Results for 'Infinite and infinitesimal numbers'

966 found
Order:
  1. Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers.Yaroslav Sergeyev - 2007 - Chaos, Solitons and Fractals 33 (1):50-75.
    The paper considers a new type of objects – blinking fractals – that are not covered by traditional theories studying dynamics of self-similarity processes. It is shown that the new approach allows one to give various quantitative characteristics of the newly introduced and traditional fractals using infinite and infinitesimal numbers proposed recently. In this connection, the problem of the mathematical modelling of continuity is discussed in detail. A strong advantage of the introduced computational paradigm consists of its (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Numerical computations and mathematical modelling with infinite and infinitesimal numbers.Yaroslav Sergeyev - 2009 - Journal of Applied Mathematics and Computing 29:177-195.
    Traditional computers work with finite numbers. Situations where the usage of infinite or infinitesimal quantities is required are studied mainly theoretically. In this paper, a recently introduced computational methodology (that is not related to the non-standard analysis) is used to work with finite, infinite, and infinitesimal numbers numerically. This can be done on a new kind of a computer – the Infinity Computer – able to work with all these types of numbers. The (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  3. A new applied approach for executing computations with infinite and infinitesimal quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.
    A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  4. Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains.Yaroslav Sergeyev - 2009 - Nonlinear Analysis Series A 71 (12):e1688-e1707.
    The goal of this paper consists of developing a new (more physical and numerical in comparison with standard and non-standard analysis approaches) point of view on Calculus with functions assuming infinite and infinitesimal values. It uses recently introduced infinite and infinitesimal numbers being in accordance with the principle ‘The part is less than the whole’ observed in the physical world around us. These numbers have a strong practical advantage with respect to traditional approaches: they (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  5. Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems.Yaroslav Sergeyev - 2017 - EMS Surveys in Mathematical Sciences 4 (2):219–320.
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Lagrange Lecture: Methodology of numerical computations with infinities and infinitesimals.Yaroslav Sergeyev - 2010 - Rendiconti Del Seminario Matematico dell'Università E Del Politecnico di Torino 68 (2):95–113.
    A recently developed computational methodology for executing numerical calculations with infinities and infinitesimals is described in this paper. The approach developed has a pronounced applied character and is based on the principle “The part is less than the whole” introduced by the ancient Greeks. This principle is applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). The point of view on infinities and infinitesimals (and in general, on Mathematics) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. UN SEMPLICE MODO PER TRATTARE LE GRANDEZZE INFINITE ED INFINITESIME.Yaroslav Sergeyev - 2015 - la Matematica Nella Società E Nella Cultura: Rivista Dell’Unione Matematica Italiana, Serie I 8:111-147.
    A new computational methodology allowing one to work in a new way with infinities and infinitesimals is presented in this paper. The new approach, among other things, gives the possibility to calculate the number of elements of certain infinite sets, avoids indeterminate forms and various kinds of divergences. This methodology has been used by the author as a starting point in developing a new kind of computer – the Infinity Computer – able to execute computations and to store in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  8. The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area.Yaroslav Sergeyev - 2016 - Communications in Nonlinear Science and Numerical Simulation 31 (1-3):21–29.
    The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Numerical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  9. Interpretation of percolation in terms of infinity computations.Yaroslav Sergeyev, Dmitri Iudin & Masaschi Hayakawa - 2012 - Applied Mathematics and Computation 218 (16):8099-8111.
    In this paper, a number of traditional models related to the percolation theory has been considered by means of new computational methodology that does not use Cantor’s ideas and describes infinite and infinitesimal numbers in accordance with the principle ‘The part is less than the whole’. It gives a possibility to work with finite, infinite, and infinitesimal quantities numerically by using a new kind of a compute - the Infinity Computer – introduced recently in [18]. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Evaluating the exact infinitesimal values of area of Sierpinski's carpet and volume of Menger's sponge.Yaroslav Sergeyev - 2009 - Chaos, Solitons and Fractals 42: 3042–3046.
