Results for 'urn learning'

968 found
Order:
  1. Self-Assembling Networks.Jeffrey A. Barrett, Brian Skyrms & Aydin Mohseni - 2019 - British Journal for the Philosophy of Science 70 (1):1-25.
    We consider how an epistemic network might self-assemble from the ritualization of the individual decisions of simple heterogeneous agents. In such evolved social networks, inquirers may be significantly more successful than they could be investigating nature on their own. The evolved network may also dramatically lower the epistemic risk faced by even the most talented inquirers. We consider networks that self-assemble in the context of both perfect and imperfect communication and compare the behaviour of inquirers in each. This provides a (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  2. Learning and Business Incubation Processes and Their Impact on Improving the Performance of Business Incubators.Shehada Y. Rania, El Talla A. Suliman, J. Shobaki Mazen & Samy S. Abu-Naser - 2020 - International Journal of Academic Multidisciplinary Research (IJAMR) 4 (5):120-142.
    This study aimed to identify the learning and business incubation processes and their impact on developing the performance of business incubators in Gaza Strip, and the study relied on the descriptive analytical approach, and the study population consisted of all employees working in business incubators in Gaza Strip in addition to experts and consultants in incubators where their total number reached (62) individuals, and the researchers used the questionnaire as a main tool to collect data through the comprehensive survey (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Learning Incommensurate Concepts.Hayley Clatterbuck & Hunter Gentry - forthcoming - Synthese.
    A central task of developmental psychology and philosophy of science is to show how humans learn radically new concepts. Famously, Fodor has argued that such learning is impossible if concepts have definitional structure and all learning is hypothesis testing. We present several learning processes that can generate novel concepts. They yield transformations of the fundamental feature space, generating new similarity structures which can underlie conceptual change. This framework provides a tractable, empiricist-friendly account that unifies and shores up (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Deep learning and synthetic media.Raphaël Millière - 2022 - Synthese 200 (3):1-27.
    Deep learning algorithms are rapidly changing the way in which audiovisual media can be produced. Synthetic audiovisual media generated with deep learning—often subsumed colloquially under the label “deepfakes”—have a number of impressive characteristics; they are increasingly trivial to produce, and can be indistinguishable from real sounds and images recorded with a sensor. Much attention has been dedicated to ethical concerns raised by this technological development. Here, I focus instead on a set of issues related to the notion of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. Perceptual Learning and the Contents of Perception.Kevin Connolly - 2014 - Erkenntnis 79 (6):1407-1418.
    Suppose you have recently gained a disposition for recognizing a high-level kind property, like the property of being a wren. Wrens might look different to you now. According to the Phenomenal Contrast Argument, such cases of perceptual learning show that the contents of perception can include high-level kind properties such as the property of being a wren. I detail an alternative explanation for the different look of the wren: a shift in one’s attentional pattern onto other low-level properties. Philosophers (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  6. Perceptual learning and reasons‐responsiveness.Zoe Jenkin - 2022 - Noûs 57 (2):481-508.
    Perceptual experiences are not immediately responsive to reasons. You see a stick submerged in a glass of water as bent no matter how much you know about light refraction. Due to this isolation from reasons, perception is traditionally considered outside the scope of epistemic evaluability as justified or unjustified. Is perception really as independent from reasons as visual illusions make it out to be? I argue no, drawing on psychological evidence from perceptual learning. The flexibility of perceptual learning (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  7.  54
    Autonomous Learning in Religious Education in Slovakia.Jana Kucharová - 2024 - Theology and Philosophy of Education 3 (1):5-11.
    The article deals with the issue of autonomous learning in the context of religious education. It offers a definition of autonomous learning and its characteristics. Autonomous learning is subsequently included in the context of religious education. The implementation of autonomous learning in the teaching of religious education is carried out based on the competency model of religious education, which is part of the prepared curriculum for this subject in Slovakia. The paper justifies using autonomous learning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Perceptual learning.Zoe Jenkin - 2023 - Philosophy Compass 18 (6):e12932.
