Results for 'proteins'

124 found
Order:
  1. The Protein Ontology: A structured representation of protein forms and complexes.Darren Natale, Cecilia N. Arighi, Winona C. Barker, Judith A. Blake, Carol J. Bult, Michael Caudy, Harold J. Drabkin, Peter D’Eustachio, Alexei V. Evsikov, Hongzhan Huang, Jules Nchoutmboube, Natalia V. Roberts, Barry Smith, Jian Zhang & Cathy H. Wu - 2011 - Nucleic Acids Research 39 (1):D539-D545.
    The Protein Ontology (PRO) provides a formal, logically-based classification of specific protein classes including structured representations of protein isoforms, variants and modified forms. Initially focused on proteins found in human, mouse and Escherichia coli, PRO now includes representations of protein complexes. The PRO Consortium works in concert with the developers of other biomedical ontologies and protein knowledge bases to provide the ability to formally organize and integrate representations of precise protein forms so as to enhance accessibility to results of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  2. Protein-centric connection of biomedical knowledge: Protein Ontology research and annotation tools.Cecilia N. Arighi, Darren A. Natale, Judith A. Blake, Carol J. Bult, Michael Caudy, Alexander D. Diehl, Harold J. Drabkin, Peter D'Eustachio, Alexei Evsikov, Hongzhan Huang, Barry Smith & Others - 2011 - In Proceedings of the 2nd International Conference on Biomedical Ontology. Buffalo, NY: NCOR. pp. 285-287.
    The Protein Ontology (PRO) web resource provides an integrative framework for protein-centric exploration and enables specific and precise annotation of proteins and protein complexes based on PRO. Functionalities include: browsing, searching and retrieving, terms, displaying selected terms in OBO or OWL format, and supporting URIs. In addition, the PRO website offers multiple ways for the user to request, submit, or modify terms and/or annotation. We will demonstrate the use of these tools for protein research and annotation.
    Download  
     
    Export citation  
     
    Bookmark  
  3. Protein Ontology: A controlled structured network of protein entities.A. Natale Darren, N. Arighi Cecilia, A. Blake Judith, J. Bult Carol, R. Christie Karen, Cowart Julie, D’Eustachio Peter, D. Diehl Alexander, J. Drabkin Harold, Helfer Olivia, Barry Smith & Others - 2013 - Nucleic Acids Research 42 (1):D415-21..
    The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene Ontology (GO). PRO relates to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Protein Ontology: Enhancing and scaling up the representation of protein entities.Darren A. Natale, Cecilia N. Arighi, Judith A. Blake, Jonathan Bona, Chuming Chen, Sheng-Chih Chen, Karen R. Christie, Julie Cowart, Peter D'Eustachio, Alexander D. Diehl, Harold J. Drabkin, William D. Duncan, Hongzhan Huang, Jia Ren, Karen Ross & Alan Ruttenberg - 2017 - Nucleic Acids Research 45 (D1):D339-D346.
    The Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Framework for a protein ontology.Darren A. Natale, Cecilia N. Arighi, Winona Barker, Judith Blake, Ti-Cheng Chang, Zhangzhi Hu, Hongfang Liu, Barry Smith & Cathy H. Wu - 2007 - BMC Bioinformatics 8 (Suppl 9):S1.
    Biomedical ontologies are emerging as critical tools in genomic and proteomic research where complex data in disparate resources need to be integrated. A number of ontologies exist that describe the properties that can be attributed to proteins; for example, protein functions are described by Gene Ontology, while human diseases are described by Disease Ontology. There is, however, a gap in the current set of ontologies—one that describes the protein entities themselves and their relationships. We have designed a PRotein Ontology (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  6. TGF-beta signaling proteins and the Protein Ontology.Arighi Cecilia, Liu Hongfang, Natale Darren, Barker Winona, Drabkin Harold, Blake Judith, Barry Smith & Wu Cathy - 2009 - BMC Bioinformatics 10 (Suppl 5):S3.
    The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or posttranslational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. The representation of protein complexes in the Protein Ontology.Carol Bult, Harold Drabkin, Alexei Evsikov, Darren Natale, Cecilia Arighi, Natalia Roberts, Alan Ruttenberg, Peter D’Eustachio, Barry Smith, Judith Blake & Cathy Wu - 2011 - BMC Bioinformatics 12 (371):1-11.
