Results for 'Analog computation'

949 found
Order:
  1. From Analog to Digital Computing: Is Homo sapiens’ Brain on Its Way to Become a Turing Machine?Antoine Danchin & André A. Fenton - 2022 - Frontiers in Ecology and Evolution 10:796413.
    The abstract basis of modern computation is the formal description of a finite state machine, the Universal Turing Machine, based on manipulation of integers and logic symbols. In this contribution to the discourse on the computer-brain analogy, we discuss the extent to which analog computing, as performed by the mammalian brain, is like and unlike the digital computing of Universal Turing Machines. We begin with ordinary reality being a permanent dialog between continuous and discontinuous worlds. So it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Computers Aren’t Syntax All the Way Down or Content All the Way Up.Cem Bozşahin - 2018 - Minds and Machines 28 (3):543-567.
    This paper argues that the idea of a computer is unique. Calculators and analog computers are not different ideas about computers, and nature does not compute by itself. Computers, once clearly defined in all their terms and mechanisms, rather than enumerated by behavioral examples, can be more than instrumental tools in science, and more than source of analogies and taxonomies in philosophy. They can help us understand semantic content and its relation to form. This can be achieved because they (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. Beyond Formal Structure: A Mechanistic Perspective on Computation and Implementation.Marcin Miłkowski - 2011 - Journal of Cognitive Science 12 (4):359-379.
    In this article, after presenting the basic idea of causal accounts of implementation and the problems they are supposed to solve, I sketch the model of computation preferred by Chalmers and argue that it is too limited to do full justice to computational theories in cognitive science. I also argue that it does not suffice to replace Chalmers’ favorite model with a better abstract model of computation; it is necessary to acknowledge the causal structure of physical computers that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  5. On the impossibility of using analogue machines to calculate non-computable functions.Robin O. Gandy - manuscript - Translated by Aran Nayebi.
    A number of examples have been given of physical systems (both classical and quantum mechanical) which when provided with a (continuously variable) computable input will give a non-computable output. It has been suggested that these systems might allow one to design analogue machines which would calculate the values of some number-theoretic non-computable function. Analysis of the examples show that the suggestion is wrong. In Section 4 I claim that given a reasonable definition of analogue machine it will always be wrong. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The Formats of Cognitive Representation: A Computational Account.Dimitri Coelho Mollo & Alfredo Vernazzani - 2023 - Philosophy of Science (3):682-701.
    Cognitive representations are typically analysed in terms of content, vehicle and format. While current work on formats appeals to intuitions about external representations, such as words and maps, in this paper we develop a computational view of formats that does not rely on intuitions. In our view, formats are individuated by the computational profiles of vehicles, i.e., the set of constraints that fix the computational transformations vehicles can undergo. The resulting picture is strongly pluralistic, it makes space for a variety (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  7. Information Reflection Theory Based on Information Theories, Analog Symbolism, and the Generalized Relativity Principle.Chenguang Lu - 2023 - Comput. Sci. Math. Forum 8 (1):45.
    Reflection Theory holds that our sensations reflect physical properties, whereas Empiricism believes that sense (data), presentations, and phenomena are the ultimate existence. Lenin adhered to Reflection Theory and criticized Helmholtz’s sensory symbolism for affirming the similarity between a sensation and a physical property. By using information and color vision theories, analyzing the ostensive definition with inverted qualia, and extending the relativity principle, this paper affirms the external world’s existence independent of personal sensations. Still, it denies the similarity between a sense (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. A Review of:“Information Theory, Evolution and the Origin of Life as a Digital Message How Life Resembles a Computer” Second Edition. Hubert P. Yockey, 2005, Cambridge University Press, Cambridge: 400 pages, index; hardcover, US $60.00; ISBN: 0-521-80293-8. [REVIEW]Attila Grandpierre - 2006 - World Futures 62 (5):401-403.
    Information Theory, Evolution and The Origin ofLife: The Origin and Evolution of Life as a Digital Message: How Life Resembles a Computer, Second Edition. Hu- bert P. Yockey, 2005, Cambridge University Press, Cambridge: 400 pages, index; hardcover, US $60.00; ISBN: 0-521-80293-8. The reason that there are principles of biology that cannot be derived from the laws of physics and chemistry lies simply in the fact that the genetic information content of the genome for constructing even the simplest organisms is much (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Computationalism under attack.Roberto Cordeschi & Marcello Frixione - 2007 - In M. Marraffa, M. Caro & F. Ferretti (eds.), Cartographies of the Mind: Philosophy and Psychology in Intersection. Springer.
