Results for 'mathematization of nature'

954 found
Order:
  1. Mathematics and the Laws of Nature.Peter Caws - 1959 - Bulletin of the Kansas Association of Teachers of Mathematics 34 (2):11-12.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Cassirer's Psychology of Relations: From the Psychology of Mathematics and Natural Science to the Psychology of Culture.Samantha Matherne - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    In spite of Ernst Cassirer’s criticisms of psychologism throughout Substance and Function, in the final chapter he issues a demand for a “psychology of relations” that can do justice to the subjective dimensions of mathematics and natural science. Although these remarks remain somewhat promissory, the fact that this is how Cassirer chooses to conclude Substance and Function recommends it as a topic worthy of serious consideration. In this paper, I argue that in order to work out the details of Cassirer’s (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3.  49
    How is a relational formal ontology relational? An introduction to the semiotic logic of agency in physics, mathematics and natural philosophy.Timothy M. Rogers - manuscript
    A speculative exploration of the distinction between a relational formal ontology and a classical formal ontology for modelling phenomena in nature that exhibit relationally-mediated wholism, such as phenomena from quantum physics and biosemiotics. Whereas a classical formal ontology is based on mathematical objects and classes, a relational formal ontology is based on mathematical signs and categories. A relational formal ontology involves nodal networks (systems of constrained iterative processes) that are dynamically sustained through signalling. The nodal networks are hierarchically ordered (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  16
    Mathematizing Bodies. Leibniz on the Application of Mathematics to Nature, and its Metaphysical Ground.Lucia Oliveri - 2023 - Studia Leibnitiana 55 (1-2):190-208.
    There are two axes of Leibniz’s philosophy about bodies that are deeply inter- twined, as this paper shows: the scientific investigation of bodies due to the application of mathematics to nature – Leibniz’s mixed mathematics – and the issue of matter/bodies ide- alism. This intertwinement raises an issue: How did Leibniz frame the relationship between mathematics, natural sciences, and metaphysics? Due to the increasing application of mathe- matics to natural sciences, especially physics, philosophers of the early modern period used (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Traditional Mathematics Is Not the Language of Nature: Multivalued Interaction Dynamics Makes the World Go Round.Andrei P. Kirilyuk -
    We show that critically accumulating "difficult" problems, contradictions and stagnation in modern science have the unified and well-specified mathematical origin in the explicit, artificial reduction of any interaction problem solution to an "exact", dynamically single-valued (or unitary) function, while in reality any unreduced interaction development leads to a dynamically multivalued solution describing many incompatible system configurations, or "realisations", that permanently replace one another in causally random order. We obtain thus the universal concept of dynamic complexity and chaos impossible in unitary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The principle of light and sound in mathematics and physics as the origin of nature and the universe.Jhon Jairo Mosquera Rodas - manuscript
    This article presents the proposal of the principle of sound and light from mathematics and physics, as the origin of nature and the universe, using the Cartesian plane, together with the triadic plane of potential manifestation and complex organisation, starting from the contributions of four pre-Socratic philosophers, Pythagoras of Ephesus, Parmenides of Elea, Heraclitus of Samos and Democritus of Abdera, thus identifying essential principles of the origin of these, to conclude with the most important demonstrations of this theory, which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Application of natural deduction in Renaissance geometry.Mirek Ryszard - 2014 - Argument: Biannual Philosophical Journal 4 (2):425-438.
    my goal here is to provide a detailed analysis of the methods of inference that are employed in De prospectiva pingendi. For this purpose, a method of natural deduction is proposed. the treatise by Piero della Francesca is a manifestation of a union between the ne arts and the mathematical sciences of arithmetic and geometry. He de nes painting as a part of perspective and, speaking precisely, as a branch of geometry, which is why we nd advanced geometrical exercises here.
