I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are vulnerable (...) to such arguments while mathematical, logical, and normative beliefs are not—the very construction of Harman-style skeptical arguments requires the truth of significant fragments of our mathematical, logical, and normative beliefs, but requires no such thing of our moral beliefs. Given this property, Harman-style skeptical arguments against logical, mathematical, and normative beliefs are self-effacing; doubting these beliefs on the basis of such arguments results in the loss of our reasons for doubt. But we can cleanly doubt the truth of morality. (shrink)
Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of Frege (...) to a wider audience. In addition to the new introduction by John Slater, this edition contains Russell's introduction to the 1937 edition in which he defends his position against his formalist and intuitionist critics. (shrink)
Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e., the hidden logical order of things and its relations determined by natural (...) laws. Therefore mathematics is viewed not only as an appropriate tool to investigate human language and genetic code structures through computer sciencebased formal language theory but is itself a depiction of material reality. This confusion between language as a scientific tool to describe observations/experiences within cognitive constructed models and formal language as a direct depiction of material reality occurs not only in current approaches but was the central focus of the philosophy of science debate in the twentieth century, with rather unexpected results. This article recalls these results and their implications for more recent mathematical approaches that also attempt to explain the evolution of human language. (shrink)
In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, (...) D—the challenge to justify our D-beliefs—with the reliability challenge for D-realism—the challenge to explain the reliability of our D-beliefs. Harman’s contrast is relevant to the first, but not, evidently, to the second. One upshot of the discussion is that genealogical debunking arguments are fallacious. Another is that indispensability considerations cannot answer the Benacerraf–Field challenge for mathematical realism. (shrink)
Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...) of themes in recent philosophy of mathematics (concerning a priority and fictionalism, for example) in revealing new light. (shrink)
We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content (...) to key intuitions traded in the debate, regarding mathematics’ procurement of explanatory generality, and adjudicates unambiguously in favour of the nominalist, at least as far as ex- planatory generality is concerned. (shrink)
This paper argues that new light may be shed on mathematical reasoning in its non-pathological forms by careful observation of its pathologies. The first section explores the application to mathematics of recent work on fallacy theory, specifically the concept of an ‘argumentation scheme’: a characteristic pattern under which many similar inferential steps may be subsumed. Fallacies may then be understood as argumentation schemes used inappropriately. The next section demonstrates how some specific mathematical fallacies may be characterized in terms of (...) argumentation schemes. The third section considers the phenomenon of correct answers which result from incorrect methods. This turns out to pose some deep questions concerning the nature of mathematical knowledge. In particular, it is argued that a satisfactory epistemology for mathematical practice must address the role of luck. (shrink)
Of all twentieth century philosophers, it is Gilles Deleuze whose work agitates most forcefully for a worldview privileging becoming over being, difference over sameness; the world as a complex, open set of multiplicities. Nevertheless, Deleuze remains singular in enlisting mathematical resources to underpin and inform such a position, refusing the hackneyed opposition between ‘static’ mathematical logic versus ‘dynamic’ physical world. This is an international collection of work commissioned from foremost philosophers, mathematicians and philosophers of science, to address the wide range (...) of problematics and influences in this most important strand of Deleuze’s thinking. Contributors are Charles Alunni, Alain Badiou, Gilles Châtelet, Manuel DeLanda, Simon Duffy, Robin Durie, Aden Evens, Arkady Plotnitsky, Jean-Michel Salanskis, Daniel Smith and David Webb. (shrink)
The reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold provides a systematic account of the structure of Leibniz’s metaphysics in terms of its mathematical foundations. However, in doing so, Deleuze draws not only upon the mathematics developed by Leibniz—including the law of continuity as reflected in the calculus of infinite series and the infinitesimal calculus—but also upon developments in mathematics made by a number of Leibniz’s contemporaries—including Newton’s method of fluxions. He also draws upon a number (...) of subsequent developments in mathematics, the rudiments of which can be more or less located in Leibniz’s own work—including the theory of functions and singularities, the Weierstrassian theory of analytic continuity, and Poincaré’s theory of automorphic functions. Deleuze then retrospectively maps these developments back onto the structure of Leibniz’s metaphysics. While the Weierstrassian theory of analytic continuity serves to clarify Leibniz’s work, Poincaré’s theory of automorphic functions offers a solution to overcome and extend the limits that Deleuze identifies in Leibniz’s metaphysics. Deleuze brings this elaborate conjunction of material together in order to set up a mathematical idealization of the system that he considers to be implicit in Leibniz’s work. The result is a thoroughly mathematical explication of the structure of Leibniz’s metaphysics. This essay is an exposition of the very mathematical underpinnings of this Deleuzian account of the structure of Leibniz’s metaphysics, which, I maintain, subtends the entire text of The Fold. (shrink)
The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...) mathematical practices and their foundations. Yet, the collapse of Euclidean certitudes, of over 2300 years, and the crisis in the mathematical analysis of the 19th century, led to the exclusion of “geometric judgments” from the foundations of Mathematics. After the success and the limits of the logico-formal analysis, it is necessary to broaden our foundational tools and re-examine the interactions with natural sciences. In particular, the way the geometric and algebraic approaches organize knowledge is analyzed as a cross-disciplinary and cross-cultural issue and will be examined in Mathematical Physics and Biology. We finally discuss how the current notions of mathematical (phase) “space” should be revisited for the purposes of life sciences. (shrink)
ABSTRACT This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of (...) representing and assessing the relation between cognitive processes and certain properties of the stimuli at which they are directed. (shrink)
Anyone who has read Plato’s Republic knows it has a lot to say about mathematics. But why? I shall not be satisfied with the answer that the future rulers of the ideal city are to be educated in mathematics, so Plato is bound to give some space to the subject. I want to know why the rulers are to be educated in mathematics. More pointedly, why are they required to study so much mathematics, for so long?
For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could (...)mathematics be knowledge about? (2) How do we distinguish significant from insignificant mathematics? This is a fundamental philosophical problem concerning the nature of mathematics. But it is also a practical problem concerning mathematics itself. In the absence of the solution to the problem, there is the danger that genuinely significant mathematics will be lost among the unchecked growth of a mass of insignificant mathematics. This second problem cannot, it would seem, be solved granted knowledge-inquiry. For, in order to solve the problem, mathematics needs to be related to values, but this is, it seems, prohibited by knowledge-inquiry because it could only lead to the subversion of mathematical rigour. Both problems are solved, however, when mathematics is viewed from the perspective of wisdom-inquiry. (1) Mathematics is not a branch of knowledge. It is a body of systematized, unified and inter-connected problem-solving methods, a body of problematic possibilities. (2) A piece of mathematics is significant if (a) it links up to the interconnected body of existing mathematics, ideally in such a way that some problems difficult to solve in other branches become much easier to solve when translated into the piece of mathematics in question; (b) it has fruitful applications for (other) worthwhile human endeavours. If ever the revolution from knowledge to wisdom occurs, I would hope wisdom mathematics would flourish, the nature of mathematics would become much more transparent, more pupils and students would come to appreciate the fascination of mathematics, and it would be easier to discern what is genuinely significant in mathematics (something that baffled even Einstein). As a result of clarifying what should count as significant, the pursuit of wisdom mathematics might even lead to the development of significant new mathematics. (shrink)
This article will consider imagination in mathematics from a historical point of view, noting the key moments in its conception during the ancient, modern and contemporary eras.