    Since the early eighties, computationalism in the study of the mind has been “under attack” by several critics of the so-called “classic” or “symbolic” approaches in AI and cognitive science. Computationalism was generically identified with such approaches. For example, it was identified with both Allen Newell and Herbert Simon’s Physical Symbol System Hypothesis and Jerry Fodor’s theory of Language of Thought, usually without taking into account the fact ,that such approaches are very different as to their methods and aims. Zenon (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Geometry for a Brain. Optimal Control in a Network of Adaptive Memristors.Ignazio Licata & Germano Resconi - 2013 - Adv. Studies Theor. Phys., (no.10):479-513.
    In the brain the relations between free neurons and the conditioned ones establish the constraints for the informational neural processes. These constraints reflect the systemenvironment state, i.e. the dynamics of homeocognitive activities. The constraints allow us to define the cost function in the phase space of free neurons so as to trace the trajectories of the possible configurations at minimal cost while respecting the constraints imposed. Since the space of the free states is a manifold or a non orthogonal space, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Panpsychism and AI consciousness.Marcus Arvan & Corey J. Maley - 2022 - Synthese 200 (3):1-22.
    This article argues that if panpsychism is true, then there are grounds for thinking that digitally-based artificial intelligence may be incapable of having coherent macrophenomenal conscious experiences. Section 1 briefly surveys research indicating that neural function and phenomenal consciousness may be both analog in nature. We show that physical and phenomenal magnitudes—such as rates of neural firing and the phenomenally experienced loudness of sounds—appear to covary monotonically with the physical stimuli they represent, forming the basis for an analog (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Science Transformed?: Debating Claims of an Epochal Break.Alfred Nordmann, Hans Radder & Gregor Schiemann (eds.) - 2011 - University of Pittsburgh Press.
    Advancements in computing, instrumentation, robotics, digital imaging, and simulation modeling have changed science into a technology-driven institution. Government, industry, and society increasingly exert their influence over science, raising questions of values and objectivity. These and other profound changes have led many to speculate that we are in the midst of an epochal break in scientific history. -/- This edited volume presents an in-depth examination of these issues from philosophical, historical, social, and cultural perspectives. It offers arguments both for and against (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  13. Misbehaving Machines: The Emulated Brains of Transhumanist Dreams.Corry Shores - 2011 - Journal of Evolution and Technology 22 (1):10-22.
    Enhancement technologies may someday grant us capacities far beyond what we now consider humanly possible. Nick Bostrom and Anders Sandberg suggest that we might survive the deaths of our physical bodies by living as computer emulations.­­ In 2008, they issued a report, or “roadmap,” from a conference where experts in all relevant fields collaborated to determine the path to “whole brain emulation.” Advancing this technology could also aid philosophical research. Their “roadmap” defends certain philosophical assumptions required for this technology’s success, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Representation in digital systems.Vincent C. Müller - 2008 - In P. Brey, A. Briggle & K. Waelbers (eds.), Current Issues in Computing and Philosophy. IOS Press. pp. 116-121.
    Cognition is commonly taken to be computational manipulation of representations. These representations are assumed to be digital, but it is not usually specified what that means and what relevance it has for the theory. I propose a specification for being a digital state in a digital system, especially a digital computational system. The specification shows that identification of digital states requires functional directedness, either for someone or for the system of which it is a part. In the case or digital (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  15. What is a digital state?Vincent C. Müller - 2013 - In Mark J. Bishop & Yasemin Erden (eds.), The Scandal of Computation - What is Computation? - AISB Convention 2013. AISB. pp. 11-16.
    There is much discussion about whether the human mind is a computer, whether the human brain could be emulated on a computer, and whether at all physical entities are computers (pancomputationalism). These discussions, and others, require criteria for what is digital. I propose that a state is digital if and only if it is a token of a type that serves a particular function - typically a representational function for the system. This proposal is made on a syntactic level, assuming (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Morphogenesis and Design. Thinking through Analogs.Sara Franceschelli - 2016 - In The Routledge Companion to Biology in Art and Architecture. New York: Routledge. pp. 218-235.