    Download  
     
    Export citation  
     
    Bookmark  
  8. PARENTAL INVOLVEMENT IN LEARNING MATHEMATICS OF STUDENTS IN RELATION TO ATTITUDE AND ACADEMIC PERFORMANCE.Joel Lachica Iii - 2024 - Psychology and Education: A Multidisciplinary Journal 23 (3):351-368.
    This study investigated the parental involvement in learning Mathematics of students in relation to attitude and academic performance. The respondents of this study were the three-hundred fifty-six grade 9 students at 9 secondary schools in the Division of Bago City. Results showed that most of the respondents were female, belonged to income range Php 12,082 and below, their parents attained high school level, and had other works aside from being mentioned in the option of occupation. Level of parental involvement when (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. The Nature of the Structures of Applied Mathematics and the Metatheoretical Justification for the Mathematical Modeling.Catalin Barboianu - 2015 - Romanian Journal of Analytic Philosophy 9 (2):1-32.
    The classical (set-theoretic) concept of structure has become essential for every contemporary account of a scientific theory, but also for the metatheoretical accounts dealing with the adequacy of such theories and their methods. In the latter category of accounts, and in particular, the structural metamodels designed for the applicability of mathematics have struggled over the last decade to justify the use of mathematical models in sciences beyond their 'indispensability' in terms of either method or concepts/entities. In this paper, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. “In Nature as in Geometry”: Du Châtelet and the Post-Newtonian Debate on the Physical Significance of Mathematical Objects.Aaron Wells - 2023 - In Wolfgang Lefèvre (ed.), Between Leibniz, Newton, and Kant: Philosophy and Science in the Eighteenth Century. Springer. pp. 69-98.
    Du Châtelet holds that mathematical representations play an explanatory role in natural science. Moreover, she writes that things proceed in nature as they do in geometry. How should we square these assertions with Du Châtelet’s idealism about mathematical objects, on which they are ‘fictions’ dependent on acts of abstraction? The question is especially pressing because some of her important interlocutors (Wolff, Maupertuis, and Voltaire) denied that mathematics informs us about the properties of material things. After situating Du Châtelet in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Laws of nature and the reality of the wave function.Mauro Dorato - 2015 - Synthese 192 (10):3179-3201.
    In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without entering any discussion about nominalism, I (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  12. Descartes on Necessity and the Laws of Nature.Nathan Rockwood - 2022 - Journal of Analytic Theology 10:277-292.
    This paper is on Descartes’ account of modality and, in particular, his account of the necessity of the laws of nature. He famously argues that the necessity of the “eternal truths” of logic and mathematics depends on God’s will. Here I suggest he has the same view about the necessity of the laws of nature. Further, I argue, this is a plausible theory of laws. For philosophers often talk about something being nomologically or physically necessary because of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. The History and Prehistory of Natural-Language Semantics.Daniel W. Harris - 2017 - In Sandra Lapointe & Christopher Pincock (eds.), Innovations in the History of Analytical Philosophy. London, United Kingdom: Palgrave-Macmillan. pp. 149--194.
    Contemporary natural-language semantics began with the assumption that the meaning of a sentence could be modeled by a single truth condition, or by an entity with a truth-condition. But with the recent explosion of dynamic semantics and pragmatics and of work on non- truth-conditional dimensions of linguistic meaning, we are now in the midst of a shift away from a truth-condition-centric view and toward the idea that a sentence’s meaning must be spelled out in terms of its various roles in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  14. Applying Mathematics to Nature.Maarten Van Dyck - 2021 - In David Marshall Miller & Dana Jalobeanu (eds.), The Cambridge History of Philosophy of the Scientific Revolution. New York, NY: Cambridge University Press. pp. 254-273.
    Download  
     
    Export citation  
     
    Bookmark  
  15. The mathematics of Einstein, euclid and genetic manipulation.Marvin Eli Kirsh - manuscript
    This manuscript is intended to illustrate the existence of a natural ethic as a universal and special case in which the notion of proximity differs from the reflexively perceived physical notion that is both commonly and scientifically employed. In this case actual proximity in nature is proposed to diverge from the physical lines construed to connect points to be a function of relations of the lines of perception as the components of a universal volume that is energetic and active, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Natural Cybernetics and Mathematical History: The Principle of Least Choice in History.Vasil Penchev - 2020 - Cultural Anthropology (Elsevier: SSRN) 5 (23):1-44.
