Theories of Mathematics

Edited by Roy T. Cook (University of Minnesota, University of St. Andrews, University of Minnesota)
Related

Contents
181 found
Order:
1 — 50 / 181
Material to categorize
  1. Lower and Upper Estimates of the Quantity of Algebraic Numbers.Yaroslav Sergeyev - 2023 - Mediterranian Journal of Mathematics 20:12.
    It is well known that the set of algebraic numbers (let us call it A) is countable. In this paper, instead of the usage of the classical terminology of cardinals proposed by Cantor, a recently introduced methodology using ①-based infinite numbers is applied to measure the set A (where the number ① is called grossone). Our interest to this methodology is explained by the fact that in certain cases where cardinals allow one to say only whether a set is countable (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Functorial Semantics for the Advancement of the Science of Cognition.Venkata Posina, Dhanjoo N. Ghista & Sisir Roy - 2017 - Mind and Matter 15 (2):161-184.
    Cognition involves physical stimulation, neural coding, mental conception, and conscious perception. Beyond the neural coding of physical stimuli, it is not clear how exactly these component processes constitute cognition. Within mathematical sciences, category theory provides tools such as category, functor, and adjointness, which are indispensable in the explication of the mathematical calculations involved in acquiring mathematical knowledge. More speci cally, functorial semantics, in showing that theories and models can be construed as categories and functors, respectively, and in establishing the adjointness (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  3. Nudging Scientific Advancement through Reviews.Venkata Rayudu Posina, Hippu Salk K. Nathan & Anshuman Behera - manuscript
    We call for a change-of-attitude towards reviews of scientific literature. We begin with an acknowledgement of reviews as pathways for the advancement of our scientific understanding of reality. The significance of the scientific struggle propelling the putting together of pieces of knowledge into parts of a cohesive body of understanding is recognized, and yet undervalued, especially in empirical sciences. Here we propose a nudge, which is prefacing the insights gained in reviewing the literature with: 'Our review reveals' (or an equivalent (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Foundation of paralogical nonstandard analysis and its application to some famous problems of trigonometrical and orthogonal series.Jaykov Foukzon - manuscript
    FOURTH EUROPEAN CONGRESS OF MATHEMATICS STOCKHOLM,SWEDEN JUNE27 ­ - JULY 2, 2004 Contributed papers L. Carleson’s celebrated theorem of 1965 [1] asserts the pointwise convergence of the partial Fourier sums of square integrable functions. The Fourier transform has a formulation on each of the Euclidean groups R , Z and Τ .Carleson’s original proof worked on Τ . Fefferman’s proof translates very easily to R . M´at´e [2] extended Carleson’s proof to Z . Each of the statements of the theorem (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers.Urszula Wybraniec-Skardowska - 2019 - Axioms 2019 (Deductive Systems).
    The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two di erent ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including such primitive notions as: set of natural numbers, zero, successor of natural number) and compare it with the set W of axioms of this arithmetic (including the primitive notions like: set of natural numbers and relation of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems.Yaroslav Sergeyev - 2017 - EMS Surveys in Mathematical Sciences 4 (2):219–320.
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7. Review of O. Linnebo Philosophy of Mathematics. [REVIEW]Fraser MacBride - 2018 - Notre Dame Philosophical Reviews.
    In this review, as well as discussing the pedagogical of this text book, I also discuss Linnebo's approach to the Caesar problem and the use of metaphysical notions to explicate mathematics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. A process oriented definition of number.Rolfe David - manuscript
    In this paper Russell’s definition of number is criticized. Russell’s assertion that a number is a particular kind of set implies that number has the properties of a set. It is argued that this would imply that a number contains elements and that this does not conform to our intuitive notion of number. An alternative definition is presented in which number is not seen as an object, but rather as a process and is related to the act of counting and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. subregular tetrahedra.John Corcoran - 2008 - Bulletin of Symbolic Logic 14 (3):411-2.
    This largely expository lecture deals with aspects of traditional solid geometry suitable for applications in logic courses. Polygons are plane or two-dimensional; the simplest are triangles. Polyhedra [or polyhedrons] are solid or three-dimensional; the simplest are tetrahedra [or triangular pyramids, made of four triangles]. -/- A regular polygon has equal sides and equal angles. A polyhedron having congruent faces and congruent [polyhedral] angles is not called regular, as some might expect; rather they are said to be subregular—a word coined for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers.Yaroslav Sergeyev - 2007 - Chaos, Solitons and Fractals 33 (1):50-75.