    Digital practices in design, together with computer-assisted manufacturing (CAM), have inspired the reflection of philosophers, theorists, and historians over the last decades. Gilles Deleuze’s The Fold: Leibniz and the Baroque (1988) presents one of the first and most successful concepts created to think about these new design and manufacturing practices.1 Deleuze proposed a new concept of the technological object, which was inspired by Bernard Cache’s digital design practices and computer-assisted manufacturing. Deleuze compared Cache’s practices to Leibniz’s differential calculus-based notion of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Discrete thoughts: Why cognition must use discrete representations.Eric Dietrich & Arthur B. Markman - 2003 - Mind and Language 18 (1):95-119.
    Advocates of dynamic systems have suggested that higher mental processes are based on continuous representations. In order to evaluate this claim, we first define the concept of representation, and rigorously distinguish between discrete representations and continuous representations. We also explore two important bases of representational content. Then, we present seven arguments that discrete representations are necessary for any system that must discriminate between two or more states. It follows that higher mental processes require discrete representations. We also argue that discrete (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  18. Information, learning and falsification.David Balduzzi - 2011
    There are (at least) three approaches to quantifying information. The first, algorithmic information or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies the information content of a string as the length of the shortest program producing it [1]. The second, Shannon information, takes events as belonging to ensembles and quantifies the information resulting from observing the given event in terms of the number of alternate events that have been ruled out [2]. The third, statistical learning (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Experimentation on Analogue Models.Susan G. Sterrett - 2017 - In Springer handbook of model-based science (2017). Springer. pp. 857-878.
    Summary Analogue models are actual physical setups used to model something else. They are especially useful when what we wish to investigate is difficult to observe or experiment upon due to size or distance in space or time: for example, if the thing we wish to investigate is too large, too far away, takes place on a time scale that is too long, does not yet exist or has ceased to exist. The range and variety of analogue models is too (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  20. Compositionality and constituent structure in the analogue mind.Sam Clarke - 2023 - Philosophical Perspectives 37 (1):90-118.
    I argue that analogue mental representations possess a canonical decomposition into privileged constituents from which they compose. I motivate this suggestion, and rebut arguments to the contrary, through reflection on the approximate number system, whose representations are widely expected to have an analogue format. I then argue that arguments for the compositionality and constituent structure of these analogue representations generalize to other analogue mental representations posited in the human mind, such as those in early vision and visual imagery.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. The world is either digital or analogue.Francesco Berto & Jacopo Tagliabue - 2014 - Synthese 191 (3):481-497.
    We address an argument by Floridi (Synthese 168(1):151–178, 2009; 2011a), to the effect that digital and analogue are not features of reality, only of modes of presentation of reality. One can therefore have an informational ontology, like Floridi’s Informational Structural Realism, without commitment to a supposedly digital or analogue world. After introducing the topic in Sect. 1, in Sect. 2 we explain what the proposition expressed by the title of our paper means. In Sect. 3, we describe Floridi’s argument. In (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  22. The Structure of Analog Representation.Andrew Y. Lee, Joshua Myers & Gabriel Oak Rabin - 2023 - Noûs 57 (1):209-237.
    This paper develops a theory of analog representation. We first argue that the mark of the analog is to be found in the nature of a representational system’s interpretation function, rather than in its vehicles or contents alone. We then develop the rulebound structure theory of analog representation, according to which analog systems are those that use interpretive rules to map syntactic structural features onto semantic structural features. The theory involves three degree-theoretic measures that capture three (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  23. Contents and Vehicles in Analog Perception.Jacob Beck - 2023 - Crítica. Revista Hispanoamericana de Filosofía 55 (163):109–127.
    Building on Christopher Peacocke’s account of analog perceptual contentand my own account of analog perceptual vehicles, I defend three claims: that theperception of magnitudes often has analog contents; that the perception of magni-tudes often has analog vehicles; and that the first claim is true in virtue of the second—that is, the analog vehicles help to ground the analog contents.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Erratum to “The Ricean Objection: An Analogue of Rice's Theorem for First-Order Theories” Logic Journal of the IGPL, 16: 585–590. [REVIEW]Igor Oliveira & Walter Carnielli - 2009 - Logic Journal of the IGPL 17 (6):803-804.