    The paper follows the track of a previous paper “Natural cybernetics of time” in relation to history in a research of the ways to be mathematized regardless of being a descriptive humanitarian science withal investigating unique events and thus rejecting any repeatability. The pathway of classical experimental science to be mathematized gradually and smoothly by more and more relevant mathematical models seems to be inapplicable. Anyway quantum mechanics suggests another pathway for mathematization; considering the historical reality as dual or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  18. Frege’s Concept Of Natural Numbers.A. P. Bird - 2021 - Cantor's Paradise (00):00.
    Frege discussed Mill’s empiricist ideas and Kant’s rationalist ideas about the nature of mathematics, and employed Set Theory and logico-philosophical notions to develop a new concept for the natural numbers. All this is objectively exposed by this paper.
    Download  
     
    Export citation  
     
    Bookmark  
  19. The physics and mathematics of time and relativity.Varanasi Ramabrahmam - 2013
    The nature of time is variously understood and varied expressions of time available are critically discussed. The nature of time formation, its structure and textures are presented taking examples from natural sciences and Indian spirituality. The physics and mathematics used to evolve the concept of time are chronologically presented. The mathematical allusion and physical illusion associated with the concept of theories of relativity are analyzed. The mathematical conjectures responsible for evolution of theories of relativity are pronounced. The missing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Mathematical Nature of Reality, Plus Gravitation-Electromagnetism Unification, Derived from Revised Gravitational Tidal Forces and Mass-from-Gravity Concept.Rodney Bartlett - manuscript
    This article had its beginning with Einstein's 1919 paper "Do gravitational fields play an essential role in the structure of elementary particles?" Together with General Relativity's statement that gravity is not a pull but is a push caused by the curvature of space-time, a hypothesis for Earth's ocean tides was developed that does not solely depend on the Sun and Moon as Kepler and Newton believed. It also borrows from Galileo. The breakup of planets and asteroids by white dwarfs, neutron (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. A Pluralist Foundation of the Mathematics of the First Half of the Twentieth Century.Antonino Drago - 2017 - Journal of the Indian Council of Philosophical Research 34 (2):343-363.
    MethodologyA new hypothesis on the basic features characterizing the Foundations of Mathematics is suggested.Application of the methodBy means of it, the several proposals, launched around the year 1900, for discovering the FoM are characterized. It is well known that the historical evolution of these proposals was marked by some notorious failures and conflicts. Particular attention is given to Cantor's programme and its improvements. Its merits and insufficiencies are characterized in the light of the new conception of the FoM. After the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. A Complex Number Notation of Nature of Time: An Ancient Indian Insight.R. B. Varanasi Varanasi Varanasi Ramabrahmam, Ramabrahmam Varanasi, V. Ramabrahmam - 2013 - In Varanasi Ramabrahmam Ramabrahmam Varanasi V. Ramabrahmam R. B. Varanasi Varanasi (ed.), Proceedings of 5th International Conference on Vedic Sciences on “Applications and Challenges in Vedic / Ancient Indian Mathematics". Veda Vijnaana Sudha. pp. 386-399.
    The nature of time is perceived by intellectuals variedly. An attempt is made in this paper to reconcile such varied views in the light of the Upanishads and related Indian spiritual and philosophical texts. The complex analysis of modern mathematics is used to represent the nature and presentation physical and psychological times so differentiated. Also the relation between time and energy is probed using uncertainty relations, forms of energy and phases of matter.
    Download  
     
    Export citation  
     
    Bookmark  
  23. The Oeconomy of Nature: an Interview with Margaret Schabas.Margaret Schabas & C. Tyler DesRoches - 2013 - Erasmus Journal for Philosophy and Economics 6 (2):66.
