Results for 'recursion theorem'

982 found
Order:
  1. On Rudimentarity, Primitive Recursivity and Representability.Saeed Salehi - 2020 - Reports on Mathematical Logic 55:73–85.
    It is quite well-known from Kurt G¨odel’s (1931) ground-breaking Incompleteness Theorem that rudimentary relations (i.e., those definable by bounded formulae) are primitive recursive, and that primitive recursive functions are representable in sufficiently strong arithmetical theories. It is also known, though perhaps not as well-known as the former one, that some primitive recursive relations are not rudimentary. We present a simple and elementary proof of this fact in the first part of the paper. In the second part, we review some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Decidable Formulas Of Intuitionistic Primitive Recursive Arithmetic.Saeed Salehi - 2002 - Reports on Mathematical Logic 36 (1):55-61.
    By formalizing some classical facts about provably total functions of intuitionistic primitive recursive arithmetic (iPRA), we prove that the set of decidable formulas of iPRA and of iΣ1+ (intuitionistic Σ1-induction in the language of PRA) coincides with the set of its provably ∆1-formulas and coincides with the set of its provably atomic formulas. By the same methods, we shall give another proof of a theorem of Marković and De Jongh: the decidable formulas of HA are its provably ∆1-formulas.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Arrow's theorem, ultrafilters, and reverse mathematics.Benedict Eastaugh - forthcoming - Review of Symbolic Logic.
    This paper initiates the reverse mathematics of social choice theory, studying Arrow's impossibility theorem and related results including Fishburn's possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in RCA0. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in RCA0. This approach yields a proof of Arrow's (...) in RCA0, and thus in PRA, since Arrow's theorem can be formalised as a Π01 sentence. Finally we show that Fishburn's possibility theorem for countable societies is equivalent to ACA0 over RCA0. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Implications of computer science theory for the simulation hypothesis.David Wolpert - manuscript
    The simulation hypothesis has recently excited renewed interest, especially in the physics and philosophy communities. However, the hypothesis specifically concerns {computers} that simulate physical universes, which means that to properly investigate it we need to couple computer science theory with physics. Here I do this by exploiting the physical Church-Turing thesis. This allows me to introduce a preliminary investigation of some of the computer science theoretic aspects of the simulation hypothesis. In particular, building on Kleene's second recursion theorem, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7. Simulating Halt Decider Applied to the Halting Theorem.P. Olcott - manuscript
    The novel concept of a simulating halt decider enables halt decider H to to correctly determine the halt status of the conventional “impossible” input D that does the opposite of whatever H decides. This works equally well for Turing machines and “C” functions. The algorithm is demonstrated using “C” functions because all of the details can be shown at this high level of abstraction. ---------------------------------------------------------------------------------------------------- ---- Simulating halt decider H correctly determines that D correctly simulated by H would remain stuck in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Říká logicismus něco, co se říkat nemá?Vojtěch Kolman - 2010 - Teorie Vědy / Theory of Science 32 (1):37-57.
    The objective of this paper is to analyze the broader significance of Frege’s logicist project against the background of Wittgenstein’s philosophy from both Tractatus and Philosophical Investigations. The article draws on two basic observations, namely that Frege’s project aims at saying something that was only implicit in everyday arithmetical practice, as the so-called recursion theorem demonstrates, and that the explicitness involved in logicism does not concern the arithmetical operations themselves, but rather the way they are defined. It thus (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Self-graphing equations.Samuel Alexander - manuscript
    Can you find an xy-equation that, when graphed, writes itself on the plane? This idea became internet-famous when a Wikipedia article on Tupper’s self-referential formula went viral in 2012. Under scrutiny, the question has two flaws: it is meaningless (it depends on fonts) and it is trivial. We fix these flaws by formalizing the problem.
    Download  
     
    Export citation  
     
    Bookmark  
  10. Hilbert's 10th Problem for solutions in a subring of Q.Agnieszka Peszek & Apoloniusz Tyszka - 2019 - Scientific Annals of Computer Science 29 (1):101-111.
    Yuri Matiyasevich's theorem states that the set of all Diophantine equations which have a solution in non-negative integers is not recursive. Craig Smoryński's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. Let R be a subring of Q with or without 1. By H_{10}(R), we denote the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. A Machine That Knows Its Own Code.Samuel A. Alexander - 2014 - Studia Logica 102 (3):567-576.
