In these days, there is an increasing technological development in intelligent tutoring systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics that help students understand the basics of math and that helps a lot of students of all ages to understand the topic because it's important for students of adding and subtracting. Through which the student will be able to study the course and solve related problems. An (...) evaluation of the intelligent tutoring systems was carried out and the results were encouraging. (shrink)
Monsters lurk within mathematical as well as literary haunts. I propose to trace some pathways between these two monstrous habitats. I start from Jeffrey Jerome Cohen’s influential account of monster culture and explore how well mathematical monsters fit each of his seven theses. The mathematical monsters I discuss are drawn primarily from three distinct but overlapping domains. Firstly, late nineteenth-century mathematicians made numerous unsettling discoveries that threatened their understanding of their own discipline and challenged their intuitions. The great French mathematician (...) Henri Poincaré characterised these anomalies as ‘monsters’, a name that stuck. Secondly, the twentieth-century philosopher Imre Lakatos composed a seminal work on the nature of mathematical proof, in which monsters play a conspicuous role. Lakatos coined such terms as ‘monster-barring’ and ‘monster-adjusting’ to describe strategies for dealing with entities whose properties seem to falsify a conjecture. Thirdly, and most recently, mathematicians dubbed the largest of the sporadic groups ‘the Monster’, because of its vast size and uncanny properties, and because its existence was suspected long before it could be confirmed. (shrink)
Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) mathematical truths are not (...) truths about the external world but specifications (formulations) of mathematical conceptions; (iii) mathematics is first and foremost our imagined tool by which, with certain assumptions about its applicability, we explore nature and synthesize our rational cognition of it. (shrink)
Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of Frege (...) to a wider audience. In addition to the new introduction by John Slater, this edition contains Russell's introduction to the 1937 edition in which he defends his position against his formalist and intuitionist critics. (shrink)
This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors (...) tried to naturalize mathematics by relying on evolutionism. But several difficulties arise when we try to do this. This chapter suggests that, in order to naturalize mathematics, it is better to take the method of mathematics to be the analytic method, rather than the axiomatic method, and thus conceive of mathematical knowledge as plausible knowledge. (shrink)
Mathematical models provide explanations of limited power of specific aspects of phenomena. One way of articulating their limits here, without denying their essential powers, is in terms of contrastive explanation.
Let mathematical justification be the kind of justification obtained when a mathematician provides a proof of a theorem. Are Gettier cases possible for this kind of justification? At first sight we might think not: The standard for mathematical justification is proof and, since proof is bound at the hip with truth, there is no possibility of having an epistemically lucky justification of a true mathematical proposition. In this paper, I argue that Gettier cases are possible (and indeed actual) in mathematical (...) reasoning. By analysing these cases, I suggest that the Gettier phenomenon indicates some upshots for actual mathematical practice. (shrink)
A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...) treatment of the problem of mathematical explanations of physical phenomena. This problem is of central importance in two different recent philosophical disputes: the dispute about the existence on non-causal scientific explanations and the dispute between realists and antirealists in the philosophy of mathematics. My aim in this paper is twofold. I will first argue that Lange (2013) and Pincock (2015) fail to make a significant contribution to these disputes. They fail to contribute to the dispute in the philosophy of mathematics because, in this context, their approach can be seen as question begging. They also fail to contribute to the dispute in the general philosophy of science because, as I will argue, there are important problems with the cases discussed by Lange and Pincock. I will then argue that the source of the problems with these two papers has to do with the fact that the piecemeal approach used to account for mathematical explanation is problematic. (shrink)
We argue that if Stephen Yablo (2005) is right that philosophers of mathematics ought to endorse a fictionalist view of number-talk, then there is a compelling reason for deflationists about truth to endorse a fictionalist view of truth-talk. More specifically, our claim will be that, for deflationists about truth, Yablo’s argument for mathematical fictionalism can be employed and mounted as an argument for truth-theoretic fictionalism.