    MARGARET LYNN SCHABAS (Toronto, 1954) is professor of philosophy at the University of British Columbia in Vancouver and served as the head of the Philosophy Department from 2004-2009. She has held professoriate positions at the University of Wisconsin-Madison and at York University, and has also taught as a visiting professor at Michigan State University, University of Colorado-Boulder, Harvard, CalTech, the Sorbonne, and the École Normale de Cachan. As the recipient of several fellowships, she has enjoyed visiting terms at Stanford, Duke, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Physical and Nonphysical Aspects of Nature.Moorad Alexanian - 2002 - Perspectives on Science and Christian Faith 54 (4):287-288.
    Human consciousness and reasoning summarize all physical data into laws and create the mathematical theories that lead to predictions. However, the human element that creates the theories is totally absent from the laws and theories themselves. Accordingly, human consciousness and rationality are outside the bounds of science since they cannot be detected by purely physical devices and can only be “detected” by the self in humans. One wonders if notions of information, function, and purpose, can provide explanations of such nonphysical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  25. Ontologies of Common Sense, Physics and Mathematics.Jobst Landgrebe & Barry Smith - 2023 - Archiv.
    The view of nature we adopt in the natural attitude is determined by common sense, without which we could not survive. Classical physics is modelled on this common-sense view of nature, and uses mathematics to formalise our natural understanding of the causes and effects we observe in time and space when we select subsystems of nature for modelling. But in modern physics, we do not go beyond the realm of common sense by augmenting our knowledge of what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. A COMPLEX NUMBER NOTATION OF NATURE OF TIME: AN ANCIENT INDIAN INSIGHT.Varanasi Ramabrahmam - 2013 - In Veda Vijnaana Sudha, Proceedings of 5th International Conference on Vedic Sciences on “Applications and Challenges in Vedic / Ancient Indian Mathematics" on 20, 21 and 22nd of Dec 2013 at Maharani Arts, Commerce and Management College for Women, Bang. pp. 386-399.
    The nature of time is perceived by intellectuals variedly. An attempt is made in this paper to reconcile such varied views in the light of the Upanishads and related Indian spiritual and philosophical texts. The complex analysis of modern mathematics is used to represent the nature and presentation physical and psychological times so differentiated. Also the relation between time and energy is probed using uncertainty relations, forms of energy and phases of matter. Implications to time-dependent Schrodinger wave equation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature.Michael Epperson & Elias Zafiris - 2013 - Lanham: Lexington Books. Edited by Elias Zafiris.
    Foundations of Relational Realism presents an intuitive interpretation of quantum mechanics, based on a revised decoherent histories interpretation, structured within a category theoretic topological formalism. -/- If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably exceed the limits of intuitive (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. Nature of Philosophy.Mudasir A. Tantray & Ateequllah Dar - 2016 - International Journal Of Humanities and Social Studies 2 (12):39-42.
    The aim of this paper is to examine the nature, scope and importance of philosophy in the light of its relation to other disciplines. This work pays its focus on the various fundamental problems of philosophy, relating to Ethics, Metaphysics, Epistemology Logic, and its association with scientific realism. It will also highlight the various facets of these problems and the role of philosophers to point out the various issues relating to human issues. It is widely agreed that philosophy as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  29. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. The Conceptions of Self-Evidence in the Finnis Reconstruction of Natural Law.Kevin Lee - 2020 - St. Mary's Law Journal 51 (2):414-470.
    Finnis claims that his theory proceeds from seven basic principles of practical reason that are self-evidently true. While much has been written about the claim of self-evidence, this article considers it in relation to the rigorous claims of logic and mathematics. It argues that when considered in this light, Finnis equivocates in his use of the concept of self-evidence between the realist Thomistic conception and a purely formal, modern symbolic conception. Given his respect for the modern positivist separation of fact (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Copernican Revolution: Unification of Mundane Physics with Mathematics of the Skies.Rinat M. Nugayev (ed.) - 2012 - Logos: Innovative Technologies Publishing House.