    The paper considers a new type of objects – blinking fractals – that are not covered by traditional theories studying dynamics of self-similarity processes. It is shown that the new approach allows one to give various quantitative characteristics of the newly introduced and traditional fractals using infinite and infinitesimal numbers proposed recently. In this connection, the problem of the mathematical modelling of continuity is discussed in detail. A strong advantage of the introduced computational paradigm consists of its well-marked numerical character (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
Logicism in Mathematics
  1. Infinity, Choice, and Hume’s Principle.Stephen Mackereth - 2024 - Journal of Philosophical Logic 53 (5):1413-1439.
    It has long been known that in the context of axiomatic second-order logic (SOL), Hume’s Principle (HP) is mutually interpretable with “the universe is Dedekind infinite” (DI). In this paper, we offer a more fine-grained analysis of the logical strength of HP, measured by deductive implications rather than interpretability. Our main result is that HP is not deductively conservative over SOL + DI. That is, SOL + HP proves additional theorems in the language of pure second-order logic that are not (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Frege meets Belnap: Basic Law V in a Relevant Logic.Shay Logan & Francesca Boccuni - 2024 - In Andrew Tedder, Shawn Standefer & Igor Sedlar (eds.), New Directions in Relevant Logic. Springer. pp. 381-404.
    Abstractionism in the philosophy of mathematics aims at deriving large fragments of mathematics by combining abstraction principles (i.e. the abstract objects $\S e_1, \S e_2$, are identical if, and only if, an equivalence relation $Eq_\S$ holds between the entities $e_1, e_2$) with logic. Still, as highlighted in work on the semantics for relevant logics, there are different ways theories might be combined. In exactly what ways must logic and abstraction be combined in order to get interesting mathematics? In this paper, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. LF: a Foundational Higher-Order Logic.Zachary Goodsell & Juhani Yli-Vakkuri - manuscript
    This paper presents a new system of logic, LF, that is intended to be used as the foundation of the formalization of science. That is, deductive validity according to LF is to be used as the criterion for assessing what follows from the verdicts, hypotheses, or conjectures of any science. In work currently in progress, we argue for the unique suitability of LF for the formalization of logic, mathematics, syntax, and semantics. The present document specifies the language and rules of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Frege’s Theory of Types.Bruno Bentzen - 2023 - Manuscrito 46 (4):2022-0063.
    It is often claimed that the theory of function levels proposed by Frege in Grundgesetze der Arithmetik anticipates the hierarchy of types that underlies Church’s simple theory of types. This claim roughly states that Frege presupposes a type of functions in the sense of simple type theory in the expository language of Grundgesetze. However, this view makes it hard to accommodate function names of two arguments and view functions as incomplete entities. I propose and defend an alternative interpretation of first-level (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Two-Sorted Frege Arithmetic is Not Conservative.Stephen Mackereth & Jeremy Avigad - 2022 - Review of Symbolic Logic 16 (4):1199-1232.
    Neo-Fregean logicists claim that Hume’s Principle (HP) may be taken as an implicit definition of cardinal number, true simply by fiat. A long-standing problem for neo-Fregean logicism is that HP is not deductively conservative over pure axiomatic second-order logic. This seems to preclude HP from being true by fiat. In this paper, we study Richard Kimberly Heck’s Two-Sorted Frege Arithmetic (2FA), a variation on HP which has been thought to be deductively conservative over second-order logic. We show that it isn’t. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. The Caesar Problem — A Piecemeal Solution.J. P. Studd - 2023 - Philosophia Mathematica 31 (2):236-267.
    The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of Xs’ or #X by stipulating the content of ‘unmixed’ identity contexts like ‘#X = #Y’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘# X = Julius Caesar’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Higher-Order Metaphysics in Frege and Russell.Kevin C. Klement - 2024 - In Peter Fritz & Nicholas K. Jones (eds.), Higher-Order Metaphysics. Oxford University Press. pp. 355-377.