Introduction to mathematical logic, part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
We have reached the peculiar situation where the advance of mainstream science has required us to dismiss as unreal our own existence as free, creative agents, the very condition of there being science at all. Efforts to free science from this dead-end and to give a place to creative becoming in the world have been hampered by unexamined assumptions about what science should be, assumptions which presuppose that if creative becoming is explained, it will be explained away as an illusion. (...) In this paper it is shown that this problem has permeated the whole of European civilization from the Ancient Greeks onwards, leading to a radical disjunction between cosmology which aims at a grasp of the universe through mathematics and history which aims to comprehend human action through stories. By going back to the Ancient Greeks and tracing the evolution of the denial of creative becoming, I trace the layers of assumptions that must in some way be transcended if we are to develop a truly post-Egyptian science consistent with the forms of understanding and explanation that have evolved within history. (shrink)
Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered (...) and rejected. Constructive empiricism cannot be realist about abstract objects; it must reject even the realism advocated by otherwise ontologically restrained and epistemologically empiricist indispensability theorists. Indispensability arguments rely on the kind of inference to the best explanation the rejection of which is definitive of constructive empiricism. On the other hand, formalist and logicist anti-realist positions are also shown to be untenable. It is argued that a constructive empiricist philosophy of mathematics must be fictionalist. Borrowing and developing elements from both Philip Kitcher's constructive naturalism and Kendall Walton's theory of fiction, the account of mathematics advanced treats mathematics as a collection of stories told about an ideal agent and mathematical objects as fictions. The account explains what true portions of mathematics are about and why mathematics is useful, even while it is a story about an ideal agent operating in an ideal world; it connects theory and practice in mathematics with human experience of the phenomenal world. At the same time, the make-believe and game-playing aspects of the theory show how we can make sense of mathematics as fiction, as stories, without either undermining that explanation or being forced to accept abstract mathematical objects into our ontology. All of this occurs within the framework that constructive empiricism itself provides the epistemological limitations it mandates, the semantic view of theories, and an emphasis on the pragmatic dimension of our theories, our explanations, and of our relation to the language we use. (shrink)
This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure (...) of the physical world. The no-miracles argument is the primary motivation for scientific realism. It is a presupposition of this argument that unobservable entities are explanatory only when they determine the empirical phenomena they explain. I argue that mathematical entities should also be seen as explanatory only when they determine the empirical facts they explain, namely, the modal structure of the physical world. Thus, scientific realism commits us to a metaphysical determination relation between mathematics and physical modality that has not been previously recognized. The requirement to account for the metaphysical dependence of modal physical structure on mathematics limits the class of acceptable solutions to the applicability problem that are available to the scientific realist. (shrink)
In the last decades two different and apparently unrelated lines of research have increasingly connected mathematics and evolutionism. Indeed, on the one hand different attempts to formalize darwinism have been made, while, on the other hand, different attempts to naturalize logic and mathematics have been put forward. Those researches may appear either to be completely distinct or at least in some way convergent. They may in fact both be seen as supporting a naturalistic stance. Evolutionism is indeed crucial (...) for a naturalistic perspective, and formalizing it seems to be a way to strengthen its scientificity. The paper shows that, on the contrary, those directions of research may be seen as conflicting, since the conception of knowledge on which they rest may be undermined by the consequences of accepting an evolutionary perspective. (shrink)
The imperviousness of mathematical truth to anti-objectivist attacks has always heartened those who defend objectivism in other areas, such as ethics. It is argued that the parallel between mathematics and ethics is close and does support objectivist theories of ethics. The parallel depends on the foundational role of equality in both disciplines. Despite obvious differences in their subject matter, mathematics and ethics share a status as pure forms of knowledge, distinct from empirical sciences. A pure understanding of principles (...) is possible because of the simplicity of the notion of equality, despite the different origins of our understanding of equality of objects in general and of the equality of the ethical worth of persons. (shrink)
Research into ancient physical structures, some having been known as the seven wonders of the ancient world, inspired new developments in the early history of mathematics. At the other end of this spectrum of inquiry the research is concerned with the minimum of observations from physical data as exemplified by Eddington's Principle. Current discussions of the interplay between physics and mathematics revive some of this early history of mathematics and offer insight into the fine-structure constant. Arthur Eddington's (...) work leads to a new calculation of the inverse fine-structure constant giving the same approximate value as ancient geometry combined with the golden ratio structure of the hydrogen atom. The hyperbolic function suggested by Alfred Landé leads to another result, involving the Laplace limit of Kepler's equation, with the same approximate value and related to the aforementioned results. The accuracy of these results are consistent with the standard reference. Relationships between the four fundamental coupling constants are also found. (shrink)
If logical truth is necessitated by sheer syntax, mathematics is categorially unlike logic even if all mathematics derives from definitions and logical principles. This contrast gets obscured by the plausibility of the Synonym Substitution Principle implicit in conceptions of analyticity: synonym substitution cannot alter sentence sense. The Principle obviously fails with intercepting: nonuniform term substitution in logical sentences. 'Televisions are televisions' and 'TVs are televisions' neither sound alike nor are used interchangeably. Interception synonymy gets assumed because logical sentences (...) and their synomic interceptions have identical factual content, which seems to exhaust semantic content. However, intercepting alters syntax by eliminating term recurrence, the sole strictly syntactic means of ensuring necessary term coextension, and thereby syntactically securing necessary truth. Interceptional necessity is lexical, a notational artifact. The denial of interception nonsynonymy and the disregard of term recurrence in logic link with many misconceptions about propositions, logical form, conventions, and metalanguages. Mathematics is distinct from logic: its truth is not syntactic; it is transmitted by synonym substitution; term recurrence has no essential role. The '=' of mathematics is an objectual relation between numbers; the '=' of logic marks a syntactic relation of coreferring terms. (shrink)
How do axioms, or first principles, in ethics compare to those in mathematics? In this companion piece to G.C. Field's 1931 "On the Role of Definition in Ethics", I argue that there are similarities between the cases. However, these are premised on an assumption which can be questioned, and which highlights the peculiarity of normative inquiry.