    Perception provides us with access to the external world, but that access is shaped by our own experiential histories. Through perceptual learning, we can enhance our capacities for perceptual discrimination, categorization, and attention to salient properties. We can also encode harmful biases and stereotypes. This article reviews interdisciplinary research on perceptual learning, with an emphasis on the implications for our rational and normative theorizing. Perceptual learning raises the possibility that our inquiries into topics such as epistemic justification, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  9.  46
    Machine Learning-Based Intrusion Detection Framework for Detecting Security Attacks in Internet of Things.Jones Serena - manuscript
    The proliferation of the Internet of Things (IoT) has transformed various industries by enabling smart environments and improving operational efficiencies. However, this expansion has introduced numerous security vulnerabilities, making IoT systems prime targets for cyberattacks. This paper proposes a machine learning-based intrusion detection framework tailored to the unique characteristics of IoT environments. The framework leverages feature engineering, advanced machine learning algorithms, and real-time anomaly detection to identify and mitigate security threats effectively. Experimental results demonstrate the efficacy of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Learning Motivation and Utilization of Virtual Media in Learning Mathematics.Almighty Tabuena & Jupeth Pentang - 2021 - Asia-Africa Journal of Recent Scientific Research 1 (1):65-75.
    This study aims to describe the learning motivation of students using virtual media when they are learning mathematics in grade 5. The research design applied in this research is classroom action research. The research is conducted in two phases which involve planning, action and observation and reflection. The results of the study revealed that intrinsic motivation to learn is most prevalent in the form of fun to learn mathematics with virtual media. Other forms of intrinsic motivation include curiosity, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  11. Bayesian Learning Models of Pain: A Call to Action.Abby Tabor & Christopher Burr - 2019 - Current Opinion in Behavioral Sciences 26:54-61.
    Learning is fundamentally about action, enabling the successful navigation of a changing and uncertain environment. The experience of pain is central to this process, indicating the need for a change in action so as to mitigate potential threat to bodily integrity. This review considers the application of Bayesian models of learning in pain that inherently accommodate uncertainty and action, which, we shall propose are essential in understanding learning in both acute and persistent cases of pain.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. Learning Places: Building Dwelling Thinking Online.David Kolb - 2000 - Journal of Philosophy of Education 34 (1):121-133.
    Lack of information is hardly our problem. Information comes at us in waves, sloshing out of the magazine rack, lapping at our computer monitors. It repeats and repeats on all-day news shows. It comes neatly packaged as sound bites, or little nuggets ready for trivia games. We have plenty of information, but it is not often the information we need. Even if it is, we need to learn how to deal with it. It is not just the amount, but the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  13. Perceptual Learning Explains Two Candidates for Cognitive Penetration.Valtteri Arstila - 2016 - Erkenntnis 81 (6):1151-1172.
    The cognitive penetrability of perceptual experiences has been a long-standing topic of disagreement among philosophers and psychologists. Although the notion of cognitive penetrability itself has also been under dispute, the debate has mainly focused on the cases in which cognitive states allegedly penetrate perceptual experiences. This paper concerns the plausibility of two prominent cases. The first one originates from Susanna Siegel’s claim that perceptual experiences can represent natural kind properties. If this is true, then the concepts we possess change the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  14. Learning Organizations and Their Role in Achieving Organizational Excellence in the Palestinian Universities.Mazen J. Al Shobaki, Samy S. Abu Naser, Youssef M. Abu Amuna & Amal A. Al Hila - 2017 - International Journal of Digital Publication Technology 1 (2):40-85.
    The research aims to identify the learning organizations and their role in achieving organizational excellence in the Palestinian universities in Gaza Strip. The researchers used descriptive analytical approach and used the questionnaire as a tool for information gathering. The questionnaires were distributed to senior management in the Palestinian universities. The study population reached (344) employees in senior management is dispersed over (3) Palestinian universities. A stratified random sample of (182) workers from the Palestinian universities was selected and the recovery (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  15. Evaluation of School Learning Continuity Plan (LCP) Utilizing Context, Input, Process, and Product (CIPP) Model.Ananias Yunzal Jr, Melbert Hungo & Leomarich Casinillo - 2024 - Jpi (Jurnal Pendidikan Indonesia) 13 (2):226-237.
