Modern philosophy of mathematics has been dominated by Platonism and nominalism, to the neglect of the Aristotelian realist option. Aristotelianism holds that mathematics studies certain real properties of the world – mathematics is neither about a disembodied world of “abstract objects”, as Platonism holds, nor it is merely a language of science, as nominalism holds. Aristotle’s theory that mathematics is the “science of quantity” is a good account of at least elementary mathematics: the ratio (...) of two heights, for example, is a perceivable and measurable real relation between properties of physical things, a relation that can be shared by the ratio of two weights or two time intervals. Ratios are an example of continuous quantity; discrete quantities, such as whole numbers, are also realised as relations between a heap and a unit-making universal. For example, the relation between foliage and being-a-leaf is the number of leaves on a tree,a relation that may equal the relation between a heap of shoes and being-a-shoe. Modern higher mathematics, however, deals with some real properties that are not naturally seen as quantity, so that the “science of quantity” theory of mathematics needs supplementation. Symmetry, topology and similar structural properties are studied by mathematics, but are about pattern, structure or arrangement rather than quantity. (shrink)
Abstract In the new millennium there have been important empirical developments in the philosophy of mathematics. One of these is the so-called “Empirical Philosophy of Mathematics”(EPM) of Buldt, Löwe, Müller and Müller-Hill, which aims to complement the methodology of the philosophy of mathematics with empirical work. Among other things, this includes surveys of mathematicians, which EPM believes to give philosophically important results. In this paper I take a critical look at the sociological part of (...) EPM as a case study of ... (shrink)
This essay offers a strategic reinterpretation of Kant’s philosophy of mathematics in Critique of Pure Reason via a broad, empirically based reconception of Kant’s conception of drawing. It begins with a general overview of Kant’s philosophy of mathematics, observing how he differentiates mathematics in the Critique from both the dynamical and the philosophical. Second, it examines how a recent wave of critical analyses of Kant’s constructivism takes up these issues, largely inspired by Hintikka’s unorthodox conception (...) of Kantian intuition. Third, it offers further analyses of three Kantian concepts vitally linked to that of drawing. It concludes with an etymologically based exploration of the seven clusters of meanings of the word drawing to gesture toward new possibilities for interpreting a Kantian philosophy of mathematics. (shrink)
In this paper, I present and discuss critically the main elements of Mario Bunge’s philosophy of mathematics. In particular, I explore how mathematical knowledge is accounted for in Bunge’s systemic emergent materialism.To Mario, with gratitude.
There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article (...) lays out and compares these options, including their accounts of what X is, the examples supporting each theory, and the reasons for identifying the science of X with (most or all of) mathematics. Some comparison of the options is undertaken, but the main aim is to display the spectrum of viable alternatives to Platonism and nominalism. It is explained how these views answer Frege’s widely accepted argument that arithmetic cannot be about real features of the physical world, and arguments that such mathematical objects as large infinities and perfect geometrical figures cannot be physically realized. (shrink)
We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of (...) Science, which gave rise to this special issue. Lastly, we provide a summary of the contributions to this issue. (shrink)
La matematica viene generalmente considerata uno degli ambiti più affidabili dell’intera impresa scientifica. Il suo successo e la sua solidità sono testimoniati, ad esempio, dall’uso imprescindibile che ne fanno le scienze empiriche e dall’accordo pressoché unanime con cui la comunità dei matematici delibera sulla validità di un nuovo risultato. Tuttavia, dal punto di vista filosofico la matematica rappresenta un puzzle tanto intrigante quanto intricato. Philosophy of Mathematics di Ø. Linnebo si propone di presentare e discutere le concezioni filosofiche (...) della matematica che hanno dominato la scena da Frege ai giorni nostri. (shrink)
Throughout his work, John Dewey seeks to emancipate philosophical reflection from the influence of the classical tradition he traces back to Plato and Aristotle. For Dewey, this tradition rests upon a conception of knowledge based on the separation between theory and practice, which is incompatible with the structure of scientific inquiry. Philosophical work can make progress only if it is freed from its traditional heritage, i.e. only if it undergoes reconstruction. In this study I show that implicit appeals to the (...) classical tradition shape prominent debates in philosophy of mathematics, and I initiate a project of reconstruction within this field. (shrink)
Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. For Nietzsche, (...) math is an artistic and moral activity that has an essential role to play in the joyful wisdom. (shrink)