    This note clarifies an error in the proof of the main theorem of “The Ricean Objection: An Analogue of Rice’s Theorem for First-Order Theories”, Logic Journal of the IGPL, 16(6): 585–590(2008).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Computational modeling in philosophy: introduction to a topical collection.Simon Scheller, Christoph Merdes & Stephan Hartmann - 2022 - Synthese 200 (2):1-10.
    Computational modeling should play a central role in philosophy. In this introduction to our topical collection, we propose a small topology of computational modeling in philosophy in general, and show how the various contributions to our topical collection fit into this overall picture. On this basis, we describe some of the ways in which computational models from other disciplines have found their way into philosophy, and how the principles one found here still underlie current trends in the field. Moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Cognitive Computation sans Representation.Paul Schweizer - 2017 - In Thomas M. Powers (ed.), Philosophy and Computing: Essays in epistemology, philosophy of mind, logic, and ethics. Cham: Springer. pp. 65-84.
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  27. Computers, Dynamical Systems, Phenomena, and the Mind.Marco Giunti - 1992 - Dissertation, Indiana University
    This work addresses a broad range of questions which belong to four fields: computation theory, general philosophy of science, philosophy of cognitive science, and philosophy of mind. Dynamical system theory provides the framework for a unified treatment of these questions. ;The main goal of this dissertation is to propose a new view of the aims and methods of cognitive science--the dynamical approach . According to this view, the object of cognitive science is a particular set of dynamical systems, which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  28. Computer Simulation of Human Thinking: An Inquiry into its Possibility and Implications.Napoleon Mabaquiao Jr - 2011 - Philosophia 40 (1):76-87.
    Critical in the computationalist account of the mind is the phenomenon called computational or computer simulation of human thinking, which is used to establish the theses that human thinking is a computational process and that computing machines are thinking systems. Accordingly, if human thinking can be simulated computationally then human thinking is a computational process; and if human thinking is a computational process then its computational simulation is itself a thinking process. This paper shows that the said phenomenon—the computational simulation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Computational Thought Experiments for a More Rigorous Philosophy and Science of the Mind.Iris Oved, Nikhil Krishnaswamy, James Pustejovsky & Joshua Hartshorne - 2024 - In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey & E. Hazeltine (eds.), Proceedings of the 46th Annual Conference of the Cognitive Science Society. CC BY. pp. 601-609.
    We offer philosophical motivations for a method we call Virtual World Cognitive Science (VW CogSci), in which researchers use virtual embodied agents that are embedded in virtual worlds to explore questions in the field of Cognitive Science. We focus on questions about mental and linguistic representation and the ways that such computational modeling can add rigor to philosophical thought experiments, as well as the terminology used in the scientific study of such representations. We find that this method forces researchers to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Computational Dynamics of Natural Information Morphology, Discretely Continuous.Gordana Dodig-Crnkovic - 2017 - Philosophies 2 (4):23.
    This paper presents a theoretical study of the binary oppositions underlying the mechanisms of natural computation understood as dynamical processes on natural information morphologies. Of special interest are the oppositions of discrete vs. continuous, structure vs. process, and differentiation vs. integration. The framework used is that of computing nature, where all natural processes at different levels of organisation are computations over informational structures. The interactions at different levels of granularity/organisation in nature, and the character of the phenomena that unfold (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  31. Computer Simulations in Science and Engineering. Concept, Practices, Perspectives.Juan Manuel Durán - 2018 - Springer.
    This book addresses key conceptual issues relating to the modern scientific and engineering use of computer simulations. It analyses a broad set of questions, from the nature of computer simulations to their epistemological power, including the many scientific, social and ethics implications of using computer simulations. The book is written in an easily accessible narrative, one that weaves together philosophical questions and scientific technicalities. It will thus appeal equally to all academic scientists, engineers, and researchers in industry interested in questions (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  32. Quantum Analog of the Black- Scholes Formula(market of financial derivatives as a continuous weak measurement).S. I. Melnyk & I. G. Tuluzov - 2008 - Electronic Journal of Theoretical Physics (EJTP) 5 (18):95–104.
    We analyze the properties of optimum portfolios, the price of which is considered a new quantum variable and derive a quantum analog of the Black-Scholes formula for the price of financial variables in assumption that the market dynamics can by considered as its continuous weak measurement at no-arbitrage condition.