    The pandemic disrupted educational systems globally, prompting the need for alternative learning modalities like online, modular, and blended learning. The SLCP, particularly within the context of a school in Region 8, integrates these modalities to address essential learning competencies. This research paper aimed to evaluate the school Learning Continuity Plan (LCP) through its School Continuity Learning Plan Program using (CIPP) model of evaluation. Employing a qualitative design, data were gathered through purposive interviews with 1 non-teaching (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Social learning through process improvements in Russia.Tatiana Medvedeva & Stuart Umpleby - 2002 - In Robert Trappl (ed.), Cybernetics and Systems. Austrian Society for Cybernetics Studies. pp. 2.
    The Russian people are struggling to learn how to create a democracy and a market economy. This paper reviews the results of reform efforts to date and what the Russian people are learning as indicated by changes in answers to public opinion surveys. As a way to continue the social learning process in Russia we suggest the widespread use of process improvement methods in organizations. This paper describes some Russian experiences in using process improvement methods and proposes a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Learning to Discriminate: The Perfect Proxy Problem in Artificially Intelligent Criminal Sentencing.Benjamin Davies & Thomas Douglas - 2022 - In Jesper Ryberg & Julian V. Roberts (eds.), Sentencing and Artificial Intelligence. Oxford: OUP.
    It is often thought that traditional recidivism prediction tools used in criminal sentencing, though biased in many ways, can straightforwardly avoid one particularly pernicious type of bias: direct racial discrimination. They can avoid this by excluding race from the list of variables employed to predict recidivism. A similar approach could be taken to the design of newer, machine learning-based (ML) tools for predicting recidivism: information about race could be withheld from the ML tool during its training phase, ensuring that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  18. Modular Learning Efficiency: Learner’s Attitude and Performance Towards Self-Learning Modules.April Clarice C. Bacomo, Lucy P. Daculap, Mary Grace O. Ocampo, Crystalyn D. Paguia, Jupeth Pentang & Ronalyn M. Bautista - 2022 - IOER International Multidisciplinary Research Journal 4 (2):60-72.
    Learner’s attitude towards modular distance learning catches uncertainties as a world crisis occurs up to this point. As self-learning modules (SLMs) become a supplemental means of learning in new normal education, this study investigated efficiency towards the learners’ attitude and performance. Specifically, the study described the learners’ profile and their attitude and performance towards SLMs. It also ascertained the relationship between the learner’s profile with their attitude and performance, as well as the relationship between attitude and performance (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  19. Perceptual learning, the mere exposure effect and aesthetic antirealism.Bence Nanay - 2017 - Leonardo 50:58-63.
    It has been argued that some recent experimental findings about the mere exposure effect can be used to argue for aesthetic antirealism: the view that there is no fact of the matter about aesthetic value. The aim of this paper is to assess this argument and point out that this strategy, as it stands, does not work. But we may still be able to use experimental findings about the mere exposure effect in order to engage with the aesthetic realism/antirealism debate. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  20. Distributed learning: Educating and assessing extended cognitive systems.Richard Heersmink & Simon Knight - 2018 - Philosophical Psychology 31 (6):969-990.
    Extended and distributed cognition theories argue that human cognitive systems sometimes include non-biological objects. On these views, the physical supervenience base of cognitive systems is thus not the biological brain or even the embodied organism, but an organism-plus-artifacts. In this paper, we provide a novel account of the implications of these views for learning, education, and assessment. We start by conceptualising how we learn to assemble extended cognitive systems by internalising cultural norms and practices. Having a better grip on (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  21. Learning to love the reviewer.Quan-Hoang Vuong - 2017 - European Science Editing 43 (4):83-83.
    Learning to love the reviewer -/- Issue: 43(4) November 2017. Viewpoint Page 83 -/- Quan Hoang Vuong Western University Hanoi, Centre for Interdisciplinary Social Research, Hanoi, Vietnam.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. (1 other version)Machine Learning and Irresponsible Inference: Morally Assessing the Training Data for Image Recognition Systems.Owen C. King - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 265-282.