    This chapter explores the metaphysical views about higher-order logic held by two individuals responsible for introducing it to philosophy: Gottlob Frege (1848–1925) and Bertrand Russell (1872–1970). Frege understood a function at first as the remainder of the content of a proposition when one component was taken out or seen as replaceable by others, and later as a mapping between objects. His logic employed second-order quantifiers ranging over such functions, and he saw a deep division in nature between objects and functions. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Russell's Logicism.Kevin C. Klement - 2018 - In Russell Wahl (ed.), The Bloomsbury Companion to Bertrand Russell. New York, USA: Bloomsbury. pp. 151-178.
    Bertrand Russell was one of the best-known proponents of logicism: the theory that mathematics reduces to, or is an extension of, logic. Russell argued for this thesis in his 1903 The Principles of Mathematics and attempted to demonstrate it formally in Principia Mathematica (PM 1910–1913; with A. N. Whitehead). Russell later described his work as a further “regressive” step in understanding the foundations of mathematics made possible by the late 19th century “arithmetization” of mathematics and Frege’s logical definitions of arithmetical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. The Potential in Frege’s Theorem.Will Stafford - 2023 - Review of Symbolic Logic 16 (2):553-577.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. "Cała matematyka to właściwie geometria". Poglądy Gottloba Fregego na podstawy matematyki po upadku logicyzmu.Krystian Bogucki - 2019 - Hybris. Internetowy Magazyn Filozoficzny 44:1 - 20.
    Gottlob Frege abandoned his logicist program after Bertrand Russell had discovered that some assumptions of Frege’s system lead to contradiction (so called Russell’s paradox). Nevertheless, he proposed a new attempt for the foundations of mathematics in two last years of his life. According to this new program, the whole of mathematics is based on the geometrical source of knowledge. By the geometrical source of cognition Frege meant intuition which is the source of an infinite number of objects in arithmetic. In (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Die Grundlagen der Arithmetik, 82-3.George Boolos & Richard G. Heck - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press.
    A close look at Frege's proof in "Foundations of Arithmetic" that every number has a successor. The examination reveals a surprising gap in the proof, one that Frege would later fill in "Basic Laws of Arithmetic".
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  13. Universal Logic in terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space can be interpreted. The (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. Неразрешимост на първата теорема за непълнотата. Гьоделова и Хилбертова математика.Vasil Penchev - 2010 - Philosophical Alternatives 19 (5):104-119.
    Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its conditions. That's (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. Hale and Wright on the Metaontology of Neo-Fregeanism.Matti Eklund - 2016 - In Philip A. Ebert & Marcus Rossberg (eds.), Abstractionism: Essays in Philosophy of Mathematics. Oxford, England: Oxford University Press UK.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   12 citations  
  16. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. Frege on Referentiality and Julius Caesar in Grundgesetze Section 10.Bruno Bentzen - 2019 - Notre Dame Journal of Formal Logic 60 (4):617-637.
    This paper aims to answer the question of whether or not Frege's solution limited to value-ranges and truth-values proposed to resolve the "problem of indeterminacy of reference" in section 10 of Grundgesetze is a violation of his principle of complete determination, which states that a predicate must be defined to apply for all objects in general. Closely related to this doubt is the common allegation that Frege was unable to solve a persistent version of the Caesar problem for value-ranges. It (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. The Enhanced Indispensability Argument, the circularity problem, and the interpretability strategy.Jan Heylen & Lars Arthur Tump - 2019 - Synthese 198 (4):3033-3045.
    Within the context of the Quine–Putnam indispensability argument, one discussion about the status of mathematics is concerned with the ‘Enhanced Indispensability Argument’, which makes explicit in what way mathematics is supposed to be indispensable in science, namely explanatory. If there are genuine mathematical explanations of empirical phenomena, an argument for mathematical platonism could be extracted by using inference to the best explanation. The best explanation of the primeness of the life cycles of Periodical Cicadas is genuinely mathematical, according to Baker (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. Hale’s argument from transitive counting.Eric Snyder, Richard Samuels & Stewart Shapiro - 2019 - Synthese 198 (3):1905-1933.