    Representing species-specific proteins and protein complexes in ontologies that are both human and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO) Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  8. A Monist Proposal: Against Integrative Pluralism About Protein Structure.Agnes Bolinska - 2022 - Erkenntnis 1 (4).
    Mitchell & Gronenborn propose that we account for the presence of multiple models of protein structure, each produced in different contexts, through the framework of integrative pluralism. I argue that two interpretations of this framework are available, neither of which captures the relationship between a model and the protein structure it represents or between multiple models of protein structure. Further, it inclines us toward concluding prematurely that models of protein structure are right in their contexts and makes extrapolation of findings (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. SNARE proteins as molecular masters of interneuronal communication.Danko D. Georgiev & James F. Glazebrook - 2010 - Biomedical Reviews 21:17-23.
    In the beginning of the 20th century the groundbreaking work of Ramon y Cajal firmly established the neuron doctrine, according to which neurons are the basic structural and functional units of the nervous system. Von Weldeyer coined the term “neuron” in 1891, but the huge leap forward in neuroscience was due to Cajal’s meticulous microscopic observations of brain sections stained with an improved version of Golgi’s la reazione nera (black reaction). The latter improvement of Golgi’s technique made it possible to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Where Do You Get Your Protein? Or: Biochemical Realization.Tuomas E. Tahko - 2020 - British Journal for the Philosophy of Science 71 (3):799-825.
    Biochemical kinds such as proteins pose interesting problems for philosophers of science, as they can be studied from the points of view of both biology and chemistry. The relationship between the biological functions of biochemical kinds and the microstructures that they are related to is the key question. This leads us to a more general discussion about ontological reductionism, microstructuralism, and multiple realization at the biology-chemistry interface. On the face of it, biochemical kinds seem to pose a challenge for (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  11. A framework for protein classification.Anand Kumar & Barry Smith - 2003 - In Proceedings of the 2003 German Conference on Bioinformatics, Vol. II. pp. 55-57.
    It is widely understood that protein functions can be exhaustively described in terms of no single parameter, whether this be amino acid sequence or the three-dimensional structure of the underlying protein molecule. This means that a number of different attributes must be used to create an ontology of protein functions. Certainly much of the required information is already stored in databases such as Swiss-Prot, Protein Data Bank, SCOP and MIPS. But the latter have been developed for different purposes and the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Model for DNA and Protein Interactions and the Function of the Operator.Alfred Gierer - 1966 - Nature 212:1480-1481.
    The short paper introduces the concept of possible branches of double-stranded DNA (later sometimes called palindromes): Certain sequences of nucleotides may be followed, after a short unpaired stretch, by a complementary sequence in reversed order, such that each DNA strand can fold back on itself, and the DNA assumes a cruciform or tree-like structure. This is postulated to interact with regulatory proteins. -/- .
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Toll-like receptor signaling in vertebrates: Testing the integration of protein, complex, and pathway data in the Protein Ontology framework.Cecilia Arighi, Veronica Shamovsky, Anna Maria Masci, Alan Ruttenberg, Barry Smith, Darren Natale, Cathy Wu & Peter D’Eustachio - 2015 - PLoS ONE 10 (4):e0122978.
    The Protein Ontology provides terms for and supports annotation of species-specific protein complexes in an ontology framework that relates them both to their components and to species-independent families of complexes. Comprehensive curation of experimentally known forms and annotations thereof is expected to expose discrepancies, differences, and gaps in our knowledge. We have annotated the early events of innate immune signaling mediated by Toll-Like Receptor 3 and 4 complexes in human, mouse, and chicken. The resulting ontology and annotation data set has (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  14. Thermal stability of solitons in protein α-helices.Danko D. Georgiev & James F. Glazebrook - 2022 - Chaos, Solitons and Fractals 155:111644.
    Protein α-helices provide an ordered biological environment that is conducive to soliton-assisted energy transport. The nonlinear interaction between amide I excitons and phonon deformations induced in the hydrogen-bonded lattice of peptide groups leads to self-trapping of the amide I energy, thereby creating a localized quasiparticle (soliton) that persists at zero temperature. The presence of thermal noise, however, could destabilize the protein soliton and dissipate its energy within a finite lifetime. In this work, we have computationally solved the system of stochastic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Launching of Davydov solitons in protein α-helix spines.Danko D. Georgiev & James F. Glazebrook - 2020 - Physica E: Low-Dimensional Systems and Nanostructures 124:114332.
