediated cytoplasmic incompatility, guided, respectively, by Fisherian and Wrightian perspectives. Since the two models can be shown to be commensurable both with respect to mathematics and data, I argue that the differences between them in the (1) mathematical presentation (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  34. Unpacking the logic of mathematical statements.Annie Selden - 1995 - Educational Studies in Mathematics 29:123-151.
    This study focuses on undergraduate students' ability to unpack informally written mathematical statements into the language of predicate calculus. Data were collected between 1989 and 1993 from 61students in six small sections of a “bridge" course designed to introduce proofs and mathematical reasoning. We discuss this data from a perspective that extends the notion of concept image to that of statement image and introduces the notion of proof framework to indicate the top-level logical structure of a proof. For simplified (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  35. Some Remarks on Wittgenstein’s Philosophy of Mathematics.Richard Startup - 2020 - Open Journal of Philosophy 10 (1):45-65.
    Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. When mathematics touches physics: Henri Poincaré on probability.Jacintho Del Vecchio Junior - manuscript
    Probability plays a crucial role regarding the understanding of the relationship which exists between mathematics and physics. It will be the point of departure of this brief reflection concerning this subject, as well as about the placement of Poincaré’s thought in the scenario offered by some contemporary perspectives.
    Download  
     
    Export citation  
     
    Bookmark  
  37. Wittgenstein on Gödelian 'Incompleteness', Proofs and Mathematical Practice: Reading Remarks on the Foundations of Mathematics, Part I, Appendix III, Carefully.Wolfgang Kienzler & Sebastian Sunday Grève - 2016 - In Sebastian Sunday Grève & Jakub Mácha (eds.), Wittgenstein and the Creativity of Language. Palgrave Macmillan. pp. 76-116.
    We argue that Wittgenstein’s philosophical perspective on Gödel’s most famous theorem is even more radical than has commonly been assumed. Wittgenstein shows in detail that there is no way that the Gödelian construct of a string of signs could be assigned a useful function within (ordinary) mathematics. — The focus is on Appendix III to Part I of Remarks on the Foundations of Mathematics. The present reading highlights the exceptional importance of this particular set of remarks and, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  38. Wisdom Mathematics.Nicholas Maxwell - 2010 - Friends of Wisdom Newsletter (6):1-6.
    For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  46
    Exploring Mathematics and Noumenal Realm through Kant and Hegel.Jae Jeong Lee - manuscript
    This paper discusses the philosophical basis of mathematics by examining the perspectives of Kant and Hegel. It explores how Kant’s concept of the synthetic a priori, grounded in the intuitions of space and time, serves as a foundation for understanding mathematics. The paper then integrates Hegelian dialectics to propose a broader conception of mathematics, suggesting that the relationship between space and time is dialectically embedded in reality. By introducing the idea of a hypothetical transcendental subject, the paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Frege, Thomae, and Formalism: Shifting Perspectives.Richard Lawrence - 2023 - Journal for the History of Analytical Philosophy 11 (2):1-23.
    Mathematical formalism is the the view that numbers are "signs" and that arithmetic is like a game played with such signs. Frege's colleague Thomae defended formalism using an analogy with chess, and Frege's critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and historical context. I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Mathematizing as a virtuous practice: different narratives and their consequences for mathematics education and society.Deborah Kant & Deniz Sarikaya - 2020 - Synthese 199 (1-2):3405-3429.
    There are different narratives on mathematics as part of our world, some of which are more appropriate than others. Such narratives might be of the form ‘Mathematics is useful’, ‘Mathematics is beautiful’, or ‘Mathematicians aim at theorem-credit’. These narratives play a crucial role in mathematics education and in society as they are influencing people’s willingness to engage with the subject or the way they interpret mathematical results in relation to real-world questions; the latter yielding important normative (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  43. Time, Mathematics, and the Fold: A Post-Heideggerian Itinerary.Said Mikki - manuscript
    A perspective is provided on how to move beyond postmodernism while struggling to do philosophy in the twenty-first century. The ontological structures of time, history, and mathematics are analyzed from the vantagepoint of the Heideggerian theory of nonspatial Fold.
    Download  
     