    A core commitment of Bob Hale and Crispin Wright’s neologicism is their invocation of Frege’s Constraint—roughly, the requirement that the core empirical applications for a class of numbers be “built directly into” their formal characterization. According to these neologicists, if legitimate, Frege’s Constraint adjudicates in favor of their preferred foundation—Hume’s Principle—and against alternatives, such as the Dedekind–Peano axioms. In this paper, we consider a recent argument for legitimating Frege’s Constraint due to Hale, according to which the primary empirical application of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. (1 other version)Tuples all the way down?Simon Hewitt - manuscript
    We can introduce singular terms for ordered pairs by means of an abstraction principle. Doing so proves useful for a number of projects in the philosophy of mathematics. However there is a question whether we can appeal to the abstraction principle in good faith, since a version of the Caesar Problem can be generated, posing the worry that abstraction fails to introduce expressions which refer determinately to the requisite sort of object. In this short paper I will pose the difficulty, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Russell on Logicism and Coherence.Conor Mayo-Wilson - 2011 - Russell: The Journal of Bertrand Russell Studies 31 (1):63-79.
    According to Quine, Charles Parsons, Mark Steiner, and others, Russell’s logicist project is important because, if successful, it would show that mathematical theorems possess desirable epistemic properties often attributed to logical theorems, such as aprioricity, necessity, and certainty. Unfortunately, Russell never attributed such importance to logicism, and such a thesis contradicts Russell’s explicitly stated views on the relationship between logic and mathematics. This raises the question: what did Russell understand to be the philosophical importance of logicism? Building on recent work (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Neo-Logicism and Russell's Logicism.Kevin C. Klement - 2012 - Russell: The Journal of Bertrand Russell Studies 32 (2):127-159.
    Certain advocates of the so-called “neo-logicist” movement in the philosophy of mathematics identify themselves as “neo-Fregeans” (e.g., Hale and Wright), presenting an updated and revised version of Frege’s form of logicism. Russell’s form of logicism is scarcely discussed in this literature and, when it is, often dismissed as not really logicism at all (in light of its assumption of axioms of infinity, reducibility and so on). In this paper I have three aims: firstly, to identify more clearly the primary meta-ontological (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  23. Meaning, Presuppositions, Truth-relevance, Gödel's Sentence and the Liar Paradox.X. Y. Newberry - manuscript
    Section 1 reviews Strawson’s logic of presuppositions. Strawson’s justification is critiqued and a new justification proposed. Section 2 extends the logic of presuppositions to cases when the subject class is necessarily empty, such as (x)((Px & ~Px) → Qx) . The strong similarity of the resulting logic with Richard Diaz’s truth-relevant logic is pointed out. Section 3 further extends the logic of presuppositions to sentences with many variables, and a certain valuation is proposed. It is noted that, given this valuation, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  24. Russell’s method of analysis and the axioms of mathematics.Lydia Patton - 2017 - In Sandra Lapointe & Christopher Pincock (eds.), Innovations in the History of Analytical Philosophy. London, United Kingdom: Palgrave-Macmillan. pp. 105-126.
    In the early 1900s, Russell began to recognize that he, and many other mathematicians, had been using assertions like the Axiom of Choice implicitly, and without explicitly proving them. In working with the Axioms of Choice, Infinity, and Reducibility, and his and Whitehead’s Multiplicative Axiom, Russell came to take the position that some axioms are necessary to recovering certain results of mathematics, but may not be proven to be true absolutely. The essay traces historical roots of, and motivations for, Russell’s (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Bad company and neo-Fregean philosophy.Matti Eklund - 2009 - Synthese 170 (3):393-414.
    A central element in neo-Fregean philosophy of mathematics is the focus on abstraction principles, and the use of abstraction principles to ground various areas of mathematics. But as is well known, not all abstraction principles are in good standing. Various proposals for singling out the acceptable abstraction principles have been presented. Here I investigate what philosophical underpinnings can be provided for these proposals; specifically, underpinnings that fit the neo-Fregean's general outlook. Among the philosophical ideas I consider are: general views on (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  26. subregular tetrahedra.John Corcoran - 2008 - Bulletin of Symbolic Logic 14 (3):411-2.
    This largely expository lecture deals with aspects of traditional solid geometry suitable for applications in logic courses. Polygons are plane or two-dimensional; the simplest are triangles. Polyhedra [or polyhedrons] are solid or three-dimensional; the simplest are tetrahedra [or triangular pyramids, made of four triangles]. -/- A regular polygon has equal sides and equal angles. A polyhedron having congruent faces and congruent [polyhedral] angles is not called regular, as some might expect; rather they are said to be subregular—a word coined for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  27. Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  28. What do I Know With Certainty?Adekanmi Obasa - 2015 - Thoughts on Paper.