    Biological order provided by α-helical secondary protein structures is an important resource exploitable by living organisms for increasing the efficiency of energy transport. In particular, self-trapping of amide I energy quanta by the induced phonon deformation of the hydrogen-bonded lattice of peptide groups is capable of generating either pinned or moving solitary waves following the Davydov quasiparticle/soliton model. The effect of applied in-phase Gaussian pulses of amide I energy, however, was found to be strongly dependent on the site of application. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Quantum transport and utilization of free energy in protein α-helices.Danko D. Georgiev & James F. Glazebrook - 2020 - Advances in Quantum Chemistry 82:253-300.
    The essential biological processes that sustain life are catalyzed by protein nano-engines, which maintain living systems in far-from-equilibrium ordered states. To investigate energetic processes in proteins, we have analyzed the system of generalized Davydov equations that govern the quantum dynamics of multiple amide I exciton quanta propagating along the hydrogen-bonded peptide groups in α-helices. Computational simulations have confirmed the generation of moving Davydov solitons by applied pulses of amide I energy for protein α-helices of varying length. The stability and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Function of aggregated reticulocyte ribosomes in protein synthesis.Alfred Gierer - 1963 - J. Mol. Biol 6:148-157.
    Applying mild methods of preparation, part of the ribosomes of rabbit reticulocytes are found in aggregates (later called polyribosomes) of up to six ribosomal units. Upon treatment with RNA-ase, they desintegrate into single ribosomes. The fast-sedimenting aggregates are found to be more active in protein synthesis in terms of incorporation of radioactive amino acids, whereas the single ribosomes are more receptive to stimulation by the artificial messenger RNA poly-U. The findings indicate that the linkage of ribosomes into aggregates is due (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Estimation of C-Reactive Protein, Immunoglobulin’s and Complements in SCD Patients.Maha Khalaf Al-Mishry, Nadhim K. Mahdi & Sadeq K. Ali AlSalait - 2018 - International Journal of Academic Health and Medical Research (IJAHMR) 2 (6):1-4.
    Abstract: Sickle cell disease (SCD) comprises an inherited blood disorder that is life long and affects many people globally. Despite progress in therapy, SCA is a considerable cause of mortality and morbidity. This study was designed to measure the immunological and inflammatory parameters of patients with sickle cell disease (SCD) and to found if there is any role of it in the pathogenicity of the disease. This study included A total of 32 patients, their ages ranged from 16 to 55 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Quantum tunneling of three-spine solitons through excentric barriers.Danko D. Georgiev & James F. Glazebrook - 2022 - Physics Letters A 448:128319.
    Macromolecular protein complexes catalyze essential physiological processes that sustain life. Various interactions between protein subunits could increase the effective mass of certain peptide groups, thereby compartmentalizing protein α-helices. Here, we study the differential effects of applied massive barriers upon the soliton-assisted energy transport within proteins. We demonstrate that excentric barriers, localized onto a single spine in the protein α-helix, reflect or trap three-spine solitons as effectively as concentric barriers with comparable total mass. Furthermore, wider protein solitons, whose energy is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Towards a proteomics meta-classification.Anand Kumar & Barry Smith - 2004 - In IEEE Fourth Symposium on Bioinformatics and Bioengineering, Taichung, Taiwan. IEEE Press. pp. 419–427.
    that can serve as a foundation for more refined ontologies in the field of proteomics. Standard data sources classify proteins in terms of just one or two specific aspects. Thus SCOP (Structural Classification of Proteins) is described as classifying proteins on the basis of structural features; SWISSPROT annotates proteins on the basis of their structure and of parameters like post-translational modifications. Such data sources are connected to each other by pairwise term-to-term mappings. However, there are obstacles (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. Biochemical Kinds.Jordan Bartol - 2014 - British Journal for the Philosophy of Science (2):axu046.
    Chemical kinds (e.g. gold) are generally treated as having timelessly fixed identities. Biological kinds (e.g. goldfinches) are generally treated as evolved and/or evolving entities. So what kind of kind is a biochemical kind? This paper defends the thesis that biochemical molecules are clustered chemical kinds, some of which–namely, evolutionarily conserved units–are also biological kinds.On this thesis, a number of difficulties that have recently occupied philosophers concerned with proteins and kinds are shown to be resolved or dissolved.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  22. Two Dogmas of Biology.Leonore Fleming - 2017 - Philosophy, Theory, and Practice in Biology 9 (2).