    Just as humans can draw conclusions responsibly or irresponsibly, so too can computers. Machine learning systems that have been trained on data sets that include irresponsible judgments are likely to yield irresponsible predictions as outputs. In this paper I focus on a particular kind of inference a computer system might make: identification of the intentions with which a person acted on the basis of photographic evidence. Such inferences are liable to be morally objectionable, because of a way in which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Clinical applications of machine learning algorithms: beyond the black box.David S. Watson, Jenny Krutzinna, Ian N. Bruce, Christopher E. M. Griffiths, Iain B. McInnes, Michael R. Barnes & Luciano Floridi - 2019 - British Medical Journal 364:I886.
    Machine learning algorithms may radically improve our ability to diagnose and treat disease. For moral, legal, and scientific reasons, it is essential that doctors and patients be able to understand and explain the predictions of these models. Scalable, customisable, and ethical solutions can be achieved by working together with relevant stakeholders, including patients, data scientists, and policy makers.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  24. Cooperative Learning, Critical Thinking and Character. Techniques to Cultivate Ethical Deliberation.Nancy Matchett - 2009 - Public Integrity 12 (1).
    Effective ethics teaching and training must cultivate both the critical thinking skills and the character traits needed to deliberate effectively about ethical issues in personal and professional life. After highlighting some cognitive and motivational obstacles that stand in the way of this task, the article draws on educational research and the author's experience to demonstrate how cooperative learning techniques can be used to overcome them.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Learning Concepts: A Learning-Theoretic Solution to the Complex-First Paradox.Nina Laura Poth & Peter Brössel - 2020 - Philosophy of Science 87 (1):135-151.
    Children acquire complex concepts like DOG earlier than simple concepts like BROWN, even though our best neuroscientific theories suggest that learning the former is harder than learning the latter and, thus, should take more time (Werning 2010). This is the Complex- First Paradox. We present a novel solution to the Complex-First Paradox. Our solution builds on a generalization of Xu and Tenenbaum’s (2007) Bayesian model of word learning. By focusing on a rational theory of concept learning, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26. Networked Learning and Three Promises of Phenomenology.Lucy Osler - forthcoming - In Phenomenology in Action for Researching Networked Learning Experiences.
    In this chapter, I consider three ‘promises’ of bringing phenomenology into dialogue with networked learning. First, a ‘conceptual promise’, which draws attention to conceptual resources in phenomenology that can inspire and inform how we understand, conceive of, and uncover experiences of participants in networked learning activities and environments. Second, a ‘methodological promise’, which outlines a variety of ways that phenomenological methodologies and concepts can be put to use in empirical research in networked learning. And third, a ‘critical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27.  63
    Learning from Negativity of Experience in School Moral Education.Dariusz Stepkowski - 2024 - Theology and Philosophy of Education 3 (1):32-38.
    The paper attempts to answer the questions of what learning from negativity of experience perspective is and if it could become the right way of teaching and learning morality at school. It consists of three sections. The first one explains the fundamental distinction between negative moral experiences and negativity of moral experience. In the second section, the author’s attention focuses on the possibility of didactic application of teaching and learning from negativity of experience. The last section contains (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Learning Networks and Connective Knowledge.Stephen Downes - 2010 - In Harrison Hao Yang & Steve Chi-Yin Yuen (eds.), Collective Intelligence and E-Learning 2.0: Implications of Web-Based Communities and Networking. IGI Global.
    The purpose of this chapter is to outline some of the thinking behind new e-learning technology, including e-portfolios and personal learning environments. Part of this thinking is centered around the theory of connectivism, which asserts that knowledge - and therefore the learning of knowledge - is distributive, that is, not located in any given place (and therefore not 'transferred' or 'transacted' per se) but rather consists of the network of connections formed from experience and interactions with a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  25
    Interpretable Deep Learning Models for Air Quality Prediction: A Study of Techniques and Applications.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):620-630.