    We construct a machine that knows its own code, at the price of not knowing its own factivity.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  12. Rebutting the Sipser Halting Problem Proof V2.P. Olcott - manuscript
    A simulating halt decider correctly predicts what the behavior of its input would be if this simulated input never had its simulation aborted. It does this by correctly recognizing several non-halting behavior patterns in a finite number of steps of correct simulation. -/- When simulating halt decider H correctly predicts that directly executed D(D) would remain stuck in recursive simulation (run forever) unless H aborts its simulation of D this directly applies to the halting theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  13. A Categorical Characterization of Accessible Domains.Patrick Walsh - 2019 - Dissertation, Carnegie Mellon University
    Inductively defined structures are ubiquitous in mathematics; their specification is unambiguous and their properties are powerful. All fields of mathematical logic feature these structures prominently: the formula of a language, the set of theorems, the natural numbers, the primitive recursive functions, the constructive number classes and segments of the cumulative hierarchy of sets. -/- This dissertation gives a mathematical characterization of a species of inductively defined structures, called accessible domains, which include all of the above examples except the set of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. (1 other version)Truth in the Theory of Meaning.Ernie Lepore & Kirk Ludwig - 2013 - In Ernie Lepore & Kurt Ludwig (eds.), Blackwell Companion to Donald Davidson. Blackwell. pp. 173–190.
    In this chapter, we defend the view that Davidson aimed not to replace the theory of meaning with the theory of truth, or to capture only certain features of the ordinary notion of meaning for certain theoretical purposes, but rather to pursue the traditional project of explaining in the broadest terms “what it is for words to mean what they do” through a clever bit of indirection, namely, by exploiting the recursive structure of a Tarskian‐style truth theory, which meets certain (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Variable Binding Term Operators.John Corcoran, William Hatcher & John Herring - 1972 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 18 (12):177-182.
    Chapin reviewed this 1972 ZEITSCHRIFT paper that proves the completeness theorem for the logic of variable-binding-term operators created by Corcoran and his student John Herring in the 1971 LOGIQUE ET ANALYSE paper in which the theorem was conjectured. This leveraging proof extends completeness of ordinary first-order logic to the extension with vbtos. Newton da Costa independently proved the same theorem about the same time using a Henkin-type proof. This 1972 paper builds on the 1971 “Notes on a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  16. Maximally Consistent Sets of Instances of Naive Comprehension.Luca Incurvati & Julien Murzi - 2017 - Mind 126 (502).
    Paul Horwich (1990) once suggested restricting the T-Schema to the maximally consistent set of its instances. But Vann McGee (1992) proved that there are multiple incompatible such sets, none of which, given minimal assumptions, is recursively axiomatizable. The analogous view for set theory---that Naïve Comprehension should be restricted according to consistency maxims---has recently been defended by Laurence Goldstein (2006; 2013). It can be traced back to W.V.O. Quine(1951), who held that Naïve Comprehension embodies the only really intuitive conception of set (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume I.Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali - 2018 - Basel, Switzerland: MDPI. Edited by Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali.
    The topics approached in the 52 papers included in this book are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single valued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume II.Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali - 2019 - Basel, Switzerland: MDPI.
    The topics approached in this collection of papers are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single valued trapezoidal neutrosophic number; (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Arithmetic logical Irreversibility and the Halting Problem (Revised and Fixed version).Yair Lapin - manuscript
    The Turing machine halting problem can be explained by several factors, including arithmetic logic irreversibility and memory erasure, which contribute to computational uncertainty due to information loss during computation. Essentially, this means that an algorithm can only preserve information about an input, rather than generate new information. This uncertainty arises from characteristics such as arithmetic logical irreversibility, Landauer's principle, and memory erasure, which ultimately lead to a loss of information and an increase in entropy. To measure this uncertainty and loss (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Diagonal arguments and fixed points.Saeed Salehi - 2017 - Bulletin of the Iranian Mathematical Society 43 (5):1073-1088.
    ‎A universal schema for diagonalization was popularized by N. S‎. ‎Yanofsky (2003)‎, ‎based on a pioneering work of F.W‎. ‎Lawvere (1969)‎, ‎in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function‎. ‎It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema‎. ‎Here‎, ‎we fit more theorems in the universal‎ ‎schema of diagonalization‎, ‎such as Euclid's proof for the infinitude of the primes and new proofs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Natural Topology.Frank Waaldijk - 2012 - Brouwer Society.