    Very often traditional approaches studying dynamics of self-similarity processes are not able to give their quantitative characteristics at infinity and, as a consequence, use limits to overcome this difficulty. For example, it is well know that the limit area of Sierpinski’s carpet and volume of Menger’s sponge are equal to zero. It is shown in this paper that recently introduced infinite and infinitesimal numbers allow us to use exact expressions instead of limits and to calculate exact (...) values of areas and volumes at various points at infinity even if the chosen moment of the observation is infinitely faraway on the time axis from the starting point. It is interesting that traditional results that can be obtained without the usage of infinite and infinitesimal numbers can be produced just as finite approximations of the new ones. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Higher order numerical differentiation on the Infinity Computer.Yaroslav Sergeyev - 2011 - Optimization Letters 5 (4):575-585.
    There exist many applications where it is necessary to approximate numerically derivatives of a function which is given by a computer procedure. In particular, all the fields of optimization have a special interest in such a kind of information. In this paper, a new way to do this is presented for a new kind of a computer - the Infinity Computer - able to work numerically with finite, infinite, and infinitesimal number. It is proved that the Infinity Computer (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  12. Using blinking fractals for mathematical modelling of processes of growth in biological systems.Yaroslav Sergeyev - 2011 - Informatica 22 (4):559–576.
    Many biological processes and objects can be described by fractals. The paper uses a new type of objects – blinking fractals – that are not covered by traditional theories considering dynamics of self-similarity processes. It is shown that both traditional and blinking fractals can be successfully studied by a recent approach allowing one to work numerically with infinite and infinitesimal numbers. It is shown that blinking fractals can be applied for modeling complex processes of growth of biological (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  13. Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer.Yaroslav Sergeyev - 2013 - Applied Mathematics and Computation 219 (22):10668–10681.
    There exists a huge number of numerical methods that iteratively construct approximations to the solution y(x) of an ordinary differential equation (ODE) y′(x) = f(x,y) starting from an initial value y_0=y(x_0) and using a finite approximation step h that influences the accuracy of the obtained approximation. In this paper, a new framework for solving ODEs is presented for a new kind of a computer – the Infinity Computer (it has been patented and its working prototype exists). The new computer is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  14. Numerical infinities applied for studying Riemann series theorem and Ramanujan summation.Yaroslav Sergeyev - 2018 - In AIP Conference Proceedings 1978. AIP. pp. 020004.
    A computational methodology called Grossone Infinity Computing introduced with the intention to allow one to work with infinities and infinitesimals numerically has been applied recently to a number of problems in numerical mathematics (optimization, numerical differentiation, numerical algorithms for solving ODEs, etc.). The possibility to use a specially developed computational device called the Infinity Computer (patented in USA and EU) for working with infinite and infinitesimal numbers numerically gives an additional advantage to this approach in comparison with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Picturing the Infinite.Jeremy Gwiazda - manuscript
    The purpose of this note is to contrast a Cantorian outlook with a non-Cantorian one and to present a picture that provides support for the latter. In particular, I suggest that: i) infinite hyperreal numbers are the (actual, determined) infinite numbers, ii) ω is merely potentially infinite, and iii) infinitesimals should not be used in the di Finetti lottery. Though most Cantorians will likely maintain a Cantorian outlook, the picture is meant to motivate the obvious (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Numerical methods for solving initial value problems on the Infinity Computer.Yaroslav Sergeyev, Marat Mukhametzhanov, Francesca Mazzia, Felice Iavernaro & Pierluigi Amodio - 2016 - International Journal of Unconventional Computing 12 (1):3-23.
    New algorithms for the numerical solution of Ordinary Differential Equations (ODEs) with initial condition are proposed. They are designed for work on a new kind of a supercomputer – the Infinity Computer, – that is able to deal numerically with finite, infinite and infinitesimal numbers. Due to this fact, the Infinity Computer allows one to calculate the exact derivatives of functions using infinitesimal values of the stepsize. As a consequence, the new methods described in this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Some paradoxes of infinity revisited.Yaroslav Sergeyev - 2022 - Mediterranian Journal of Mathematics 19:143.
    In this article, some classical paradoxes of infinity such as Galileo’s paradox, Hilbert’s paradox of the Grand Hotel, Thomson’s lamp paradox, and the rectangle paradox of Torricelli are considered. In addition, three paradoxes regarding divergent series and a new paradox dealing with multiplication of elements of an infinite set are also described. It is shown that the surprising counting system of an Amazonian tribe, Pirah ̃a, working with only three numerals (one, two, many) can help us to change our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Deleuze, Leibniz and Projective Geometry in the Fold.Simon Duffy - 2010 - Angelaki 15 (2):129-147.