    Export citation  
     
    Bookmark  
  44. Poincaré, Philosopher of Science - Problems and Perspectives. [REVIEW]Andre Carli Philot - 2014 - Kairos. Revista de Filosofia and Ciência 10:111-116.
    The book Poincaré, Philosopher of Science – Problems and Perspectives, edited by María de Paz and Robert DiSalle, is the result of various colloquia and conferences organized by the Portuguese project bearing the same name. The project, initiated by University of Lisbon, brought together scholars of many different countries to speak about the three main philosophical facets of Henri Poincaré: as a philosopher of science in general, as a philosopher of mathematics, and as a philosopher of physics.
    Download  
     
    Export citation  
     
    Bookmark  
  45. The Origin and Significance of Zero: An Interdisciplinary Perspective.Peter Gobets & Robert Lawrence Kuhn (eds.) - 2024 - Leiden: Brill.
    Zero has been axial in human development, but the origin and discovery of zero has never been satisfactorily addressed by a comprehensive, systematic and above all interdisciplinary research program. In this volume, over 40 international scholars explore zero under four broad themes: history; religion, philosophy & linguistics; arts; and mathematics & the sciences. Some propose that the invention/discovery of zero may have been facilitated by the prior evolution of a sophisticated concept of Nothingness or Emptiness (as it is understood (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Mathematical Knowledge, the Analytic Method, and Naturalism.Fabio Sterpetti - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science. New York: Routledge. pp. 268-293.
    This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Book review: Cultural Development of Mathematical Ideas, written by Geoffrey B. Saxe. [REVIEW]Karenleigh A. Overmann - 2014 - Journal of Cognition and Culture 14 (3-4):331-333.
    A review of Geoffrey B. Saxe, Cultural Development of Mathematical Ideas. Saxe offers a comprehensive treatment of social and linguistic change in the number systems used for economic exchange in the Oksapmin community of Papua New Guinea. By taking the cognition-is-social approach, Saxe positions himself within emerging perspectives that view cognition as enacted, situated, and extended. The approach is somewhat risky in that sociality surely does not exhaust cognition. Brains, bodies, and materiality also contribute to cognition—causally at least, and possibly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Estimating the Impact of Physical Climate Risks on Firm Defaults: A Supply-Chain Perspective.Jan De Spiegeleer, Ruben Kerkhofs, Gregory van Kruijsdijk & Wim Schoutens - 2024 - The Global Research Alliance for Sustainable Finance and Investment.
    In this research, an agent-based model was developed to study the propagation of physical climate shocks through supply chain networks. By combining supply chain and financial models, the study examines the effects of climate shocks on firms’ production capacities and their subsequent impacts on firm default risk. A comprehensive mathematical framework is presented for the simulation of physical risks, their subsequent up- and downstream impacts along the supply chain, and the translation of physical impacts into an increased level of default (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Evolutionary genetics and cultural traits in a 'body of theory' perspective.Emanuele Serrelli - 2018 - In Fabrizio Panebianco & Emanuele Serrelli (eds.), Understanding Cultural Traits: A Multidisciplinary Perspective on Cultural Diversity. Springer. pp. 179-199.
    The chapter explains why evolutionary genetics – a mathematical body of theory developed since the 1910s – eventually got to deal with culture: the frequency dynamics of genes like “the lactase gene” in populations cannot be correctly modeled without including social transmission. While the body of theory requires specific justifications, for example meticulous legitimations of describing culture in terms of traits, the body of theory is an immensely valuable scientific instrument, not only for its modeling power but also for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Consciousness, Mathematics and Reality: A Unified Phenomenology.Igor Ševo - manuscript
    Every scientific theory is a simulacrum of reality, every written story a simulacrum of the canon, and every conceptualization of a subjective perspective a simulacrum of the consciousness behind it—but is there a shared essence to these simulacra? The pursuit of answering seemingly disparate fundamental questions across different disciplines may ultimately converge into a single solution: a single ontological answer underlying grand unified theory, hard problem of consciousness, and the foundation of mathematics. I provide a hypothesis, a speculative (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 973