    In recent years, the prediction of air quality has become a critical task due to its significant impact on human health and the environment. With urbanization and industrial growth, the need for accurate air quality forecasting has become more urgent. Traditional methods for air quality prediction are often based on statistical models or physical simulations, which, while valuable, can struggle to capture the complexity of air pollution dynamics. This study explores the use of deep learning techniques to predict air (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. (1 other version)Learning as Differentiation of Experiential Schemas.Jan Halák - 2019 - In Jim Parry & Pete Allison (eds.), Experiential Learning and Outdoor Education: Traditions of practice and philosophical perspectives. Routledge. pp. 52-70.
    The goal of this chapter is to provide an interpretation of experiential learning that fully detaches itself from the epistemological presuppositions of empiricist and intellectualist accounts of learning. I first introduce the concept of schema as understood by Kant and I explain how it is related to the problems implied by the empiricist and intellectualist frameworks. I then interpret David Kolb’s theory of learning that is based on the concept of learning cycle and represents an attempt (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Understanding from Machine Learning Models.Emily Sullivan - 2022 - British Journal for the Philosophy of Science 73 (1):109-133.
    Simple idealized models seem to provide more understanding than opaque, complex, and hyper-realistic models. However, an increasing number of scientists are going in the opposite direction by utilizing opaque machine learning models to make predictions and draw inferences, suggesting that scientists are opting for models that have less potential for understanding. Are scientists trading understanding for some other epistemic or pragmatic good when they choose a machine learning model? Or are the assumptions behind why minimal models provide understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  32. Learning from Conditionals.Benjamin Eva, Stephan Hartmann & Soroush Rafiee Rad - 2020 - Mind 129 (514):461-508.
    In this article, we address a major outstanding question of probabilistic Bayesian epistemology: how should a rational Bayesian agent update their beliefs upon learning an indicative conditional? A number of authors have recently contended that this question is fundamentally underdetermined by Bayesian norms, and hence that there is no single update procedure that rational agents are obliged to follow upon learning an indicative conditional. Here we resist this trend and argue that a core set of widely accepted Bayesian (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  33. Deep Learning as Method-Learning: Pragmatic Understanding, Epistemic Strategies and Design-Rules.Phillip H. Kieval & Oscar Westerblad - manuscript
    We claim that scientists working with deep learning (DL) models exhibit a form of pragmatic understanding that is not reducible to or dependent on explanation. This pragmatic understanding comprises a set of learned methodological principles that underlie DL model design-choices and secure their reliability. We illustrate this action-oriented pragmatic understanding with a case study of AlphaFold2, highlighting the interplay between background knowledge of a problem and methodological choices involving techniques for constraining how a model learns from data. Building successful (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34.  28
    Integrating Life-Wide Learning in the Bachelor of Science in Exercise and Sports Science Program in Selected State Universities in Region III: A Case Study.Jay Mark D. Sinag & Norita E. Manly - 2024 - Universal Journal of Educational Research 3 (4):330-348.
    The study investigates the Bachelor of Science in Exercise and Sports Science (BSESS) program curriculum within Region III, specifically studying its alignment with the Commission on Higher Education Memorandum Order (CMO) No. 81, series of 2017, to distinguish potential curriculum and policy developments that backing life-wide learning and student employability. The research identifies existing gaps in career alignment, stakeholder engagement, graduate employability preparation, and policies supporting lifelong learning within the curriculum. Through multiple case study design, it explores curricular (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Machine Learning-Based Diabetes Prediction: Feature Analysis and Model Assessment.Fares Wael Al-Gharabawi & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):10-17.
    This study employs machine learning to predict diabetes using a Kaggle dataset with 13 features. Our three-layer model achieves an accuracy of 98.73% and an average error of 0.01%. Feature analysis identifies Age, Gender, Polyuria, Polydipsia, Visual blurring, sudden weight loss, partial paresis, delayed healing, irritability, Muscle stiffness, Alopecia, Genital thrush, Weakness, and Obesity as influential predictors. These findings have clinical significance for early diabetes risk assessment. While our research addresses gaps in the field, further work is needed to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Learning to Imagine.Amy Kind - 2022 - British Journal of Aesthetics 62 (1):33-48.