    Explications of the reconstruction of Leibniz’s metaphysics that Deleuze undertakes in 'The Fold: Leibniz and the Baroque' focus predominantly on the role of the infinitesimal calculus developed by Leibniz.1 While not underestimat- ing the importance of the infinitesimal calculus and the law of continuity as reflected in the calculus of infinite series to any understanding of Leibniz’s metaphysics and to Deleuze’s reconstruction of it in The Fold, what I propose to examine in this paper is the role (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  19. Arguing about Infinity: The meaning (and use) of infinity and zero.Paul Mayer - manuscript
    This work deals with problems involving infinities and infinitesimals. It explores the ideas behind zero, its relationship to ontological nothingness, finititude (such as finite numbers and quantities), and the infinite. The idea of infinity and zero are closely related, despite what many perceive as an intuitive inverse relationship. The symbol 0 generally refers to nothingness, whereas the symbol infinity refers to ``so much'' that it cannot be quantified or captured. The notion of finititude rests somewhere between complete nothingness (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. The question of Deleuze’s Neo-Leibnizianism.Simon B. Duffy - 2012 - In Patricia Pisters, Rosi Braidotti & Alan D. Schrift (eds.), Down by Law: Revisiting Normativity with Deleuze. Bloomsbury Academic.
    Much has been made of Deleuze’s Neo-Leibnizianism,3 however not very much detailed work has been done on the specific nature of Deleuze’s critique of Leibniz that positions his work within the broader framework of Deleuze’s own philo- sophical project. The present chapter undertakes to redress this oversight by providing an account of the reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold. Deleuze provides a systematic account of the structure of Leibniz’s metaphys- ics in terms of its mathematical underpinnings. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Leibniz, Mathematics and the Monad.Simon Duffy - 2010 - In Sjoerd van Tuinen & Niamh McDonnell (eds.), Deleuze and The fold: a critical reader. New York: Palgrave-Macmillan. pp. 89--111.
    The reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold provides a systematic account of the structure of Leibniz’s metaphysics in terms of its mathematical foundations. However, in doing so, Deleuze draws not only upon the mathematics developed by Leibniz—including the law of continuity as reflected in the calculus of infinite series and the infinitesimal calculus—but also upon developments in mathematics made by a number of Leibniz’s contemporaries—including Newton’s method of fluxions. He also draws upon a number (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  22. (1 other version)God and the Numbers.Paul Studtmann - 2023 - Journal of Philosophy 120 (12):641-655.
    According to Augustine, abstract objects are ideas in the mind of God. Because numbers are a type of abstract object, it would follow that numbers are ideas in the mind of God. Call such a view the “Augustinian View of Numbers” (AVN). In this paper, I present a formal theory for AVN. The theory stems from the symmetry conception of God as it appears in Studtmann (2021). I show that the theory in Studtmann’s paper can interpret the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. On Infinite Number and Distance.Jeremy Gwiazda - 2012 - Constructivist Foundations 7 (2):126-130.
    Context: The infinite has long been an area of philosophical and mathematical investigation. There are many puzzles and paradoxes that involve the infinite. Problem: The goal of this paper is to answer the question: Which objects are the infinite numbers (when order is taken into account)? Though not currently considered a problem, I believe that it is of primary importance to identify properly the infinite numbers. Method: The main method that I employ is conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24. On Multiverses and Infinite Numbers.Jeremy Gwiazda - 2014 - In Klaas J. Kraay (ed.), God and the Multiverse: Scientific, Philosophical, and Theological Perspectives. New York: Routledge. pp. 162-173.
    A multiverse is comprised of many universes, which quickly leads to the question: How many universes? There are either finitely many or infinitely many universes. The purpose of this paper is to discuss two conceptions of infinite number and their relationship to multiverses. The first conception is the standard Cantorian view. But recent work has suggested a second conception of infinite number, on which infinite numbers behave very much like finite numbers. I will argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Surreal Probabilities.J. Dmitri Gallow - manuscript
    We will flip a fair coin infinitely many times. Al calls the first flip, claiming it will land heads. Betty calls every odd numbered flip, claiming they will all land heads. Carl calls every flip bar none, claiming they will all land heads. Pre-theoretically, it seems that Al's claim is infinitely more likely than Betty's, and that Betty's claim is infinitely more likely than Carl's. But standard, real-valued probability theory says that, while Al's claim is infinitely more likely than Betty's, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Is Leibnizian calculus embeddable in first order logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Big-Oh Notations, Elections, and Hyperreal Numbers: A Socratic Dialogue.Samuel Alexander & Bryan Dawson - 2023 - Proceedings of the ACMS 23.