Mathematical thinking skills are very important in mathematics, both to learn math or as learning goals. Thinking skills can be seen from the description given answers in solving mathematical problems faced. Mathematical thinking skills can be seen from the types, levels, and process. Proportionally questions given to students at universities in Indonesia (semester I, III, V, and VII). These questions are a matter of description that belong to the higher-level thinking. Students choose 5 of 8 given problem. Qualitatively, the (...) answers were analyzed by descriptive to see the tendency to think mathematically used in completing the test. The results show that students tend to choose the issues relating to the calculation. They are more use cases, examples and not an example, to evaluate the conjecture and prove to belong to the numeric argumentation. Used mathematical thinking students are very personal (intelligence, interest, and experience), and the situation (problems encountered). Thus, the level of half of the students are not guaranteed and shows the level of mathematical thinking. (shrink)
The study determined the influence of innate mathematical characteristics on the number sense competencies of junior high school students in a Philippine public school. The descriptive-correlational research design was used to accomplish the study involving a nonrandom sample of sixty 7th-grade students attending synchronous math sessions. Data obtained from the math-specific Learning Style and Self-Efficacy questionnaires and the modified Number Sense Test (NST) were analyzed and interpreted using descriptive statistics, Pearson’s Chi-Square, and Simple Linear Regression analysis. The research instruments and (...) statistics were all validated and tested for reliability. The analysis revealed that the students are visual learners, had no or slight self-efficacy, and their number sense competency level is poor. They encountered difficulty in all the components and domains of the NST. Moreover, the students’ mathematical self-efficacy is significantly related and may influence their number sense competency level. Building upon the learners’ self-efficacy to further their understanding and skills in number sense is necessary. (shrink)
I present an argument that for any computer-simulated civilization we design, the mathematical knowledge recorded by that civilization has one of two limitations. It is untrustworthy, or it is weaker than our own mathematical knowledge. This is paradoxical because it seems that nothing prevents us from building in all sorts of advantages for the inhabitants of said simulation.
Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
A basic thesis of Neokantian epistemology and philosophy of science contends that the knowing subject and the object to be known are only abstractions. What really exists, is the relation between both. For the elucidation of this “knowledge relation ("Erkenntnisrelation") the Neokantians of the Marburg school used a variety of mathematical metaphors. In this con-tribution I reconsider some of these metaphors proposed by Paul Natorp, who was one of the leading members of the Marburg school. It is shown that Natorp's (...) metaphors are not unrelated to those used in some currents of contemporary epistemology and philosophy of science. (shrink)
An inquiry on the training needs in Mathematics was conducted to Laura Vicuña Center - Palawan (LVC-P) learners. Specifically, this aimed to determine their level of performance in numbers, measurement, geometry, algebra, and statistics, identify the difficulties they encountered in solving word problems and enumerate topics where they needed coaching. -/- To identify specific training needs, the study employed a descriptive research design where 36 participants were sampled purposively. The data were gathered through a problem set test and focus (...) group discussion. Findings revealed that LVC-P learners had an unsatisfactory performance in numbers, measurement, and statistics while alarmingly poor in geometry and algebra. They also faced difficulties in remembering, understanding, applying, and analyzing mathematical concepts when solving problems. Further, the learners were able to name certain topics subjected to tutorials. -/- The above facts and observations suggest that learners of LVC-P have urgent training needs in Mathematics. It is recommended that the Western Philippines University - College of Education RDE Unit continue its research, development, and extension services to LVC-P. More importantly, the results of this inquiry regarding the training needs of the learners will serve as bases for conducting an extension project and development program for LVC-P. Series of tutorial sessions is deemed necessary to address the needs and difficulties of the learners. (shrink)