This article examines the possibility of philosophizing about mathematics with children. It aims at outlining the nature of the practice of philosophy of mathematics with children in a mainly theoretical and exploratory way. First, an attempt at a definition is proposed. Second, I suggest some reasons that might motivate such a practice. My thesis is that one can identify an intrinsic as well as two extrinsic goals of philosophizing about mathematics with children. The intrinsic goal is (...) related to a presumed inherent importance of presenting children with some philosophical questions about mathematics. The extrinsic goals consist of first the positive effects such a practice can have on mathematical learning and abilities and second the fostering of children's understanding of philosophical method of inquiry and thinking and therefore of their philosophical thinking competences. Third, some examples found in the literature of previously developed ways of practising philosophy of mathematics with children are presented. This article aims at giving a general outlining picture of the issues surrounding the practice of philosophy of mathematics with children and should therefore be read as an encouragement to further development and studies. (shrink)
In this review, as well as discussing the pedagogical of this text book, I also discuss Linnebo's approach to the Caesar problem and the use of metaphysical notions to explicate mathematics.
Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation (...) or theorem and its proof. An attempt is made to meet directly some of Wittgenstein’s critical comments on the mathematical treatment of infinity and irrational numbers. (shrink)
This rich book differs from much contemporary philosophy of mathematics in the author’s witty, down to earth style, and his extensive experience as a working mathematician. It accords with the field in focusing on whether mathematical entities are real. Franklin holds that recent discussion of this has oscillated between various forms of Platonism, and various forms of nominalism. He denies nominalism by holding that universals exist and denies Platonism by holding that they are concrete, not abstract - looking (...) to Aristotle for inspiration. (shrink)
Since the publication of the Remarks on the Foundations of Mathematics, Wittgenstein’s interpreters have endeavored to reconcile his general constructivist/anti-realist attitude towards mathematics with his confessed anti-revisionary philosophy. In this article, the author revisits the issue and presents a solution. The basic idea consists in exploring the fact that the so-called “non-constructive results” could be interpreted so that they do not appear non-constructive at all. The author substantiates this solution by showing how the translation of mathematical results, (...) given by the possibility of translation between logics, can be seen as a tool for partially implementing the solution Wittgenstein had in mind. (shrink)
I claim that a relatively new position in philosophy of mathematics, pluralism, overlaps in striking ways with the much older Jain doctrine of anekantavada and the associated doctrines of nyayavada and syadvada. I first outline the pluralist position, following this with a sketch of the Jain doctrine of anekantavada. I then note the srrong points of overlaps and the morals of this comparison of pluralism and anekantavada.
This chapter argues that the standard conception of Spinoza as a fellow-travelling mechanical philosopher and proto-scientific naturalist is misleading. It argues, first, that Spinoza’s account of the proper method for the study of nature presented in the Theological-Political Treatise (TTP) points away from the one commonly associated with the mechanical philosophy. Moreover, throughout his works Spinoza’s views on the very possibility of knowledge of nature are decidedly sceptical (as specified below). Third, in the seventeenth-century debates over proper methods in (...) the sciences, Spinoza sided with those that criticized the aspirations of those (the physico-mathematicians, Galileo, Huygens, Wallis, Wren, etc) who thought the application of mathematics to nature was the way to make progress. In particular, he offers grounds for doubting their confidence in the significance of measurement as well as their piece-meal methodology (see section 2). Along the way, this chapter offers a new interpretation of common notions in the context of treating Spinoza’s account of motion (see section 3). (shrink)
Imre Lakatos' views on the philosophy of mathematics are important and they have often been underappreciated. The most obvious lacuna in this respect is the lack of detailed discussion and analysis of his 1976a paper and its implications for the methodology of mathematics, particularly its implications with respect to argumentation and the matter of how truths are established in mathematics. The most important themes that run through his work on the philosophy of mathematics and (...) which culminate in the 1976a paper are (1) the (quasi-)empirical character of mathematics and (2) the rejection of axiomatic deductivism as the basis of mathematical knowledge. In this paper Lakatos' later views on the quasi-empirical nature of mathematical theories and methodology are examined and specific attention is paid to what this view implies about the nature of mathematical argumentation and its relation to the empirical sciences. (shrink)
We attribute three major insights to Hegel: first, an understanding of the real numbers as the paradigmatic kind of number ; second, a recognition that a quantitative relation has three elements, which is embedded in his conception of measure; and third, a recognition of the phenomenon of divergence of measures such as in second-order or continuous phase transitions in which correlation length diverges. For ease of exposition, we will refer to these three insights as the R First Theory, Tripartite Relations, (...) and Divergence of Measures. Given the constraints of space, we emphasize the first and the third in this paper. (shrink)
Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some (...) mathematicians already there, ready to meet them, who have explicitly invoked virtues in discussing what is necessary for a mathematician to succeed. In both ethics and epistemology, virtue theory tends to emphasize character virtues, the acquired excellences of people. But people are not the only sort of thing whose excellences may be identified as virtues. Theoretical virtues have attracted attention in the philosophy of science as components of an account of theory choice. Within the philosophy of mathematics, and mathematics itself, attention to virtues has emerged from a variety of disparate sources. Theoretical virtues have been put forward both to analyse the practice of proof and to justify axioms; intellectual virtues have found multiple applications in the epistemology of mathematics; and ethical virtues have been offered as a basis for understanding the social utility of mathematical practice. Indeed, some authors have advocated virtue epistemology as the correct epistemology for mathematics (and perhaps even as the basis for progress in the metaphysics of mathematics). This topical collection brings together several of the researchers who have begun to study mathematical practices from a virtue perspective with the intention of consolidating and encouraging this trend. (shrink)
Walter Dubislav (1895–1937) was a leading member of the Berlin Group for scientific philosophy. This “sister group” of the more famous Vienna Circle emerged around Hans Reichenbach’s seminars at the University of Berlin in 1927 and 1928. Dubislav was to collaborate with Reichenbach, an association that eventuated in their conjointly conducting university colloquia. Dubislav produced original work in philosophy of mathematics, logic, and science, consequently following David Hilbert’s axiomatic method. This brought him to defend formalism in these (...) disciplines as well as to explore the problems of substantiating (Begründung) human knowledge. Dubislav also developed elements of general philosophy of science. Sadly, the political changes in Germany in 1933 proved ruinous to Dubislav. He published scarcely anything after Hitler came to power and in 1937 committed suicide under tragic circumstances. The intent here is to pass in review Dubislav’s philosophy of logic, mathematics, and science and so to shed light on some seminal yet hitherto largely neglected currents in the history of philosophy of science. (shrink)
By the end of his life Plato had rearranged the theory of ideas into his teaching about ideal numbers, but no written records have been left. The Ideal mathematics of Plato is present in all his dialogues. It can be clearly grasped in relation to the effective use of mathematical modelling. Many problems of mathematical modelling were laid in the foundation of the method by cutting the three-level idealism of Plato to the single-level “ideism” of Aristotle. For a long (...) time, the real, ideal numbers of Plato’s Ideal mathematics eliminates many mathematical problems, extends the capabilities of modelling, and improves mathematics. (shrink)
In this paper, I introduce the idea that some important parts of contemporary pure mathematics are moving away from what I call the extensional point of view. More specifically, these fields are based on criteria of identity that are not extensional. After presenting a few cases, I concentrate on homotopy theory where the situation is particularly clear. Moreover, homotopy types are arguably fundamental entities of geometry, thus of a large portion of mathematics, and potentially to all mathematics, (...) at least according to some speculative research programs. (shrink)
In the chapter of Difference and Repetition entitled ‘Ideas and the synthesis of difference,’ Deleuze mobilizes mathematics to develop a ‘calculus of problems’ that is based on the mathematical philosophy of Albert Lautman. Deleuze explicates this process by referring to the operation of certain conceptual couples in the field of contemporary mathematics: most notably the continuous and the discontinuous, the infinite and the finite, and the global and the local. The two mathematical theories that Deleuze draws upon (...) for this purpose are the differential calculus and the theory of dynamical systems, and Galois’ theory of polynomial equations. For the purposes of this paper I will only treat the first of these, which is based on the idea that the singularities of vector fields determine the local trajectories of solution curves, or their ‘topological behaviour’. These singularities can be described in terms of the given mathematical problematic, that is for example, how to solve two divergent series in the same field, and in terms of the solutions, as the trajectories of the solution curves to the problem. What actually counts as a solution to a problem is determined by the specific characteristics of the problem itself, typically by the singularities of this problem and the way in which they are distributed in a system. Deleuze understands the differential calculus essentially as a ‘calculus of problems’, and the theory of dynamical systems as the qualitative and topological theory of problems, which, when connected together, are determinative of the complex logic of different/ciation. (DR 209). Deleuze develops the concept