    We provide an intuitive motivation for the hyperreal numbers via electoral axioms. We do so in the form of a Socratic dialogue, in which Protagoras suggests replacing big-oh complexity classes by real numbers, and Socrates asks some troubling questions about what would happen if one tried to do that. The dialogue is followed by an appendix containing additional commentary and a more formal proof.
    Download  
     
    Export citation  
     
    Bookmark  
  28. Infinite numbers are large finite numbers.Jeremy Gwiazda - unknown
    In this paper, I suggest that infinite numbers are large finite numbers, and that infinite numbers, properly understood, are 1) of the structure omega + (omega* + omega)Ө + omega*, and 2) the part is smaller than the whole. I present an explanation of these claims in terms of epistemic limitations. I then consider the importance, part of which is demonstrating the contradiction that lies at the heart of Cantorian set theory: the natural numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  29. Infinite Opinion Sets and Relative Accuracy.Ilho Park & Jaemin Jung - 2023 - Journal of Philosophy 120 (6):285-313.
    We can have credences in an infinite number of propositions—that is, our opinion set can be infinite. Accuracy-first epistemologists have devoted themselves to evaluating credal states with the help of the concept of ‘accuracy’. Unfortunately, under several innocuous assumptions, infinite opinion sets yield several undesirable results, some of which are even fatal, to accuracy-first epistemology. Moreover, accuracy-first epistemologists cannot circumvent these difficulties in any standard way. In this regard, we will suggest a non-standard approach, called a relativistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Lower and Upper Estimates of the Quantity of Algebraic Numbers.Yaroslav Sergeyev - 2023 - Mediterranian Journal of Mathematics 20:12.
    It is well known that the set of algebraic numbers (let us call it A) is countable. In this paper, instead of the usage of the classical terminology of cardinals proposed by Cantor, a recently introduced methodology using ①-based infinite numbers is applied to measure the set A (where the number ① is called grossone). Our interest to this methodology is explained by the fact that in certain cases where cardinals allow one to say only whether a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Throwing Darts, Time, and the Infinite.Jeremy Gwiazda - 2013 - Erkenntnis 78 (5):971-975.
    In this paper, I present a puzzle involving special relativity and the random selection of real numbers. In a manner to be specified, darts thrown later hit reals further into a fixed well-ordering than darts thrown earlier. Special relativity is then invoked to create a puzzle. I consider four ways of responding to this puzzle which, I suggest, fail. I then propose a resolution to the puzzle, which relies on the distinction between the potential infinite and the actual (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. Infinite analysis, lucky proof, and guaranteed proof in Leibniz.Gonzalo Rodriguez-Pereyra & Paul Lodge - 2011 - Archiv für Geschichte der Philosophie 93 (2):222-236.
    According to one of Leibniz's theories of contingency a proposition is contingent if and only if it cannot be proved in a finite number of steps. It has been argued that this faces the Problem of Lucky Proof , namely that we could begin by analysing the concept ‘Peter’ by saying that ‘Peter is a denier of Christ and …’, thereby having proved the proposition ‘Peter denies Christ’ in a finite number of steps. It also faces a more general but (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  33. From Tarde to Deleuze and Foucault: The Infinitesimal Revolution.Sergio Tonkonoff (ed.) - 2017 - New York, USA: Palgrave Macmillan.
    This book posits that a singular paradigm in social theory can be discovered by reconstructing the conceptual grammar of Gabriel Tarde’s micro-sociology and by understanding the ways in which Gilles Deleuze’s micro-politics and Michel Foucault’s micro-physics have engaged with it. This is articulated in the infinite social multiplicity-invention-imitation-opposition-open system. Guided by infinitist ontology and an epistemology of infinitesimal difference, this paradigm offers a micro-socio-logic capable of producing new ways of understanding social life and its vicissitudes. In the field (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Nominalism and the Infinite Knowledge It Implies.Beppe Brivec - manuscript
    Being able to apply grue-like predicates would allow one to instantly solve an infinite number of mysteries (historical, scientific, etc.). In this paper I’ll give a couple of examples. It is still a mystery whether George Mallory and Andrew Irvine managed to reach the summit of Mount Everest in 1924. The predicate “greverest” applies to an object if either the object is green and Mount Everest was scaled in 1924, or the object is not green and Mount Everest was (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Easy ontology, application conditions and infinite regress.Andrew Brenner - 2018 - Analysis 78 (4):605-614.