We know very little about mathematical skepticism in modem times. Imre Lakatos once remarked that “in discussing modem efforts to establish foundations for mathematical knowledge one tends to forget that these are but a chapter in the great effort to overcome skepticism by establishing foundations for knowledge in general." And in a sense he was clearly right: modem thought — with its new discoveries in mathematical sciences, the mathematization of physics, the spreading of Pyrrhonist doctrines, the centrality of epistemological foundationalism (...) and the diffusion of the geometrical method in philosophy — was the most natural arena in which skepticism and mathematics could confront each other. The problem remains, however, that no investigation of the whole topic has yet been attempted. Thus, as far as we know, mathematical certainties should have clashed with skeptical doubts, but whether and to what extent there was indeed a historical debate on mathematical skepticism in modern thought remains to be ascertained. (shrink)
An influential position in the philosophy of biology claims that there are no biological laws, since any apparently biological generalization is either too accidental, fact-like or contingent to be named a law, or is simply reducible to physical laws that regulate electrical and chemical interactions taking place between merely physical systems. In the following I will stress a neglected aspect of the debate that emerges directly from the growing importance of mathematical models of biological phenomena. My main aim is to (...) defend, as well as reinforce, the view that there are indeed laws also in biology, and that their difference in stability, contingency or resilience with respect to physical laws is one of degrees, and not of kind . (shrink)
Scientists use models to know the world. It i susually assumed that mathematicians doing pure mathematics do not. Mathematicians doing pure mathematics prove theorems about mathematical entities like sets, numbers, geometric figures, spaces, etc., they compute various functions and solve equations. In this paper, I want to exhibit models build by mathematicians to study the fundamental components of spaces and, more generally, of mathematical forms. I focus on one area of mathematics where models occupy a central role, (...) namely homotopy theory. I argue that mathematicians introduce genuine models and I offer a rough classification of these models. (shrink)
Mathematics has always been a core part of western education, from the medieval quadrivium to the large amount of arithmetic and algebra still compulsory in high schools. It is an essential part. Its commitment to exactitude and to rigid demonstration balances humanist subjects devoted to appreciation and rhetoric as well as giving the lie to postmodernist insinuations that all “truths” are subject to political negotiation. In recent decades, the character of mathematics has changed – or rather broadened: it (...) has become the enabling science behind the complexity of contemporary knowledge, from gene interpretation to bank risk. Mathematical understanding is all the more necessary for future jobs, as well as remaining, as ever, a prophylactic against the more corrosive philosophical views emanating from the humanities. (shrink)
I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are vulnerable (...) to such arguments while mathematical, logical, and normative beliefs are not—the very construction of Harman-style skeptical arguments requires the truth of significant fragments of our mathematical, logical, and normative beliefs, but requires no such thing of our moral beliefs. Given this property, Harman-style skeptical arguments against logical, mathematical, and normative beliefs are self-effacing; doubting these beliefs on the basis of such arguments results in the loss of our reasons for doubt. But we can cleanly doubt the truth of morality. (shrink)
In attempt to provide an answer to the question of origin of deductive proofs, I argue that Aristotle’s philosophy of math is more accurate opposed to a Platonic philosophy of math, given the evidence of how mathematics began. Aristotle says that mathematical knowledge is a posteriori, known through induction; but once knowledge has become unqualified it can grow into deduction. Two pieces of recent scholarship on Greek mathematics propose new ways of thinking about how mathematics began in (...) the Greek culture. Both claimed there was a close relationship between the culture and mathematicians; mathematics was understood through imaginative processes, experiencing the proofs in tangible ways, and establishing a consistent unified form of argumentation. These pieces of evidence provide the context in which Aristotle worked and their contributions lend support to the argument that mathematical premises as inductively available is a better way of understanding the origins of deductive practices, opposed to the Platonic tradition. (shrink)