    The problem with reductionism in biology is not the reduction, but the implicit attitude of determinism that usually accompanies it. Methodological reductionism is supported by deterministic beliefs, but making such a connection is problematic when it is based on an idea of determinism as fixed predictability. Conflating determinism with predictability gives rise to inaccurate models that overlook the dynamic complexity of our world, as well as ignore our epistemic limitations when we try to model it. Furthermore, the assumption of a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Medicinal Uses of Cashew (Anacardium occidentale): Review.Akram Muhammad & Talha Muhammad - 2021 - Journal of Science Technology and Research (JSTAR) 2 (1):1-10.
    The cashew nut is essential for physical and emotional well-being. It is an energetic diet and the best food medication for many illnesses. Nuts protects from malignant growth, coronary illness, circulatory strain, and various degenerative infirmities connected to aging. It can be used for several medicinal purposes. Every part of cashew has some important medicinal properties. Cashew kernel contains proteins, carbohydrates, vitamins, and fats which help gain energy. Cashew nuts are used for many purposes like blood sugar, weight loss, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Making sense of ‘genetic programs’: biomolecular Post–Newell production systems.Mihnea Capraru - 2024 - Biology and Philosophy 39 (2):1-12.
    The biomedical literature makes extensive use of the concept of a genetic program. So far, however, the nature of genetic programs has received no satisfactory elucidation from the standpoint of computer science. This unsettling omission has led to doubts about the very existence of genetic programs, on the grounds that gene regulatory networks lack a predetermined schedule of execution, which may seem to contradict the very idea of a program. I show, however, that we can make perfect sense of genetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Understanding Biology in the Age of Artificial Intelligence.Adham El Shazly, Elsa Lawerence, Srijit Seal, Chaitanya Joshi, Matthew Greening, Pietro Lio, Shantung Singh, Andreas Bender & Pietro Sormanni - manuscript
    Modern life sciences research is increasingly relying on artificial intelligence (AI) approaches to model biological systems, primarily centered around the use of machine learning (ML) models. Although ML is undeniably useful for identifying patterns in large, complex data sets, its widespread application in biological sciences represents a significant deviation from traditional methods of scientific inquiry. As such, the interplay between these models and scientific understanding in biology is a topic with important implications for the future of scientific research, yet it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Infectivity of ribonucleic acid from Tobacco Mosaic Virus.Alfred Gierer & Gerhard Schramm - 1956 - Nature 177:702-703.
    Upon separation of the protein from the nucleic acid component of tobacco mosaic virus by phenol, using a fast and gentle procedure, the nucleic acid is infective in assays on tobacco leaves. A series of qualitative and quantitative control experiments demonstrates that the biological activity cannot depend on residual proteins in the preparation, but is a property of isolated nucleic acid which is thus the genetic material of the virus.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  27. Object spaces: An organizing strategy for biological theorizing.Beckett Sterner - 2009 - Biological Theory 4 (3):280-286.
    A classic analytic approach to biological phenomena seeks to refine definitions until classes are sufficiently homogenous to support prediction and explanation, but this approach founders on cases where a single process produces objects with similar forms but heterogeneous behaviors. I introduce object spaces as a tool to tackle this challenging diversity of biological objects in terms of causal processes with well-defined formal properties. Object spaces have three primary components: (1) a combinatorial biological process such as protein synthesis that generates objects (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Robust processes and teleological language.Jonathan Birch - 2012 - European Journal for Philosophy of Science 2 (3):299-312.
    I consider some hitherto unexplored examples of teleological language in the sciences. In explicating these examples, I aim to show (a) that such language is not the sole preserve of the biological sciences, and (b) that not all such talk is reducible to the ascription of functions. In chemistry and biochemistry, scientists explaining molecular rearrangements and protein folding talk informally of molecules rearranging “in order to” maximize stability. Evolutionary biologists, meanwhile, often speak of traits evolving “in order to” optimize some (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. A New method for Analysis of Biomolecules Using the BSM-SG Atomic Models.Stoyan Sarg Sargoytchev - 2017 - J. Biom Biostat 8 (2):1000339.