The literature on mathematics suggests that intuition plays a role in it as a ground of belief. This article explores the nature of intuition as it occurs in mathematical thinking. Section 1 suggests that intuitions should be understood by analogy with perceptions. Section 2 explains what fleshing out such an analogy requires. Section 3 discusses Kantian ways of fleshing it out. Section 4 discusses Platonist ways of fleshing it out. Section 5 sketches a proposal for resolving the main problem (...) facing Platonists—the problem of explaining how our experiences make contact with mathematical reality. (shrink)
The focus of this chapter is on efforts to create a new mathematics, with my prime interest being the role of mathematics in comprehending a world consisting first and foremost of processes, and examining what developments in mathematics are required for this. I am particularly interested in developments in mathematics able to do justice to the reality of life. Such mathematics could provide the basis for advancing ecology, human ecology and ecological economics and thereby assist (...) in the transformation of society and civilization so that we augment life rather than undermining the conditions for our existence. It was in the process of grappling with these problems that I was drawn to investigate the tradition of intuitionism in mathematics and the role of intuition in mathematics, science and philosophy, and then to consider Whitehead’s work on mathematics and its philosophy in relation to these. (shrink)
Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...) they relate to the sorts of explanation encountered in philosophy of science and metaphysics? (shrink)
_ Source: _Volume 6, Issue 2-3, pp 120 - 142 This paper aims to contribute to the debate over epistemic versus non-epistemic readings of the ‘hinges’ in Wittgenstein’s _On Certainty_. I follow Marie McGinn’s and Daniele Moyal-Sharrock’s lead in developing an analogy between mathematical sentences and certainties, and using the former as a model for the latter. However, I disagree with McGinn’s and Moyal-Sharrock’s interpretations concerning Wittgenstein’s views of both relata. I argue that mathematical sentences as well as certainties are (...) true and are propositions; that some of them can be epistemically justified; that in some senses they are not prior to empirical knowledge; that they are not ineffable; and that their primary function is epistemic as much as it is semantic. (shrink)
It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse mathematics, and argue that they are best understood as closure conditions on (...) the powerset of the natural numbers. (shrink)
This paper focuses on the distinction between methods which are mathematically "clever", and those which are simply crude, typically repetitive and computer intensive, approaches for "crunching" out answers to problems. Examples of the latter include simulated probability distributions and resampling methods in statistics, and iterative methods for solving equations or optimisation problems. Most of these methods require software support, but this is easily provided by a PC. The paper argues that the crunchier methods often have substantial advantages from the perspectives (...) of user-friendliness, reliability (in the sense that misuse is less likely), educational efficiency and realism. This means that they offer very considerable potential for simplifying the mathematical syllabus underlying many areas of applied mathematics such as management science and statistics: crunchier methods can provide the same, or greater, technical power, flexibility and insight, while requiring only a fraction of the mathematical conceptual background needed by their cleverer brethren. (shrink)
The connection between science and mathematics is often considered necessary and insoluble. Therefore, a relationship between mathematics and humanities or arts is deemed exceptional or sometimes unnatural. Nevertheless, on the basis of historical, ontological and epistemological researches it can be noted that it’s impossible to warrant the immediate identification between mathematics and sciences on a deeper level than the practical one. Given the instrumentality and then the unnecessity of this connection, the relationship between mathematics and not-scientific (...) disciplines is undeniable, even if the mathematics in the explicit formalisms which we know doesn’t appear in them. It’s possible to demonstrate this relationship not only with philosophical argumentations, but also whit empirical verifications, e.g. in the music and in particular in the music of J. S. Bach. Such an epistemological thought finally leads to the question on the possibility of knowledge in the art in comparison to the epistemological characteristics of the Galilean and Post-Galilean science. (shrink)