For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could (...)mathematics be knowledge about? (2) How do we distinguish significant from insignificant mathematics? This is a fundamental philosophical problem concerning the nature of mathematics. But it is also a practical problem concerning mathematics itself. In the absence of the solution to the problem, there is the danger that genuinely significant mathematics will be lost among the unchecked growth of a mass of insignificant mathematics. This second problem cannot, it would seem, be solved granted knowledge-inquiry. For, in order to solve the problem, mathematics needs to be related to values, but this is, it seems, prohibited by knowledge-inquiry because it could only lead to the subversion of mathematical rigour. Both problems are solved, however, when mathematics is viewed from the perspective of wisdom-inquiry. (1) Mathematics is not a branch of knowledge. It is a body of systematized, unified and inter-connected problem-solving methods, a body of problematic possibilities. (2) A piece of mathematics is significant if (a) it links up to the interconnected body of existing mathematics, ideally in such a way that some problems difficult to solve in other branches become much easier to solve when translated into the piece of mathematics in question; (b) it has fruitful applications for (other) worthwhile human endeavours. If ever the revolution from knowledge to wisdom occurs, I would hope wisdom mathematics would flourish, the nature of mathematics would become much more transparent, more pupils and students would come to appreciate the fascination of mathematics, and it would be easier to discern what is genuinely significant in mathematics (something that baffled even Einstein). As a result of clarifying what should count as significant, the pursuit of wisdom mathematics might even lead to the development of significant new mathematics. (shrink)
The reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold provides a systematic account of the structure of Leibniz’s metaphysics in terms of its mathematical foundations. However, in doing so, Deleuze draws not only upon the mathematics developed by Leibniz—including the law of continuity as reflected in the calculus of infinite series and the infinitesimal calculus—but also upon developments in mathematics made by a number of Leibniz’s contemporaries—including Newton’s method of fluxions. He also draws upon a number (...) of subsequent developments in mathematics, the rudiments of which can be more or less located in Leibniz’s own work—including the theory of functions and singularities, the Weierstrassian theory of analytic continuity, and Poincaré’s theory of automorphic functions. Deleuze then retrospectively maps these developments back onto the structure of Leibniz’s metaphysics. While the Weierstrassian theory of analytic continuity serves to clarify Leibniz’s work, Poincaré’s theory of automorphic functions offers a solution to overcome and extend the limits that Deleuze identifies in Leibniz’s metaphysics. Deleuze brings this elaborate conjunction of material together in order to set up a mathematical idealization of the system that he considers to be implicit in Leibniz’s work. The result is a thoroughly mathematical explication of the structure of Leibniz’s metaphysics. This essay is an exposition of the very mathematical underpinnings of this Deleuzian account of the structure of Leibniz’s metaphysics, which, I maintain, subtends the entire text of The Fold. (shrink)
The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity (...) in set theory. Thus, the pair of arithmetic and set are to be similar to Euclidean and non-Euclidean geometries distinguishably only by the Fifth postulate now, i.e. after replacing it and its negation correspondingly by the axiom of finiteness (induction) versus that of finiteness being idempotent negations to each other. Indeed, the axiom of choice, as far as it is equivalent to the well-ordering “theorem”, transforms any set in a well-ordering either necessarily finite according to the axiom of induction or also optionally infinite according to the axiom of infinity. So, the Gödel incompleteness statement relies on the logical contradiction of the axiom of induction and the axiom of infinity in the final analysis. Nonetheless, both can be considered as two idempotent versions of the same axiom (analogically to the Fifth postulate) and then unified after logicism and its inherent intensionality since the opposition of finiteness and infinity can be only extensional (i.e., relevant to the elements of any set rather than to the set by itself or its characteristic property being a proposition). So, the pathway for interpreting the Gödel incompleteness statement as an axiom and the originating from that assumption for “Hilbert mathematics” accepting its negation is pioneered. A much wider context relevant to realizing the Gödel incompleteness statement as a metamathematical axiom is consistently built step by step. The horizon of Hilbert mathematics is the proper subject in the third part of the paper, and a reinterpretation of Gödel’s papers (1930; 1931) as an apology of logicism as the only consistent foundations of mathematics is the topic of the next second part. (shrink)
Of all twentieth century philosophers, it is Gilles Deleuze whose work agitates most forcefully for a worldview privileging becoming over being, difference over sameness; the world as a complex, open set of multiplicities. Nevertheless, Deleuze remains singular in enlisting mathematical resources to underpin and inform such a position, refusing the hackneyed opposition between ‘static’ mathematical logic versus ‘dynamic’ physical world. This is an international collection of work commissioned from foremost philosophers, mathematicians and philosophers of science, to address the wide range (...) of problematics and influences in this most important strand of Deleuze’s thinking. Contributors are Charles Alunni, Alain Badiou, Gilles Châtelet, Manuel DeLanda, Simon Duffy, Robin Durie, Aden Evens, Arkady Plotnitsky, Jean-Michel Salanskis, Daniel Smith and David Webb. (shrink)