    What were the reasons of the Copernican Revolution ? How did modern science (created by a bunch of ambitious intellectuals) manage to force out the old one created by Aristotle and Ptolemy, rooted in millennial traditions and strongly supported by the Church? What deep internal causes and strong social movements took part in the genesis, development and victory of modern science? The author comes to a new picture of Copernican Revolution on the basis of the elaborated model of scientific revolutions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Hume's Natural Philosophy and Philosophy of Physical Science.Matias Slavov - 2020 - London: Bloomsbury Academic.
    This book contextualizes David Hume's philosophy of physical science, exploring both Hume's background in the history of early modern natural philosophy and its subsequent impact on the scientific tradition.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Concept Construction in Kant's "Metaphysical Foundations of Natural Science".Jennifer Nadine Mcrobert - 1995 - Dissertation, The University of Western Ontario (Canada)
    Kant's reasoning in his special metaphysics of nature is often opaque, and the character of his a priori foundation for Newtonian science is the subject of some controversy. Recent literature on the Metaphysical Foundations of Natural Science has fallen well short of consensus on the aims and reasoning in the work. Various of the doctrines and even the character of the reasoning in the Metaphysical Foundations have been taken to present insuperable obstacles to accepting Kant's claim to ground Newtonian (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Spinoza and the Philosophy of Science: Mathematics, Motion, and Being.Eric Schliesser - 1986, 2002
    This chapter argues that the standard conception of Spinoza as a fellow-travelling mechanical philosopher and proto-scientific naturalist is misleading. It argues, first, that Spinoza’s account of the proper method for the study of nature presented in the Theological-Political Treatise (TTP) points away from the one commonly associated with the mechanical philosophy. Moreover, throughout his works Spinoza’s views on the very possibility of knowledge of nature are decidedly sceptical (as specified below). Third, in the seventeenth-century debates over proper methods (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  35. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Quali-quantitative measurement in Francis Bacon’s medicine: towards a new branch of mixed mathematics.Silvia Manzo - 2023 - In Simone Guidi & Joaquim Braga (eds.), The Quantification of Life and Health from the Sixteenth to the Nineteenth Century. Intersections of Medicine and Philosophy. Palgrave Macmillan. pp. 89-109.
    In this chapter we will argue, firstly, that Bacon’s engages in a pecu-liar form of mathematization of nature that develops a quali-quantitative methodology of measurement. Secondly, we will show that medicine is one of the disciplines where that dual way of measurement is practiced. In the first section of the chapter, we will expose the ontology involved in the Baconian proposal of measurement of nature. The second section will address the place that mixed mathematics occupies in Bacon’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Mathematical Nature of Gravity, Which General Relativity Says is Space-Time : Topology Unites With the Matrix, E=mc2, Advanced Waves, Wick Rotation, Dark Matter & Higher Dimensions.Rodney Bartlett - manuscript
    General Relativity says gravity is a push caused by space-time's curvature. Combining General Relativity with E=mc2 results in distances being totally deleted from space-time/gravity by future technology, and in expansion or contraction of the universe as a whole being eliminated. The road to these conclusions has branches shining light on supersymmetry and superconductivity. This push of gravitational waves may be directed from intergalactic space towards galaxy centres, helping to hold galaxies together and also creating supermassive black holes. Together with the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Brouwer's Intuition of Twoity and Constructions in Separable Mathematics.Bruno Bentzen - 2023 - History and Philosophy of Logic 45 (3):341-361.