    In a number of recent publications Thomasson has defended a deflationary approach to ontological disputes, according to which ontological disputes are relatively easy to settle, by either conceptual analysis, or conceptual analysis in conjunction with empirical investigation. Thomasson’s “easy” approach to ontology is intended to derail many prominent ontological disputes. In this paper I present an objection to Thomasson’s approach to ontology. Thomasson’s approach to existence assertions means that she is committed to the view that application conditions associated with any (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  36. From Tarde to Foucault and Deleuze. The Infinitesimal Revolution.Sergio Tonkonoff - 2017 - New York: Palgrave Macmillan.
    This book posits that a singular paradigm in social theory can be discovered by reconstructing the conceptual grammar of Gabriel Tarde’s micro-sociology and by understanding the ways in which Gilles Deleuze’s micro-politics and Michel Foucault’s micro-physics have engaged with it. This is articulated in the infinite social multiplicity-invention-imitation-opposition-open system. Guided by infinitist ontology and an epistemology of infinitesimal difference, this paradigm offers a micro-socio-logic capable of producing new ways of understanding social life and its vicissitudes. In the field (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. The Impossibility of an Infinite Number of Elapsed Planck Times.James Goetz - manuscript
    This note briefly discusses the observation of elapsed time in a flat universe while exploring the argument of past-eternal time versus emergent time in cosmology. A flat universe with an incomplete past forever has a finite age. Despite an infinite number of Planck time coordinates independent of phenomena and endless expansion, a flat universe never develops an age with an infinite number of Planck times. This observation indicates the impossibility of infinitely elapsed time in the future or past, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Rethinking Cantor: Infinite Iterations and the Cardinality of the Reals.Manus Ross - manuscript
    In this paper, I introduce an iterative method aimed at exploring numbers within the interval [0, 1]. Beginning with a foundational set, S0, a series of algorithms are employed to expand and refine this set. Each algorithm has its designated role, from incorporating irrational numbers to navigating non-deterministic properties. With each successive iteration, our set grows, and after infinite iterations, its cardinality is proposed to align with that of the real numbers. This work is an initial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Infinite Descent.T. Scott Dixon - 2020 - In Michael J. Raven (ed.), The Routledge Handbook of Metaphysical Grounding. New York: Routledge. pp. 244-58.
    Once one accepts that certain things metaphysically depend upon, or are metaphysically explained by, other things, it is natural to begin to wonder whether these chains of dependence or explanation must come to an end. This essay surveys the work that has been done on this issue—the issue of grounding and infinite descent. I frame the discussion around two questions: (1) What is infinite descent of ground? and (2) Is infinite descent of ground possible? In addressing the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Independence of the Grossone-Based Infinity Methodology from Non-standard Analysis and Comments upon Logical Fallacies in Some Texts Asserting the Opposite.Yaroslav D. Sergeyev - 2019 - Foundations of Science 24 (1):153-170.
    This paper considers non-standard analysis and a recently introduced computational methodology based on the notion of ①. The latter approach was developed with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework and in all the situations requiring these notions. Non-standard analysis is a classical purely symbolic technique that works with ultrafilters, external and internal sets, standard and non-standard numbers, etc. In its turn, the ①-based methodology does not use any of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  57
    Defining π via Infinite Densification of the Sweeping Net and Reverse Integration.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1 (1):7.
    We present a novel approach to defining the mathematical constant π through the infinite den- sification of a sweeping net, which approximates a circle as the net becomes infinitely dense. By developing and enhancing notation related to sweeping nets and saddle maps, we establish a rigor- ous framework for expressing π in terms of the densification process using reverse integration. This method, inspired by the concept that numbers ”come from infinity,” leverages a reverse integral approach to model the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Pascalian Expectations and Explorations.Alan Hajek & Elizabeth Jackson - forthcoming - In Roger Ariew & Yuval Avnur (eds.), The Blackwell Companion to Pascal. Wiley-Blackwell.