    I was faced with a question I thought I could not answer. -/- What do I know, with certainty? -/- I know with absolute certainty that every thought I have is based on my belief system. My beliefs may change and when they do, my thoughts will be directly related to my belief.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  29. Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  30. Russell: a guide for the perplexed.John Ongley & Rosalind Carey - 2013 - New York: Continuum. Edited by Rosalind Carey.
    Contents: Introduction / Naïve Logicism / Restricted Logicism / Metaphysics (Early, Middle, Late) / Knowledge (Early, Middle, Late) / Language (Early, Middle, Late) / The Infinite.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  31. Wisdom Mathematics.Nicholas Maxwell - 2010 - Friends of Wisdom Newsletter (6):1-6.
    For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could mathematics be knowledge (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Who needs (to assume) Hume's principle?Andrew Boucher - manuscript
    Neo-logicism uses definitions and Hume's Principle to derive arithmetic in second-order logic. This paper investigates how much arithmetic can be derived using definitions alone, without any additional principle such as Hume's.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  33. Ramified Frege Arithmetic.Richard G. Heck - 2011 - Journal of Philosophical Logic 40 (6):715-735.
    Øystein Linnebo has recently shown that the existence of successors cannot be proven in predicative Frege arithmetic, using Frege’s definitions of arithmetical notions. By contrast, it is shown here that the existence of successor can be proven in ramified predicative Frege arithmetic.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  34. A Logic for Frege's Theorem.Richard Heck - 1999 - In Richard G. Heck (ed.), Frege’s Theorem: An Introduction. The Harvard Review of Philosophy.
    It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, say, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  35. Logicism and the ontological commitments of arithmetic.Harold T. Hodes - 1984 - Journal of Philosophy 81 (3):123-149.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   127 citations  
Formalism in Mathematics
  1. Non-Commutative Scalar Fields.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:9.
    In this paper, we explore numerical methods for simulating scalar field con-figurations in non-commutative two-dimensional spaces. We focus on the finite difference techniques employed to compute mixed partial derivatives and the action functional in the presence of non-commutative corrections. The methods presented address the challenges posed by non-commutative geometry, specifically in computing the mixed derivative terms that arise due to the deformation of spatial coordinates. We introduce semi-implicit time-stepping schemes to en-sure numerical stability when dealing with stiff nonlinear terms. The (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Frege, Thomae, and Formalism: Shifting Perspectives.Richard Lawrence - 2023 - Journal for the History of Analytical Philosophy 11 (2):1-23.
    Mathematical formalism is the the view that numbers are "signs" and that arithmetic is like a game played with such signs. Frege's colleague Thomae defended formalism using an analogy with chess, and Frege's critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and historical context. I argue that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Formal differential variables and an abstract chain rule.Samuel Alexander - 2023 - Proceedings of the ACMS 23.
    One shortcoming of the chain rule is that it does not iterate: it gives the derivative of f(g(x)), but not (directly) the second or higher-order derivatives. We present iterated differentials and a version of the multivariable chain rule which iterates to any desired level of derivative. We first present this material informally, and later discuss how to make it rigorous (a discussion which touches on formal foundations of calculus). We also suggest a finite calculus chain rule (contrary to Graham, Knuth (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Connecting the revolutionary with the conventional: Rethinking the differences between the works of Brouwer, Heyting, and Weyl.Kati Kish Bar-On - 2023 - Philosophy of Science 90 (3):580–602.
    Brouwer’s intuitionism was a far-reaching attempt to reform the foundations of mathematics. While the mathematical community was reluctant to accept Brouwer’s work, its response to later-developed brands of intuitionism, such as those presented by Hermann Weyl and Arend Heyting, was different. The paper accounts for this difference by analyzing the intuitionistic versions of Brouwer, Weyl, and Heyting in light of a two-tiered model of the body and image of mathematical knowledge. Such a perspective provides a richer account of each story (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Frege, Hankel, and Formalism in the Foundations.Richard Lawrence - 2021 - Journal for the History of Analytical Philosophy 9 (11).
    Frege says, at the end of a discussion of formalism in the Foundations of Arithmetic, that his own foundational program “could be called formal” but is “completely different” from the view he has just criticized. This essay examines Frege’s relationship to Hermann Hankel, his main formalist interlocutor in the Foundations, in order to make sense of these claims. The investigation reveals a surprising result: Frege’s foundational program actually has quite a lot in common with Hankel’s. This undercuts Frege’s claim that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
1 — 50 / 181