    Biomolecules and particularly proteins and DNA exhibit some mysterious features that cannot find satisfactory explanation by quantum mechanical modes of atoms. One of them, known as a Levinthal’s paradox, is the ability to preserve their complex three-dimensional structure in appropriate environments. Another one is that they possess some unknown energy mechanism. The Basic Structures of Matter Supergravitation Unified Theory (BSM-SG) allows uncovering the real physical structures of the elementary particles and their spatial arrangement in atomic nuclei. The resulting physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Save the Meat for Cats: Why It’s Wrong to Eat Roadkill.Cheryl Abbate & C. E. Abbate - 2019 - Journal of Agricultural and Environmental Ethics 32 (1):165-182.
    Because factory-farmed meat production inflicts gratuitous suffering upon animals and wreaks havoc on the environment, there are morally compelling reasons to become vegetarian. Yet industrial plant agriculture causes the death of many field animals, and this leads some to question whether consumers ought to get some of their protein from certain kinds of non factory-farmed meat. Donald Bruckner, for instance, boldly argues that the harm principle implies an obligation to collect and consume roadkill and that strict vegetarianism is thus immoral. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  31. Biometaphysics.Barry Smith - 2009 - In Robin Le Poidevin, Simons Peter, McGonigal Andrew & Ross P. Cameron (eds.), The Routledge Companion to Metaphysics. New York: Routledge. pp. 537-544.
    While Darwin is commonly supposed to have demonstrated the inapplicability of the Aristotelian ontology of species to biological science, recent developments, especially in the wake of the Human Genome Project, have given rise to a new golden age of classification in which ontological ideas -- as for example in the Gene Ontology, the Cell Ontology, the Protein Ontology, and so forth -- are once again playing an important role. In regard to species, on the other hand, matters are more complex. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  32. Is the Cell Really a Machine?Daniel J. Nicholson - 2019 - Journal of Theoretical Biology 477:108–126.
    It has become customary to conceptualize the living cell as an intricate piece of machinery, different to a man-made machine only in terms of its superior complexity. This familiar understanding grounds the conviction that a cell's organization can be explained reductionistically, as well as the idea that its molecular pathways can be construed as deterministic circuits. The machine conception of the cell owes a great deal of its success to the methods traditionally used in molecular biology. However, the recent introduction (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  33. Rule Based System for Diagnosing Bean Diseases and Treatment.Mohammed H. S. Abueleiwa, Fadi E. S. Harara, Mustafa M. K. Al-Ghoul, Sami M. Okasha & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (5):67-74.
    Background: A bean is the seed of one of several genera of the flowering plant family Fabaceae, which are used as vegetables for human or animal food. They can be cooked in many different ways, including boiling, frying, and baking, and are used in many traditional dishes throughout the world. Beans are one of the longest-cultivated plants. Broad beans, also called fava beans, in their wild state the size of a small fingernail, were gathered in Afghanistan and the Himalayan foothills. (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  34. Messy Chemical Kinds.Joyce C. Havstad - 2018 - British Journal for the Philosophy of Science 69 (3):719-743.
    Following Kripke and Putnam, the received view of chemical kinds has been a microstructuralist one. To be a microstructuralist about chemical kinds is to think that membership in said kinds is conferred by microstructural properties. Recently, the received microstructuralist view has been elaborated and defended, but it has also been attacked on the basis of complexities, both chemical and ontological. Here, I look at which complexities really challenge the microstructuralist view; at how the view itself might be made more complicated (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  35.  59
    The Biological Framework for a Mathematical Universe.Ronald Williams - manuscript
    The mathematical universe hypothesis is a theory that the physical universe is not merely described by mathematics, but is mathematics, specifically a mathematical structure. Our research provides evidence that the mathematical structure of the universe is biological in nature and all systems, processes, and objects within the universe function in harmony with biological patterns. Living organisms are the result of the universe’s biological pattern and are embedded within their physiology the patterns of this biological universe. Therefore physiological patterns in living (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology.J. A. Shapiro - 2007 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 38 (4):807-819.