In this paper, I study how mathematicians are presented in western popular culture. I identify five stereotypes that I test on the best-known modern movies and television shows containing a significant amount of mathematics or important mathematician characters: (1) Mathematics is highly valued as an intellectual pursuit. (2) Little attention is given to the mathematical content. (3) Mathematical practice is portrayed in an unrealistic way. (4) Mathematicians are asocial and unable to enjoy normal life. (5) Higher mathematics (...) is ... (shrink)
The literature on the indispensability argument for mathematical realism often refers to the ‘indispensable explanatory role’ of mathematics. I argue that we should examine the notion of explanatory indispensability from the point of view of specific conceptions of scientific explanation. The reason is that explanatory indispensability in and of itself turns out to be insufficient for justifying the ontological conclusions at stake. To show this I introduce a distinction between different kinds of explanatory roles—some ‘thick’ and ontologically committing, others (...) ‘thin’ and ontologically peripheral—and examine this distinction in relation to some notable ‘ontic’ accounts of explanation. I also discuss the issue in the broader context of other ‘explanationist’ realist arguments. (shrink)
Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. For Nietzsche, (...) math is an artistic and moral activity that has an essential role to play in the joyful wisdom. (shrink)
Otávio Bueno* * and Steven French.** ** Applying Mathematics: Immersion, Inference, Interpretation. Oxford University Press, 2018. ISBN: 978-0-19-881504-4 978-0-19-185286-2. doi:10.1093/oso/9780198815044. 001.0001. Pp. xvii + 257.
The term ‘continuous’ in real analysis wasn’t given an adequate formal definition until 1817. However, important theorems about continuity were proven long before that. How was this possible? In this paper, I introduce and refine a proposed answer to this question, derived from the work of Frank Jackson, David Lewis and other proponents of the ‘Canberra plan’. In brief, the proposal is that before 1817 the meaning of the term ‘continuous’ was determined by a number of ‘platitudes’ which had some (...) special epistemic status. (shrink)
The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last (...) hundred years. This article explains the distinction and why it has proved to be one of the great organizing themes of mathematics. (shrink)
Mathematics has always been a core part of western education, from the medieval quadrivium to the large amount of arithmetic and algebra still compulsory in high schools. It is an essential part. Its commitment to exactitude and to rigid demonstration balances humanist subjects devoted to appreciation and rhetoric as well as giving the lie to postmodernist insinuations that all “truths” are subject to political negotiation. In recent decades, the character of mathematics has changed – or rather broadened: it (...) has become the enabling science behind the complexity of contemporary knowledge, from gene interpretation to bank risk. Mathematical understanding is all the more necessary for future jobs, as well as remaining, as ever, a prophylactic against the more corrosive philosophical views emanating from the humanities. (shrink)
At the beginning of the present century, a series of paradoxes were discovered within mathematics which suggested a fundamental unclarity in traditional mathematical methods. These methods rested on the assumption of a realm of mathematical idealities existing independently of our thinking activity, and in order to arrive at a firmly grounded mathematics different attempts were made to formulate a conception of mathematical objects as purely human constructions. It was, however, realised that such formulations necessarily result in a (...) class='Hi'>mathematics which lacks the richness and power of the old ‘platonistic’ methods, and the latter are still defended, in various modified forms, as embodying truths about self-existent mathematical entities. Thus there is an idealism-realism dispute in the philosophy of mathematics in some respects parallel to the controversy over the existence of the experiential world to the settlement of which lngarden devoted his life. The present paper is an attempt to apply Ingarden’s methods to the sphere of mathematical existence. This exercise will reveal new modes of being applicable to non-real objects, and we shall put forward arguments to suggest that these modes of being have an importance outside mathematics, especially in the areas of value theory and the ontology of art. (shrink)