of a problematic idea from the differential calculus, and following Lautman considers the concept of genesis in mathematics to ‘play the role of model ... with respect to all other domains of incarnation’. While Lautman explicated the philosophical logic of the actualization of ideas within the framework of mathematics, Deleuze (along with Guattari) follows Lautman’s suggestion and explicates the operation of this logic within the framework of a multiplicity of domains, including for example philosophy, science and art in What is Philosophy?, and the variety of domains which characterise the plateaus in A Thousand Plateaus. While for Lautman, a mathematical problem is resolved by the development of a new mathematical theory, for Deleuze, it is the construction of a concept that offers a solution to a philosophical problem; even if this newly constructed concept is characteristic of, or modelled on the new mathematical theory. (shrink)
I defend a new position in philosophy of mathematics that I call mathematical inferentialism. It holds that a mathematical sentence can perform the function of facilitating deductive inferences from some concrete sentences to other concrete sentences, that a mathematical sentence is true if and only if all of its concrete consequences are true, that the abstract world does not exist, and that we acquire mathematical knowledge by confirming concrete sentences. Mathematical inferentialism has several advantages over mathematical realism and (...) fictionalism. (shrink)
This book contextualizes David Hume's philosophy of physical science, exploring both Hume's background in the history of early modern natural philosophy and its subsequent impact on the scientific tradition.
Mathematical objects are divided into (1) those which are autonomous, i.e., not dependent for their existence upon mathematicians’ conscious acts, and (2) intentional objects, which are so dependent. Platonist philosophy of mathematics argues that all objects belong to group (1), Brouwer’s intuitionism argues that all belong to group (2). Here we attempt to develop a dualist ontology of mathematics (implicit in the work of, e.g., Hilbert), exploiting the theories of Meinong, Husserl and Ingarden on the relations between (...) autonomous and intentional objects. In particular we develop a phenomenology of mathematical works, which has the stratified intentional structure discovered by Ingarden in his study of the literary work. (shrink)
Willem Jacob ’s Gravesande is widely remembered as a leading advocate of Isaac Newton’s work. In the first half of the eighteenth century, ’s Gravesande was arguably Europe’s most important proponent of what would become known as Newtonian physics. ’s Gravesande himself minimally described this discipline, which he called «physica», as studying empirical regularities mathematically while avoiding hypotheses. Commentators have as yet not progressed much beyond this view of ’s Gravesande’s physics. Therefore, much of its precise nature, its methodology, and (...) its relation to Newton’s actual work remains unclear. This article discusses one particular methodological element that ’s Gravesande himself often stressed in detail, namely the use of mathematics in philosophy and physics. In doing so, it takes exception to the claim that mathematics played only a minor role in ’s Gravesande’s work, a view put forward in recent historiography. Besides that, this article casts new light on the interpretation of ’s Gravesande’s philosophical notion of «mathematical reasoning», a notion that has remained somewhat obscure thus far. (shrink)
A basic thesis of Neokantian epistemology and philosophy of science contends that the knowing subject and the object to be known are only abstractions. What really exists, is the relation between both. For the elucidation of this “knowledge relation ("Erkenntnisrelation") the Neokantians of the Marburg school used a variety of mathematical metaphors. In this con-tribution I reconsider some of these metaphors proposed by Paul Natorp, who was one of the leading members of the Marburg school. It is shown that (...) Natorp's metaphors are not unrelated to those used in some currents of contemporary epistemology and philosophy of science. (shrink)
When mathematicians think of the philosophy of mathematics, they probably think of endless debates about what numbers are and whether they exist. Since plenty of mathematical progress continues to be made without taking a stance on either of these questions, mathematicians feel confident they can work without much regard for philosophical reflections. In his sharp–toned, sprawling book, David Corfield acknowledges the irrelevance of much contemporary philosophy of mathematics to current mathematical practice, and proposes reforming the subject (...) accordingly. (shrink)
Objective The relations between thought and reality are studied in many fields of philosophy and science. Examples include ontology and metaphysics in general, linguistics, neuroscience and even mathematics. Each one has its postulates, its language, its methods and its own constraints. It would be unreasonable, however, for them to ignore each other. In the pages that follow we will try to identify areas of proximity between the ideas of contemporary philosophers of language and those issued mainly by Ontology (...) of Knowledge but also by mathematics and neuroscience. We will try to take advantage of the clarity and the perfect structuring of the lecture « La philosophie contemporaine du langage » (the contemporary philosophy of language) given by Professor Denis Vernant . We will make use of this lecture, both for the ideas presented and as a reference process. The goal of this article is to bring out, through a benevolent confrontation, new ideas for the benefit of knowledge in general. (shrink)