    We develop a simple framework called ‘natural topology’, which can serve as a theoretical and applicable basis for dealing with real-world phenomena.Natural topology is tailored to make pointwise and pointfree notions go together naturally. As a constructive theory in BISH, it gives a classical mathematician a faithful idea of important concepts and results in intuitionism. -/- Natural topology is well-suited for practical and computational purposes. We give several examples relevant for applied mathematics, such as the decision-support system Hawk-Eye, and various (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Natural Recursion Doesn’t Work That Way: Automata in Planning and Syntax.Cem Bozsahin - 2016 - In Vincent C. Müller (ed.), Fundamental Issues of Artificial Intelligence. Cham: Springer. pp. 95-112.
    Natural recursion in syntax is recursion by linguistic value, which is not syntactic in nature but semantic. Syntax-specific recursion is not recursion by name as the term is understood in theoretical computer science. Recursion by name is probably not natural because of its infinite typeability. Natural recursion, or recursion by value, is not species-specific. Human recursion is not syntax-specific. The values on which it operates are most likely domain-specific, including those for syntax. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Representation theorems and the foundations of decision theory.Christopher Meacham & Jonathan Weisberg - 2011 - Australasian Journal of Philosophy 89 (4):641 - 663.
    Representation theorems are often taken to provide the foundations for decision theory. First, they are taken to characterize degrees of belief and utilities. Second, they are taken to justify two fundamental rules of rationality: that we should have probabilistic degrees of belief and that we should act as expected utility maximizers. We argue that representation theorems cannot serve either of these foundational purposes, and that recent attempts to defend the foundational importance of representation theorems are unsuccessful. As a result, we (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  24. (1 other version)Jury Theorems.Franz Dietrich & Kai Spiekermann - 2019 - In Miranda Fricker, Peter Graham, David Henderson & Nikolaj Jang Pedersen (eds.), The Routledge Handbook of Social Epistemology. New York, USA: Routledge.
    We give a review and critique of jury theorems from a social-epistemology perspective, covering Condorcet’s (1785) classic theorem and several later refinements and departures. We assess the plausibility of the conclusions and premises featuring in jury theorems and evaluate the potential of such theorems to serve as formal arguments for the ‘wisdom of crowds’. In particular, we argue (i) that there is a fundamental tension between voters’ independence and voters’ competence, hence between the two premises of most jury theorems; (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  25. Theorem proving in artificial neural networks: new frontiers in mathematical AI.Markus Pantsar - 2024 - European Journal for Philosophy of Science 14 (1):1-22.
    Computer assisted theorem proving is an increasingly important part of mathematical methodology, as well as a long-standing topic in artificial intelligence (AI) research. However, the current generation of theorem proving software have limited functioning in terms of providing new proofs. Importantly, they are not able to discriminate interesting theorems and proofs from trivial ones. In order for computers to develop further in theorem proving, there would need to be a radical change in how the software functions. Recently, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Jury Theorems for Peer Review.Marcus Arvan, Liam Kofi Bright & Remco Heesen - forthcoming - British Journal for the Philosophy of Science.
    Peer review is often taken to be the main form of quality control on academic research. Usually journals carry this out. However, parts of maths and physics appear to have a parallel, crowd-sourced model of peer review, where papers are posted on the arXiv to be publicly discussed. In this paper we argue that crowd-sourced peer review is likely to do better than journal-solicited peer review at sorting papers by quality. Our argument rests on two key claims. First, crowd-sourced peer (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  28. Puzzles for Recursive Reliabilism.Shun Iizuka - 2022 - Review of Analytic Philosophy 2 (1):55-73.
    The recursive aspect of process reliabilism has rarely been examined. The regress puzzle, which illustrates infinite regress arising from the combination of the recursive structure and the no-defeater condition incorporated into it, is a valuable exception. However, this puzzle can be dealt with in the framework of process reliabilism by reconsidering the relationship between the recursion and the no-defeater condition based on the distinction between prima facie and ultima facie justification. Thus, the regress puzzle is not a basis for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. A Representation Theorem for Frequently Irrational Agents.Edward Elliott - 2017 - Journal of Philosophical Logic 46 (5):467-506.