    Download  
     
    Export citation  
     
    Bookmark  
  33. On Representing Information: A Characterization of the Analog/Digital Distinction.Aldo Frigerio, Alessandro Giordani & Luca Mari - 2013 - Dialectica 67 (4):455-483.
    The common account of the analog vs digital distinction is based on features of physical systems, being related to the usage of continuous vs discrete supports respectively. It is proposed here to alternatively characterize the concepts of analog and digital as related to coding systems, of which a formal definition is given, by suggesting that the distinction refers to the strategy adopted to define the coding function: extensional in digital systems, isomorphic intensional in analog systems. This thesis (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  34. Cognition, Computing and Dynamic Systems.Mario Villalobos & Joe Dewhurst - 2016 - Límite. Revista Interdisciplinaria de Filosofía y Psicología 1.
    Traditionally, computational theory (CT) and dynamical systems theory (DST) have presented themselves as opposed and incompatible paradigms in cognitive science. There have been some efforts to reconcile these paradigms, mainly, by assimilating DST to CT at the expenses of its anti-representationalist commitments. In this paper, building on Piccinini’s mechanistic account of computation and the notion of functional closure, we explore an alternative conciliatory strategy. We try to assimilate CT to DST by dropping its representationalist commitments, and by inviting CT (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Computation in Physical Systems: A Normative Mapping Account.Paul Schweizer - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 27-47.
    The relationship between abstract formal procedures and the activities of actual physical systems has proved to be surprisingly subtle and controversial, and there are a number of competing accounts of when a physical system can be properly said to implement a mathematical formalism and hence perform a computation. I defend an account wherein computational descriptions of physical systems are high-level normative interpretations motivated by our pragmatic concerns. Furthermore, the criteria of utility and success vary according to our diverse purposes (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  36. Neural Computation of Surface Border Ownership and Relative Surface Depth from Ambiguous Contrast Inputs.Birgitta Dresp-Langley & Stephen Grossberg - 2016 - Frontiers in Psychology 7.
    The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Computer simulation and the features of novel empirical data.Greg Lusk - 2016 - Studies in History and Philosophy of Science Part A 56:145-152.
    In an attempt to determine the epistemic status of computer simulation results, philosophers of science have recently explored the similarities and differences between computer simulations and experiments. One question that arises is whether and, if so, when, simulation results constitute novel empirical data. It is often supposed that computer simulation results could never be empirical or novel because simulations never interact with their targets, and cannot go beyond their programming. This paper argues against this position by examining whether, and under (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  38. Mechanistic Computational Individuation without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2019 - British Journal for the Philosophy of Science:axz005.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, mostly with (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  39. Numerical computations and mathematical modelling with infinite and infinitesimal numbers.Yaroslav Sergeyev - 2009 - Journal of Applied Mathematics and Computing 29:177-195.
    Traditional computers work with finite numbers. Situations where the usage of infinite or infinitesimal quantities is required are studied mainly theoretically. In this paper, a recently introduced computational methodology (that is not related to the non-standard analysis) is used to work with finite, infinite, and infinitesimal numbers numerically. This can be done on a new kind of a computer – the Infinity Computer – able to work with all these types of numbers. The new computational tools both give possibilities to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  40. Computational Explanation of Consciousness:A Predictive Processing-based Understanding of Consciousness.Zhichao Gong - 2024 - Journal of Human Cognition 8 (2):39-49.
    In the domain of cognitive science, understanding consciousness through the investigation of neural correlates has been the primary research approach. The exploration of neural correlates of consciousness is focused on identifying these correlates and reducing consciousness to a physical phenomenon, embodying a form of reductionist physicalism. This inevitably leads to challenges in explaining consciousness itself. The computational interpretation of consciousness takes a functionalist view, grounded in physicalism, and models conscious experience as a cognitive function, elucidated through computational means. This paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Epistemic issues in computational reproducibility: software as the elephant in the room.Alexandre Hocquet & Frédéric Wieber - 2021 - European Journal for Philosophy of Science 11 (2):1-20.
    Computational reproducibility possesses its own dynamics and narratives of crisis. Alongside the difficulties of computing as an ubiquitous yet complex scientific activity, computational reproducibility suffers from a naive expectancy of total reproducibility and a moral imperative to embrace the principles of free software as a non-negotiable epistemic virtue. We argue that the epistemic issues at stake in actual practices of computational reproducibility are best unveiled by focusing on software as a pivotal concept, one that is surprisingly often overlooked in accounts (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  42. The Ethics of Cloud Computing.Boudewijn De Bruin & Luciano Floridi - 2017 - Science and Engineering Ethics 23 (1):21-39.
    Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informational duties of hosting companies that own and operate cloud computing datacenters (e.g., Amazon). It considers the cloud services providers leasing ‘space in the cloud’ from hosting companies (e.g, Dropbox, Salesforce). And it (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  43. From Acoustic Analog of Space, Cancer Therapy, to Acoustic Sachs-Wolfe Theorem: A Model of the Universe as a Guitar.Victor Christianto, Florentin Smarandache & Yunita Umniyati - manuscript
    It has been known for long time that the cosmic sound wave was there since the early epoch of the Universe. Signatures of its existence are abound. However, such an acoustic model of cosmology is rarely developed fully into a complete framework from the notion of space, cancer therapy up to the sky. This paper may be the first attempt towards such a complete description of the Universe based on classical wave equation of sound. It is argued that one can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44.  98
    Exploring computational theories of mind, algorithms and computations. [REVIEW]Jordan Dopkins - 2024 - Metascience 33 (2).
    Review of The Computational Theory of Mind by Matteo Colombo and Gualtiero Piccinini. Cambridge, 2023, iv + 75 pp, $64.99 HB.
    Download  
     
    Export citation  
     
    Bookmark  
  45. Computational Theories of Conscious Experience: Between a Rock and a Hard Place.Gary Bartlett - 2012 - Erkenntnis 76 (2):195-209.
    Very plausibly, nothing can be a genuine computing system unless it meets an input-sensitivity requirement. Otherwise all sorts of objects, such as rocks or pails of water, can count as performing computations, even such as might suffice for mentality—thus threatening computationalism about the mind with panpsychism. Maudlin in J Philos 86:407–432, ( 1989 ) and Bishop ( 2002a , b ) have argued, however, that such a requirement creates difficulties for computationalism about conscious experience, putting it in conflict with the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. (1 other version)Information, Computation, Cognition. Agency-Based Hierarchies of Levels.Gordana Dodig-Crnkovic - 2016 - In Vincent C. Müller (ed.), Fundamental Issues of Artificial Intelligence. Cham: Springer. pp. 139-159.
    This paper connects information with computation and cognition via concept of agents that appear at variety of levels of organization of physical/chemical/cognitive systems – from elementary particles to atoms, molecules, life-like chemical systems, to cognitive systems starting with living cells, up to organisms and ecologies. In order to obtain this generalized framework, concepts of information, computation and cognition are generalized. In this framework, nature can be seen as informational structure with computational dynamics, where an (info-computational) agent is needed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  47. From Computer Metaphor to Computational Modeling: The Evolution of Computationalism.Marcin Miłkowski - 2018 - Minds and Machines 28 (3):515-541.
    In this paper, I argue that computationalism is a progressive research tradition. Its metaphysical assumptions are that nervous systems are computational, and that information processing is necessary for cognition to occur. First, the primary reasons why information processing should explain cognition are reviewed. Then I argue that early formulations of these reasons are outdated. However, by relying on the mechanistic account of physical computation, they can be recast in a compelling way. Next, I contrast two computational models of working (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  48. The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. Computing Mechanisms and Autopoietic Systems.Joe Dewhurst - 2016 - In Vincent C. Müller (ed.), Computing and philosophy: Selected papers from IACAP 2014. Cham: Springer. pp. 17-26.
    This chapter draws an analogy between computing mechanisms and autopoietic systems, focusing on the non-representational status of both kinds of system (computational and autopoietic). It will be argued that the role played by input and output components in a computing mechanism closely resembles the relationship between an autopoietic system and its environment, and in this sense differs from the classical understanding of inputs and outputs. The analogy helps to make sense of why we should think of computing mechanisms as non-representational, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The computational and the representational language-of-thought hypotheses.David J. Chalmers - 2023 - Behavioral and Brain Sciences 46:e269.
    There are two versions of the language-of-thought hypothesis (LOT): Representational LOT (roughly, structured representation), introduced by Ockham, and computational LOT (roughly, symbolic computation) introduced by Fodor. Like many others, I oppose the latter but not the former. Quilty-Dunn et al. defend representational LOT, but they do not defend the strong computational LOT thesis central to the classical-connectionist debate.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 949