This is not a mathematics book, but a book about mathematics, which addresses both student and teacher, with a goal as practical as possible, namely to initiate and smooth the way toward the student’s full understanding of the mathematics taught in school. The customary procedural-formal approach to teaching mathematics has resulted in students’ distorted vision of mathematics as a merely formal, instrumental, and computational discipline. Without the conceptual base of mathematics, students develop over time (...) a “mathematical anxiety” and abandon any effort to understand mathematics, which becomes their “traditional enemy” in school. This work materializes the results of the inter- and trans-disciplinary research aimed toward the understanding of mathematics, which concluded that the fields with the potential to contribute to mathematics education in this respect, by unifying the procedural and conceptual approaches, are epistemology and philosophy of mathematics and science, as well as fundamentals and history of mathematics. These results argue that students’ fear of mathematics can be annulled through a conceptual approach, and a student with a good conceptual understanding will be a better problem solver. The author has identified those zones and concepts from the above disciplines that can be adapted and processed for familiarizing the student with this type of knowledge, which should accompany the traditional content of school mathematics. The work was organized so as to create for the reader a unificatory image of the complex nature of mathematics, as well as a conceptual perspective ultimately necessary to the holistic understanding of school mathematics. The author talks about mathematics to convince readers that to understand mathematics means first to understand it as a whole, but also as part of a whole. The nature of mathematics, its primary concepts (like numbers and sets), its structures, language, methods, roles, and applicability, are all presented in their essential content, and the explanation of non-mathematical concepts is done in an accessible language and with many relevant examples. (shrink)
The philosophy of information (PI) is a new area of research with its own field of investigation and methodology. This article, based on the Herbert A. Simon Lecture of Computing and Philosophy I gave at Carnegie Mellon University in 2001, analyses the eighteen principal open problems in PI. Section 1 introduces the analysis by outlining Herbert Simon's approach to PI. Section 2 discusses some methodological considerations about what counts as a good philosophical problem. The discussion centers on Hilbert's (...) famous analysis of the central problems in mathematics. The rest of the article is devoted to the eighteen problems. These are organized into five sections: problems in the analysis of the concept of information, in semantics, in the study of intelligence, in the relation between information and nature, and in the investigation of values. (shrink)
Scholars have long been interested in the relation between Leibniz, the metaphysician-theologian, and Leibniz, the logician-mathematician. In this collection, we consider the important roles that rhetoric and the "art of thinking" have played in the development of mathematical ideas. By placing Leibniz in this rhetorical tradition, the present essay shows the extent to which he was a rhetorical thinker, and thereby answers the question about the relation between his work as a logician-mathematician and his other work. It becomes clear that (...)mathematics and logic are a part of his rhetorical methodology, because they constitute one set of tools that he used to excavate the truth. Mathematical and logical insights are thus all part of his "art of thinking," employed in the service of philosophy. (shrink)
The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have (...) not yet been used or were neglected in past discussions. (shrink)
We argue that the mathematization of science should be understood as a normative activity of advocating for a particular methodology with its own criteria for evaluating good research. As a case study, we examine the mathematization of taxonomic classification in systematic biology. We show how mathematization is a normative activity by contrasting its distinctive features in numerical taxonomy in the 1960s with an earlier reform advocated by Ernst Mayr starting in the 1940s. Both Mayr and the numerical taxonomists sought to (...) formalize the work of classification, but Mayr introduced a qualitative formalism based on human judgment for determining the taxonomic rank of populations, while the numerical taxonomists introduced a quantitative formalism based on automated procedures for computing classifications. The key contrast between Mayr and the numerical taxonomists is how they conceptualized the temporal structure of the workflow of classification, specifically where they allowed meta-level discourse about difficulties in producing the classification. (shrink)
Book Review for Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, La Salle, IL: Open Court, 2002. Edited by David Malament. This volume includes thirteen original essays by Howard Stein, spanning a range of topics that Stein has written about with characteristic passion and insight. This review focuses on the essays devoted to history and philosophy of physics.