    Pascal’s Wager involves expected utilities. In this chapter, we examine the Wager in light of two main features of expected utility theory: utilities and probabilities. We discuss infinite and finite utilities, and zero, infinitesimal, extremely low, imprecise, and undefined probabilities. These have all come up in recent literature regarding Pascal’s Wager. We consider the problems each creates and suggest prospects for the Wager in light of these problems.
    Download  
     
    Export citation  
     
    Bookmark  
  43. Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm.Marco Cococcioni, Massimo Pappalardo & Yaroslav Sergeyev - 2018 - Applied Mathematics and Computation 318:298-311.
    Numerous problems arising in engineering applications can have several objectives to be satisfied. An important class of problems of this kind is lexicographic multi-objective problems where the first objective is incomparably more important than the second one which, in its turn, is incomparably more important than the third one, etc. In this paper, Lexicographic Multi-Objective Linear Programming (LMOLP) problems are considered. To tackle them, traditional approaches either require solution of a series of linear programming problems or apply a scalarization of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Fair infinite lotteries.Sylvia Wenmackers & Leon Horsten - 2013 - Synthese 190 (1):37-61.
    This article discusses how the concept of a fair finite lottery can best be extended to denumerably infinite lotteries. Techniques and ideas from non-standard analysis are brought to bear on the problem.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  45. The Future of the Concept of Infinite Number.Jeremy Gwiazda - unknown
    In ‘The Train Paradox’, I argued that sequential random selections from the natural numbers would grow through time. I used this claim to present a paradox. In response to this proposed paradox, Jon Pérez Laraudogoitia has argued that random selections from the natural numbers do not grow through time. In this paper, I defend and expand on the argument that random selections from the natural numbers grow through time. I also situate this growth of random selections in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. How Infinitely Valuable Could a Person Be?Levi Durham & Alexander Pruss - 2024 - Philosophia 52 (4):1185-1201.
    Many have the intuition that human persons are both extremely and equally valuable. This seeming extremity and equality of vale is puzzling: if overall value is the sum of one’s final value and instrumental value, how could it be that persons share the same extreme value? One way that we can solve the Value Puzzle is by following Andrew Bailey and Josh Rasmussen. Philosophy and Phenomenological Research, 103, 264–277 (2020) and accepting that persons have infinite final value. But there (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Infinity and the past.Quentin Smith - 1987 - Philosophy of Science 54 (1):63-75.
    infinite, and offer several arguments in sup port of this thesis. I believe their arguments are unsuccessful and aim to refute six of them in the six sections of the paper. One of my main criticisms concerns their supposition that an infinite series of past events must contain some events separated from the present event by an infinite number of intermediate events, and consequently that from one of these infinitely distant past events the present could never have (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  48. Indeterminism in Physics, Classical Chaos and Bohmian Mechanics: Are Real Numbers Really Real?Nicolas Gisin - 2019 - Erkenntnis 86 (6):1469-1481.
    It is usual to identify initial conditions of classical dynamical systems with mathematical real numbers. However, almost all real numbers contain an infinite amount of information. I argue that a finite volume of space can’t contain more than a finite amount of information, hence that the mathematical real numbers are not physically relevant. Moreover, a better terminology for the so-called real numbers is “random numbers”, as their series of bits are truly random. I propose (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  49.  64
    Optimized Energy Numbers Continued.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:12.
    In this paper, we explore the properties and optimization techniques related to polyhedral cones and energy numbers with a focus on the cone of positive semidefinite matrices and efficient computation strategies for kernels. In Part (a), we examine the polyhedral nature of the cone of positive semidefinite matrices, , establishing that it does not form a polyhedral cone for due to its infinite dimensional characteristics. In Part (b), we present an algorithm for efficiently computing the kernel function on-the-fly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The differential point of view of the infinitesimal calculus in Spinoza, Leibniz and Deleuze.Simon Duffy - 2006 - Journal of the British Society for Phenomenology 37 (3):286-307.
    In Hegel ou Spinoza,1 Pierre Macherey challenges the influence of Hegel’s reading of Spinoza by stressing the degree to which Spinoza eludes the grasp of the Hegelian dialectical progression of the history of philosophy. He argues that Hegel provides a defensive misreading of Spinoza, and that he had to “misread him” in order to maintain his subjective idealism. The suggestion being that Spinoza’s philosophy represents, not a moment that can simply be sublated and subsumed within the dialectical progression of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 966