I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the ‘why’). My (...) argument shows that Hobbesian natural philosophy relies upon suppositions that bodies plausibly behave according to these borrowed causal principles from geometry, acknowledging that bodies in the world may not actually behave this way. First, I consider Hobbes's relation to Aristotelian mixed mathematics and to Isaac Barrow's broadening of mixed mathematics in Mathematical Lectures (1683). I show that for Hobbes maker's knowledge from geometry provides the ‘why’ in mixed-mathematical explanations. Next, I examine two explanations from De corpore Part IV: (1) the explanation of sense in De corpore 25.1-2; and (2) the explanation of the swelling of parts of the body when they become warm in De corpore 27.3. In both explanations, I show Hobbes borrowing and citing geometrical principles and mixing these principles with appeals to experience. (shrink)
I discuss the structure of genealogical debunking arguments. I argue that they undermine our mathematical beliefs if they undermine our moral beliefs. The contrary appearance stems from a confusion of arithmetic truths with (first-order) logical truths, or from a confusion of reliability with justification. I conclude with a discussion of the cogency of debunking arguments, in light of the above. Their cogency depends on whether information can undermine all of our beliefs of a kind, F, without giving us direct reason (...) to doubt that our F-beliefs are modally secure. (shrink)
intro to Part 1 - -/- Most people disliked mathematics when they were at school and they were absolutely correct to do so. This is because maths as we know it is severely incomplete. No matter how elaborated and complicated mathematical equations become, in today's world they're based on 1+1=2. This certainly conforms to the world our physical senses perceive and to the world scientific instruments detect. It has been of immeasurable value to all knowledge throughout history and has (...) elevated science to the lofty status it enjoys. Science is now striving towards Unification - where the subatomic realm, all matter, energy, forces, space and time will be seen as entangled parts of one universe. While 1+1=2 has been vital in getting humanity to this point, it's time to suppress our attachments to the past and realize that whereas 1+1 will always equal 2, it's also capable of equalling the 1 which represents unification. -/- intro to Part 2 -/- b) Division by zero is accepted, in Newtonian maths, to be impossible. But we can regard division by zero as division by nothing i.e. division that has no effect. In this case, 1 divided by 0 is 1. However, to a physicist there is no such thing as nothing (even empty space contains energy). What could the something called 0 actually be? It could be a binary digit. If we use the base of ten (for simplicity) and attach one and zero to it as exponents, we get 10^1 divided by 10^0 = 10^1. If we then cancel 10 from each factor in the expression, we get 1 divided by 0 = 1. At the start of the paragraph, this was referred to as division by nothing. Then 0 was called a binary digit and division by nothing became division by something. The 1 that the division equals is the unified field of space-time. Division by 0 is impossible in Newtonian maths because the result can be infinity. But the word “infinity” can, as the last section of this book shows, apply to the unified field of spacetime. So division by zero is not impossible because it results in the universe, which is obviously possible … a possibility that has always been, and always will be, realized. -/- intro to Part 3 -/- If quantum entanglement has existed in the entire universe forever, everything would be everywhere and everywhen. Space, time and 5th-dimensional hyperspace would not be restricted to certain parts of the Mobius Universe but would exist in every particle. Past, present and future would not exist as the distinct periods which everyday life assumes. All instants of all periods would exist eternally, permitting time travel to any point in the past and to any point in the future. Entanglement may be created by simply zipping along at close to the speed of light - “Quantum entanglement of moving bodies” by Robert M. Gingrich and Christoph Adami in Physical Review Letters 89, 270402 (issue of 30 December 2002) – which might be achieved, according to this book, by warping space so it’s either a fraction of the 90 degrees allowing instantaneous travel or almost at 270 degrees to space as we know it. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.