    Underlying much current work in philosophy of imagination is the assumption that imagination is a skill. This assumption seems to entail not only that facility with imagining will vary from one person to another, but also that people can improve their own imaginative capacities and learn to be better imaginers. This paper takes up this issue. After showing why this is properly understood as a philosophical question, I discuss what it means to say that one imagining is better than another (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  37. The Learning-Consciousness Connection.Jonathan Birch, Simona Ginsburg & Eva Jablonka - 2021 - Biology and Philosophy 36 (5):1-14.
    This is a response to the nine commentaries on our target article “Unlimited Associative Learning: A primer and some predictions”. Our responses are organized by theme rather than by author. We present a minimal functional architecture for Unlimited Associative Learning that aims to tie to together the list of capacities presented in the target article. We explain why we discount higher-order thought theories of consciousness. We respond to the criticism that we have overplayed the importance of learning (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  38. Learning and Selection Processes.Marc Artiga - 2010 - Theoria 25 (2):197-209.
    In this paper I defend a teleological explanation of normativity, i. e., I argue that what an organism is supposed to do is determined by its etiological function. In particular, I present a teleological account of the normativity that arises in learning processes, and I defend it from some objections.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  39. Amidst the Online Learning Modality: The Social Support and Its Relationship to the Anxiety of Senior High School Students.Jastine Joy Basilio, Twinkle Pangilinan, Jeremiah Joy Kalong & Jhoselle Tus - 2022 - Psychology Abd Education: A Multidisciplinary Journal 1 (1):1-6.
    Senior high school is known to be part of the newly implemented K-12 program in the Philippines' educational system. Hence, this program added two years to the academic learning program of students, which mainly focuses on different theoretical and vocational strands that aim to prepare and fully furnish the students for education and employment in the future. Due to adjustments to new online learning amidst the pandemic, students begin to experience various challenges, primarily social support and mental well-being. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  40. Learning Strategies, Motivation, and Its Relationship to the Online Learning Environment Among College Students.Ana Mhey M. Tabinas, Jemimah Abigail R. Panuncio, Dianah Marie T. Salvo, Rebecca A. Oliquino, Shaena Bernadette D. Villar & Jhoselle Tus - 2023 - Psychology and Education: A Multidisciplinary Journal 11 (2):622-628.
    Online education has become an essential component of education. Thus, several factors, such as the student’s learning strategy and motivation, generally contribute to their academic success. This study investigates the relationship between learning strategies, motivation, and online learning environment among 150 first-year college students. Employing correlational design, the statistical findings of the study reveal that the r coefficient of 0.59 indicates a moderate positive correlation between the variables. The p-value of 0.00, which is less than 0.05, leads (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Learning How to Represent: An Associationist Account.Nancy Salay - 2019 - Journal of Mind and Behavior 40 (2):121-14.
    The paper develops a positive account of the representational capacity of cognitive systems: simple, associationist learning mechanisms and an architecture that supports bootstrapping are sufficient conditions for symbol tool use. In terms of the debates within the philosophy of mind, this paper offers a plausibility account of representation externalism, an alternative to the reductive, computational/representational models of intentionality that still play a leading role in the field. Although the central theme here is representation, methodologically this view complements embodied, enactivist (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Learning from Failure: Shame and Emotion Regulation in Virtue as Skill.Matt Stichter - 2020 - Ethical Theory and Moral Practice 23 (2):341-354.
    On an account of virtue as skill, virtues are acquired in the ways that skills are acquired. In this paper I focus on one implication of that account that is deserving of greater attention, which is that becoming more skillful requires learning from one’s failures, but that turns out to be especially challenging when dealing with moral failures. In skill acquisition, skills are improved by deliberate practice, where you strive to correct past mistakes and learn how to overcome your (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  43. Learning in the social being system.Zoe Jenkin & Lori Markson - 2024 - Behavioral and Brain Sciences 47:e132.
    We argue that the core social being system is unlike other core systems in that it participates in frequent, widespread learning. As a result, the social being system is less constant throughout the lifespan and less informationally encapsulated than other core systems. This learning supports the development of the precursors of bias, but also provides avenues for preempting it.