According to Steiner (1998), in contemporary physics new important discoveries are often obtained by means of strategies which rely on purely formal mathematical considerations. In such discoveries, mathematics seems to have a peculiar and controversial role, which apparently cannot be accounted for by means of standard methodological criteria. M. Gell-Mann and Y. Ne׳eman׳s prediction of the Ω− particle is usually considered a typical example of application of this kind of strategy. According to Bangu (2008), this prediction is apparently based (...) on the employment of a highly controversial principle—what he calls the “reification principle”. Bangu himself takes this principle to be methodologically unjustifiable, but still indispensable to make the prediction logically sound. In the present paper I will offer a new reconstruction of the reasoning that led to this prediction. By means of this reconstruction, I will show that we do not need to postulate any “reificatory” role of mathematics in contemporary physics and I will contextually clarify the representative and heuristic role of mathematics in science. (shrink)
We propose a way to explain the diversification of branches of mathematics, distinguishing the different approaches by which mathematical objects can be studied. In our philosophy of mathematics, there is a base object, which is the abstract multiplicity that comes from our empirical experience. However, due to our human condition, the analysis of such multiplicity is covered by other empirical cognitive attitudes (approaches), diversifying the ways in which it can be conceived, and consequently giving rise to different (...) mathematical disciplines. This diversity of approaches is founded on the manifold categories that we find in physical reality. We also propose, grounded on this idea, the use of Aristotelian categories as a first model for this division, generating from it a classification of mathematical branches. Finally we make a history review to show that there is consistency between our classification, and the historical appearance of the different branches of mathematics. (shrink)
The attempts of theoretically solving the famous puzzle-dictum of physicist Eugene Wigner regarding the “unreasonable” effectiveness of mathematics as a problem of analytical philosophy, started at the end of the 19th century, are yet far from coming out with an acceptable theoretical solution. The theories developed for explaining the empirical “miracle” of applied mathematics vary in nature, foundation and solution, from denying the existence of a genuine problem to structural theories with an advanced level of mathematical formalism. (...) Despite this variation, methodologically fundamental questions like “Which is the adequate theoretical framework for solving Wigner’s conjecture?” and “Can the logico-mathematical formalism solve it and is it entitled to do it?” did not receive answers yet. The problem of the applicability of mathematics in the physical reality has been treated unitarily in some sense, with respect to the semantic-conceptual use of the constitutive terms, within both the structural and non-structural theories. This unity (of consistency) applied to both the referred objects and concepts per se and the aims of the investigations. For being able to make an objective study of the possible alternatives of the existent theories, a foundational approach of them is needed, including through semantic-conceptual distinctions which to weaken the unity of consistency. (shrink)
The vicissitudes of mathematical reason in the 20th century Content Type Journal Article Pages 1-6 DOI 10.1007/s11016-011-9556-y Authors Thomas Mormann, Department of Logic and Philosophy of Science, University of the Basque Country UPV/EPU, Donostia-San Sebastian, Spain, Journal Metascience Online ISSN 1467-9981 Print ISSN 0815-0796.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.