    Forty years’ experience as a bacterial geneticist has taught me that bacteria possess many cognitive, computational and evolutionary capabilities unimaginable in the first six decades of the twentieth century. Analysis of cellular processes such as metabolism, regulation of protein synthesis, and DNA repair established that bacteria continually monitor their external and internal environments and compute functional outputs based on information provided by their sensory apparatus. Studies of genetic recombination, lysogeny, antibiotic resistance and my own work on transposable elements revealed multiple (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  37. Genotype–phenotype mapping and the end of the ‘genes as blueprint’ metaphor.Massimo Pigliucci - 2010 - Philosophical Transactions Royal Society B 365:557–566.
    In a now classic paper published in 1991, Alberch introduced the concept of genotype–phenotype (G!P) mapping to provide a framework for a more sophisticated discussion of the integration between genetics and developmental biology that was then available. The advent of evo-devo first and of the genomic era later would seem to have superseded talk of transitions in phenotypic space and the like, central to Alberch’s approach. On the contrary, this paper shows that recent empirical and theoretical advances have only sharpened (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  38. Life-centered ethics, and the human future in space.Michael N. Mautner - 2008 - Bioethics 23 (8):433-440.
    In the future, human destiny may depend on our ethics. In particular, biotechnology and expansion in space can transform life, raising profound questions. Guidance may be found in Life-centered ethics, as biotic ethics that value the basic patterns of organic gene/protein life, and as panbiotic ethics that always seek to expand life. These life-centered principles can be based on scientific insights into the unique place of life in nature, and the biological unity of all life. Belonging to life then implies (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  39. The Central Dogma as a Thesis of Causal Specificity.Marcel Weber - 2006 - History and Philosophy of the Life Sciences 28 (4):595-610.
    I present a reconstruction of F.H.C. Crick's two 1957 hypotheses "Sequence Hypothesis" and "Central Dogma" in terms of a contemporary philosophical theory of causation. Analyzing in particular the experimental evidence that Crick cited, I argue that these hypotheses can be understood as claims about the actual difference-making cause in protein synthesis. As these hypotheses are only true if restricted to certain nucleic acids in certain organisms, I then examine the concept of causal specificity and its potential to counter claims about (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  40. Integrative pluralism for biological function.Beckett Sterner & Samuel Cusimano - 2019 - Biology and Philosophy 34 (6):1-21.
    We introduce a new type of pluralism about biological function that, in contrast to existing, demonstrates a practical integration among the term’s different meanings. In particular, we show how to generalize Sandra Mitchell’s notion of integrative pluralism to circumstances where multiple epistemic tools of the same type are jointly necessary to solve scientific problems. We argue that the multiple definitions of biological function operate jointly in this way based on how biologists explain the evolution of protein function. To clarify how (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  41. Macromolecular Pluralism.Matthew H. Slater - 2009 - Philosophy of Science 76 (5):851-863.
    Different chemical species are often cited as paradigm examples of structurally delimited natural kinds. While classificatory monism may thus seem plausible for simple molecules, it looks less attractive for complex biological macromolecules. I focus on the case of proteins that are most plausibly individuated by their functions. Is there a single, objective count of proteins? I argue that the vagaries of function individuation infect protein classification. We should be pluralists about macromolecular classification.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  42. A critical review of the ethical and legal issues in human germline gene editing: Considering human rights and a call for an African perspective.B. Shozi - 2020 - South African Journal of Bioethics and Law 13 (1):62.
    In the wake of the advent of genome editing technology CRISPR-Cas9 (clustered regularly interspaced palindromic repeat (CRISPR)-associated protein 9), there has been a global debate around the implications of manipulating the human genome. While CRISPR-based germline gene editing is new, the debate about the ethics of gene editing is not – for several decades now, scholars have debated the ethics of making heritable changes to the human genome. The arguments that have been raised both for and against the use of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  43. A semiotic analysis of the genetic information.Charbel El-Hani, Joao Queiroz & Claus Emmeche - 2006 - Semiotica - Journal of the International Association for Semiotic Studies / Revue de l'Association Internationale de Sémiotique 1 (4):1-68.
    Terms loaded with informational connotations are often employed to refer to genes and their dynamics. Indeed, genes are usually perceived by biologists as basically ‘the carriers of hereditary information.’ Nevertheless, a number of researchers consider such talk as inadequate and ‘just metaphorical,’ thus expressing a skepticism about the use of the term ‘information’ and its derivatives in biology as a natural science. First, because the meaning of that term in biology is not as precise as it is, for instance, in (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  44. On the Limits of Causal Modeling: Spatially-Structurally Complex Biological Phenomena.Marie I. Kaiser - 2016 - Philosophy of Science 83 (5):921-933.