    Download  
     
    Export citation  
     
    Bookmark  
  44. Learning, evolvability and exploratory behaviour: extending the evolutionary reach of learning.Rachael L. Brown - 2013 - Biology and Philosophy 28 (6):933-955.
    Traditional accounts of the role of learning in evolution have concentrated upon its capacity as a source of fitness to individuals. In this paper I use a case study from invasive species biology—the role of conditioned taste aversion in mitigating the impact of cane toads on the native species of Northern Australia—to highlight a role for learning beyond this—as a source of evolvability to populations. This has two benefits. First, it highlights an otherwise under-appreciated role for learning (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Learning from errors in digital patient communication: Professionals’ enactment of negative knowledge and digital ignorance in the workplace.Rikke Jensen, Charlotte Jonasson, Martin Gartmeier & Jaana Parviainen - 2023 - Journal of Workplace Learning 35 (5).
    Purpose. The purpose of this study is to investigate how professionals learn from varying experiences with errors in health-care digitalization and develop and use negative knowledge and digital ignorance in efforts to improve digitalized health care. Design/methodology/approach. A two-year qualitative field study was conducted in the context of a public health-care organization working with digital patient communication. The data consisted of participant observation, semistructured interviews and document data. Inductive coding and a theoretically informed generation of themes were applied. Findings. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Teaching & learning guide for: Carbon pricing ethics.Kian Mintz-Woo - 2022 - Philosophy Compass 17 (2):e12816.
    This teaching and learning guide accompanies the following article: Mintz-Woo, K., 2022. Carbon Pricing Ethics. Philosophy Compass 17(1):article e12803. doi:10.1111/phc3.12803. [Open access].
    Download  
     
    Export citation  
     
    Bookmark  
  47. Reinforcement learning: A brief guide for philosophers of mind.Julia Haas - 2022 - Philosophy Compass 17 (9):e12865.
    In this opinionated review, I draw attention to some of the contributions reinforcement learning can make to questions in the philosophy of mind. In particular, I highlight reinforcement learning's foundational emphasis on the role of reward in agent learning, and canvass two ways in which the framework may advance our understanding of perception and motivation.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  48. Machine learning in bail decisions and judges’ trustworthiness.Alexis Morin-Martel - 2023 - AI and Society:1-12.
    The use of AI algorithms in criminal trials has been the subject of very lively ethical and legal debates recently. While there are concerns over the lack of accuracy and the harmful biases that certain algorithms display, new algorithms seem more promising and might lead to more accurate legal decisions. Algorithms seem especially relevant for bail decisions, because such decisions involve statistical data to which human reasoners struggle to give adequate weight. While getting the right legal outcome is a strong (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49. Constructivist Learning Amid the COVID-19 Pandemic: Investigating Students’ Perceptions of Biology Self-Learning Modules.Aaron Funa & Frederick Talaue - 2021 - International Journal of Learning, Teaching and Educational Research 20 (3):250-264.
    Modes of teaching and learning have had to rapidly shift amid the COVID-19 pandemic. As an emergency response, students from Philippine public schools were provided learning modules based on a minimized list of essential learning competencies in Biology. Using a cross-sectional survey method, we investigated students’ perceptions of the Biology self-learning modules (BSLM) that were designed in print and digitized formats according to a constructivist learning approach. Senior high school STEM students from grades 11 (n (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Learning in Lithic Landscapes: A Reconsideration of the Hominid “Toolmaking” Niche.Peter Hiscock - 2014 - Biological Theory 9 (1):27-41.
    This article reconsiders the early hominid ‘‘lithic niche’’ by examining the social implications of stone artifact making. I reject the idea that making tools for use is an adequate explanation of the elaborate artifact forms of the Lower Palaeolithic, or a sufficient cause for long-term trends in hominid technology. I then advance an alternative mechanism founded on the claim that competency in making stone artifacts requires extended learning, and that excellence in artifact making is attained only by highly skilled (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
1 — 50 / 968