    The standard representation theorem for expected utility theory tells us that if a subject’s preferences conform to certain axioms, then she can be represented as maximising her expected utility given a particular set of credences and utilities—and, moreover, that having those credences and utilities is the only way that she could be maximising her expected utility. However, the kinds of agents these theorems seem apt to tell us anything about are highly idealised, being always probabilistically coherent with infinitely precise (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  30. Representation Theorems and Radical Interpretation.Edward J. R. Elliott - manuscript
    This paper begins with a puzzle regarding Lewis' theory of radical interpretation. On the one hand, Lewis convincingly argued that the facts about an agent's sensory evidence and choices will always underdetermine the facts about her beliefs and desires. On the other hand, we have several representation theorems—such as those of (Ramsey 1931) and (Savage 1954)—that are widely taken to show that if an agent's choices satisfy certain constraints, then those choices can suffice to determine her beliefs and desires. In (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Oversights in the Respective Theorems of von Neumann and Bell are Homologous.Joy Christian - manuscript
    We show that the respective oversights in the von Neumann's general theorem against all hidden variable theories and Bell's theorem against their local-realistic counterparts are homologous. When latter oversight is rectified, the bounds on the CHSH correlator work out to be ±2√2 instead of ±2.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Recursive predicates and quantifiers.S. C. Kleene - 1943 - Transactions of the American Mathematical Society 53:41-73.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  33. An Impossibility Theorem for Base Rate Tracking and Equalized Odds.Rush Stewart, Benjamin Eva, Shanna Slank & Reuben Stern - forthcoming - Analysis.
    There is a theorem that shows that it is impossible for an algorithm to jointly satisfy the statistical fairness criteria of Calibration and Equalised Odds non-trivially. But what about the recently advocated alternative to Calibration, Base Rate Tracking? Here, we show that Base Rate Tracking is strictly weaker than Calibration, and then take up the question of whether it is possible to jointly satisfy Base Rate Tracking and Equalised Odds in non-trivial scenarios. We show that it is not, thereby (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  34. Theorems and Models in Political Theory: An Application to Pettit on Popular Control.Sean Ingham - 2015 - The Good Society 24 (1):98-117.
    Pettit (2012) presents a model of popular control over government, according to which it consists in the government being subject to those policy-making norms that everyone accepts. In this paper, I provide a formal statement of this interpretation of popular control, which illuminates its relationship to other interpretations of the idea with which it is easily conflated, and which gives rise to a theorem, similar to the famous Gibbard-Satterthwaite theorem. The theorem states that if government policy is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Bell’s Theorem, Quantum Probabilities, and Superdeterminism.Eddy Keming Chen - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  36. Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. The Π-Theorem as a Guide to Quantity Symmetries and the Argument Against Absolutism.Mahmoud Jalloh - 2024 - In Dean W. Zimmerman & Karen Bennett (eds.), Oxford Studies in Metaphysics Volume 14. Oxford University Press.
    In this paper a symmetry argument against quantity absolutism is amended. Rather than arguing against the fundamentality of intrinsic quantities on the basis of transformations of basic quantities, a class of symmetries defined by the Π-theorem is used. This theorem is a fundamental result of dimensional analysis and shows that all unit-invariant equations which adequately represent physical systems can be put into the form of a function of dimensionless quantities. Quantity transformations that leave those dimensionless quantities invariant are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. What is Radical Recursion?Steven M. Rosen - 2004 - SEED Journal 4 (1):38-57.
    Recursion or self-reference is a key feature of contemporary research and writing in semiotics. The paper begins by focusing on the role of recursion in poststructuralism. It is suggested that much of what passes for recursion in this field is in fact not recursive all the way down. After the paradoxical meaning of radical recursion is adumbrated, topology is employed to provide some examples. The properties of the Moebius strip prove helpful in bringing out the dialectical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Arrow's theorem in judgment aggregation.Franz Dietrich & Christian List - 2007 - Social Choice and Welfare 29 (1):19-33.
    In response to recent work on the aggregation of individual judgments on logically connected propositions into collective judgments, it is often asked whether judgment aggregation is a special case of Arrowian preference aggregation. We argue for the converse claim. After proving two impossibility theorems on judgment aggregation (using "systematicity" and "independence" conditions, respectively), we construct an embedding of preference aggregation into judgment aggregation and prove Arrow’s theorem (stated for strict preferences) as a corollary of our second result. Although we (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  40. An impossibility theorem for amalgamating evidence.Jacob Stegenga - 2013 - Synthese 190 (12):2391-2411.