    My first aim in this paper is to use time diagrams in the style of Brentano to analyze constructions in Brouwer's separable mathematics more precisely. I argue that constructions must involve not only pairing and projecting as basic operations guaranteed by the intuition of twoity, as sometimes assumed in the literature, but also a recalling operation. My second aim is to argue that Brouwer's views on the intuition of twoity and arithmetic lead to an ontological explosion. Redeveloping the constructions of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Review of: Garciadiego, A., "Emergence of...paradoxes...set theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Archeology of Consciousness ↔ The Ontological Basification of Mathematics (Knowledge) ↔ The Nature of Consciousness. [REVIEW]Vladimir Rogozhin - manuscript
    A condensed summary of the adventures of ideas (1990-2020). Methodology of evolutionary-phenomenological constitution of Consciousness. Vector (BeVector) of Consciousness. Consciousness is a qualitative vector quantity. Vector of Consciousness as a synthesizing category, eidos-prototecton, intentional meta-observer. The development of the ideas of Pierre Teilhard de Chardin, Brentano, Husserl, Bergson, Florensky, Losev, Mamardashvili, Nalimov. Dialectic of Eidos and Logos. "Curve line" of the Consciousness Vector from space and time. The lower and upper sides of the "abyss of being". The existential tension of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Philosophy of Mathematics.Alexander Paseau (ed.) - 2016 - New York: Routledge.
    Mathematics is everywhere and yet its objects are nowhere. There may be five apples on the table but the number five itself is not to be found in, on, beside or anywhere near the apples. So if not in space and time, where are numbers and other mathematical objects such as perfect circles and functions? And how do we humans discover facts about them, be it Pythagoras’ Theorem or Fermat’s Last Theorem? The metaphysical question of what numbers are and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Axiomatic Natural Philosophy and the Emergence of Biology as a Science.Hein van den Berg & Boris Demarest - 2020 - Journal of the History of Biology 53 (3):379-422.
    Ernst Mayr argued that the emergence of biology as a special science in the early nineteenth century was possible due to the demise of the mathematical model of science and its insistence on demonstrative knowledge. More recently, John Zammito has claimed that the rise of biology as a special science was due to a distinctive experimental, anti-metaphysical, anti-mathematical, and anti-rationalist strand of thought coming from outside of Germany. In this paper we argue that this narrative neglects the important role played (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  44. Hobbes on Natural Philosophy as "True Physics" and Mixed Mathematics.Marcus P. Adams - 2016 - Studies in History and Philosophy of Science Part A 56 (C):43-51.
    I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the ‘why’). My argument shows (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  45. A Conventionalist Account of Distinctively Mathematical Explanation.Mark Povich - 2023 - Philosophical Problems in Science 74:171–223.
    Distinctively mathematical explanations (DMEs) explain natural phenomena primarily by appeal to mathematical facts. One important question is whether there can be an ontic account of DME. An ontic account of DME would treat the explananda and explanantia of DMEs as ontic structures and the explanatory relation between them as an ontic relation (e.g., Pincock 2015, Povich 2021). Here I present a conventionalist account of DME, defend it against objections, and argue that it should be considered ontic. Notably, if indeed it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Marriages of Mathematics and Physics: A Challenge for Biology.Arezoo Islami & Giuseppe Longo - 2017 - Progress in Biophysics and Molecular Biology 131:179-192.
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  47. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value.John Corcoran - 1971 - Journal of Structural Learning 3 (2):1-16.
    1971. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value, Journal of Structural Learning 3, #2, 1–16. REPRINTED 1976. Structural Learning II Issues and Approaches, ed. J. Scandura, Gordon & Breach Science Publishers, New York, MR56#15263. -/- This is the second of a series of three articles dealing with application of linguistics and logic to the study of mathematical reasoning, especially in the setting of a concern for improvement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  49. Non-mathematical dimensions of randomness: Implications for problem gambling.Catalin Barboianu - 2024 - Journal of Gambling Issues 36.
    Randomness, a core concept of gambling, is seen in problem gambling as responsible for the formation of the math-related cognitive distortions, especially the Gambler’s Fallacy. In problem-gambling research, the concept of randomness was traditionally referred to as having a mathematical nature and categorized and approached as such. Randomness is not a mathematical concept, and I argue that its weak mathematical dimension is not decisive at all for the randomness-related issues in gambling and problem gambling, including the correction of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 954