    This paper examines the adequacy of causal graph theory as a tool for modeling biological phenomena and formalizing biological explanations. I point out that the causal graph approach reaches it limits when it comes to modeling biological phenomena that involve complex spatial and structural relations. Using a case study from molecular biology, DNA-binding and -recognition of proteins, I argue that causal graph models fail to adequately represent and explain causal phenomena in this field. The inadequacy of these models is (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  45. Cytoskeleton and Consciousness: An Evolutionary Based Review.Contzen Pereira - 2015 - Neuroquantology 13 (2).
    The fields of quantum biology and physics are now starting to unite to solve the mysteries associated with the field of evolutionary biology. One such question is the origination and propagation of consciousness which has always been ambiguous and in order to understand this concept, many theories have been proposed by several philosophers and scientists. This review paper agrees with the idea, that evolution is not a random process but hypothesizes, that its succession was managed by the expanding level of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. A comprehensive update on CIDO: the community-based coronavirus infectious disease ontology.Yongqun He, Hong Yu, Anthony Huffman, Asiyah Yu Lin, Darren A. Natale, John Beverley, Ling Zheng, Yehoshua Perl, Zhigang Wang, Yingtong Liu, Edison Ong, Yang Wang, Philip Huang, Long Tran, Jinyang Du, Zalan Shah, Easheta Shah, Roshan Desai, Hsin-hui Huang, Yujia Tian, Eric Merrell, William D. Duncan, Sivaram Arabandi, Lynn M. Schriml, Jie Zheng, Anna Maria Masci, Liwei Wang, Hongfang Liu, Fatima Zohra Smaili, Robert Hoehndorf, Zoë May Pendlington, Paola Roncaglia, Xianwei Ye, Jiangan Xie, Yi-Wei Tang, Xiaolin Yang, Suyuan Peng, Luxia Zhang, Luonan Chen, Junguk Hur, Gilbert S. Omenn, Brian Athey & Barry Smith - 2022 - Journal of Biomedical Semantics 13 (1):25.
    The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. SynBio 2.0, a new era for synthetic life: Neglected essential functions for resilience.Antoine Danchin & Jian Dong Huang - 2022 - Environmental Microbiology 25 (1):64-78.
    Synthetic biology (SynBio) covers two main areas: application engineering, exemplified by metabolic engi- neering, and the design of life from artificial building blocks. As the general public is often reluctant to embrace synthetic approaches, preferring nature to artifice, its immediate future will depend very much on the public’s reaction to the unmet needs created by the pervasive demands of sustainability. On the other hand, this reluctance should not have a negative impact on research that will now take into account the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Human achievement and artificial intelligence.Brett Karlan - 2023 - Ethics and Information Technology 25 (3):1-12.
    In domains as disparate as playing Go and predicting the structure of proteins, artificial intelligence (AI) technologies have begun to perform at levels beyond which any humans can achieve. Does this fact represent something lamentable? Does superhuman AI performance somehow undermine the value of human achievements in these areas? Go grandmaster Lee Sedol suggested as much when he announced his retirement from professional Go, blaming the advances of Go-playing programs like AlphaGo for sapping his will to play the game (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. The Plant Ontology as a Tool for Comparative Plant Anatomy and Genomic Analyses.Laurel Cooper, Ramona Walls, Justin Elser, Maria A. Gandolfo, Dennis W. Stevenson, Barry Smith & Others - 2013 - Plant and Cell Physiology 54 (2):1-23..
    The Plant Ontology (PO; http://www.plantontology.org/) is a publicly-available, collaborative effort to develop and maintain a controlled, structured vocabulary (“ontology”) of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, the scope of the PO has been expanded (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  50. Three overlooked key functional classes for building up minimal synthetic cells.Antoine Danchin - 2021 - Synthetic Biology 6 (1):ysab010.
    Assembly of minimal genomes revealed many genes encoding unknown functions. Three overlooked functional categories account for some of them. Cells are prone to make errors and age. As a first key function, discrimination between proper and changed entities is indispensable. Discrimination requires management of information, an authentic, yet abstract, cur- rency of reality. For example proteins age, sometimes very fast. The cell must identify, then get rid of old proteins without destroying young ones. Implementing discrimination in cells leads (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 124