    Amalgamating evidence of different kinds for the same hypothesis into an overall confirmation is analogous, I argue, to amalgamating individuals’ preferences into a group preference. The latter faces well-known impossibility theorems, most famously “Arrow’s Theorem”. Once the analogy between amalgamating evidence and amalgamating preferences is tight, it is obvious that amalgamating evidence might face a theorem similar to Arrow’s. I prove that this is so, and end by discussing the plausibility of the axioms required for the theorem.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  41. Bell's Theorem Begs the Question.Joy Christian - manuscript
    I demonstrate that Bell's theorem is based on circular reasoning and thus a fundamentally flawed argument. It unjustifiably assumes the additivity of expectation values for dispersion-free states of contextual hidden variable theories for non-commuting observables involved in Bell-test experiments, which is tautologous to assuming the bounds of ±2 on the Bell-CHSH sum of expectation values. Its premises thus assume in a different guise the bounds of ±2 it sets out to prove. Once this oversight is ameliorated from Bell's argument (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Consciousness as Recursive, Spatiotemporal Self Location.Frederic Peters - 2010 - Psychological Research.
    At the phenomenal level, consciousness can be described as a singular, unified field of recursive self-awareness, consistently coherent in a particualr way; that of a subject located both spatially and temporally in an egocentrically-extended domain, such that conscious self-awareness is explicitly characterized by I-ness, now-ness and here-ness. The psychological mechanism underwriting this spatiotemporal self-locatedness and its recursive processing style involves an evolutionary elaboration of the basic orientative reference frame which consistently structures ongoing spatiotemporal self-location computations as i-here-now. Cognition computes action-output (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  43. Theoremizing Yablo's Paradox.Ahmad Karimi & Saeed Salehi - manuscript
    To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self--reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided self--reference. We turn Yablo's paradox, the most challenging paradox in the recent years, into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo's paradox comes in several varieties; and he showed in 2004 that there are other versions that are equally paradoxical. Formalizing these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  45. An Arrovian Impossibility Theorem for the Epistemology of Disagreement.Nicholaos Jones - 2012 - Logos and Episteme 3 (1):97-115.
    According to conciliatory views about the epistemology of disagreement, when epistemic peers have conflicting doxastic attitudes toward a proposition and fully disclose to one another the reasons for their attitudes toward that proposition (and neither has independent reason to believe the other to be mistaken), each peer should always change his attitude toward that proposition to one that is closer to the attitudes of those peers with which there is disagreement. According to pure higher-order evidence views, higher-order evidence for a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Agreement theorems for self-locating belief.Michael Caie - 2016 - Review of Symbolic Logic 9 (2):380-407.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Fermat’s Last Theorem Proved by Induction (and Accompanied by a Philosophical Comment).Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (8):1-8.
    A proof of Fermat’s last theorem is demonstrated. It is very brief, simple, elementary, and absolutely arithmetical. The necessary premises for the proof are only: the three definitive properties of the relation of equality (identity, symmetry, and transitivity), modus tollens, axiom of induction, the proof of Fermat’s last theorem in the case of n = 3 as well as the premises necessary for the formulation of the theorem itself. It involves a modification of Fermat’s approach of infinite (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. The Reasons Aggregation Theorem.Ralph Wedgwood - 2022 - Oxford Studies in Normative Ethics 12:127-148.
    Often, when one faces a choice between alternative actions, there are reasons both for and against each alternative. On one way of understanding these words, what one “ought to do all things considered (ATC)” is determined by the totality of these reasons. So, these reasons can somehow be “combined” or “aggregated” to yield an ATC verdict on these alternatives. First, various assumptions about this sort of aggregation of reasons are articulated. Then it is shown that these assumptions allow for the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49. The Reciprocal of The Butterfly Theorem.Ion Pătrașcu & Florentin Smarandache - unknown
    In this paper, we present two proofs of the reciprocal butterfly theorem. The statement of the butterfly theorem is: Let us consider a chord PQ of midpoint M in the circle Ω(O). Through M, two other chords AB and CD are drawn, such that A and C are on the same side of PQ. We denote by X and U the intersection of AD respectively CB with PQ. Consequently, XM = YM. For the proof of this theorem, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Eliminating the ordinals from proofs. An analysis of transfinite recursion.Edoardo Rivello - 2014 - In Proceedings of the Conference "Philosophy, Mathematics, Linguistics. Aspects of Interaction", St. Petersburg, April 21-25, 2014. pp. 174-184.
    Transfinite ordinal numbers enter mathematical practice mainly via the method of definition by transfinite recursion. Outside of axiomatic set theory, there is a significant mathematical tradition in works recasting proofs by transfinite recursion in other terms, mostly with the intention of eliminating the ordinals from the proofs. Leaving aside the different motivations which lead each specific case, we investigate the mathematics of this action of proof transforming and we address the problem of formalising the philosophical notion of elimination (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 982