An increasing amount of contemporary philosophy of mathematics posits, and theorizes in terms of special kinds of mathematical modality. The goal of this paper is to bring recent work on higher-order metaphysics to bear on the investigation of these modalities. -/- The main focus of the paper will be views that posit mathematical contingency or indeterminacy about statements that concern the `width' of the set theoretic universe, such as Cantor's continuum hypothesis. In the higher-order framework I show that contingency (...) about the width of the set-theoretic universe refutes two orthodoxies concerning the structure of modal reality: the view that the broadest necessity has a logic of S5, and the `Leibniz biconditionals' stating that what is possible, in the broadest sense of possible, is what is true in some possible world. Nonetheless, I argue that the underlying picture of modal set-theory is coherent and has natural models. (shrink)
Mathematics is obviously important in the sciences. And so it is likely to be equally important in any effort that aims to understand God in a scientifically significant way or that aims to clarify the relations between science and theology. The degree to which God has any perfection is absolutely infinite. We use contemporary mathematics to precisely define that absolute infinity. For any perfection, we use transfinite recursion to define an endlessly ascending series of degrees of that perfection. (...) That series rises to an absolutely infinite degree of that perfection. God has that absolutely infinite degree. We focus on the perfections of knowledge, power, and benevolence. Our model of divine infinity thus builds a bridge between mathematics and theology. (shrink)
We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content (...) to key intuitions traded in the debate, regarding mathematics’ procurement of explanatory generality, and adjudicates unambiguously in favour of the nominalist, at least as far as explanatory generality is concerned. (shrink)
Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols are not only used (...) to express mathematical concepts—they are constitutive of the mathematical concepts themselves. Mathematical symbols are epistemic actions, because they enable us to represent concepts that are literally unthinkable with our bare brains. Using case-studies from the history of mathematics and from educational psychology, we argue for an intimate relationship between mathematical symbols and mathematical cognition. (shrink)
In this paper, I consider the use of mathematical results in philosophical arguments arriving at conclusions with non-mathematical content, with the view that in general such usage requires additional justification. As a cautionary example, I examine Kreisel’s arguments that the Continuum Hypothesis is determined by the axioms of Zermelo-Fraenkel set theory, and interpret Weston’s 1976 reply as showing that Kreisel fails to provide sufficient justification for the use of his main technical result. If we take the perspective that mathematical results (...) are used in the context of a modelling of something not necessarily mathematical, then the situation is clarified somewhat, and the procedure for arriving at justification for the use of such results becomes clear. I give an example of a particularly strong form this justification might take, using the idea of formalism independence due to Gödel and Kennedy. (shrink)
I characterize Bishop's constructive mathematics as an alternative to classical mathematics, which makes use of the actual infinity. From the history an accurate investigation of past physical theories I obtianed some ones - mainly Lazare Carnot's mechanics and Sadi Carnot's thermodynamics - which are alternative to the dominant theories - e.g. Newtopn's mechanics. The way to link together mathematics to theoretical physics is generalized and some general considerations, in particualr on the geoemtry in theoretical physics, are obtained.that.
Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...) appeals to relevance logic and uses resources in information theory to understand the explanatory relationship between mathematical and physical facts. 1Introduction2Anchoring3The Basic Deductive-Mathematical Account4The Genuineness Problem5Irrelevance6Relevance and Information7Objections and Replies 7.1Against relevance logic7.2Too epistemic7.3Informational containment8Conclusion. (shrink)
The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, which are essential (...) to creative mathematics. The components of the joke are explicated by argumentation schemes devised for application to topic-neutral reasoning. These in turn are classified under seven headings: retroduction, citation, intuition, meta-argument, closure, generalization, and definition. Finally, the wider significance of this account for the cognitive science of mathematics is discussed. (shrink)
Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered (...) and rejected. Constructive empiricism cannot be realist about abstract objects; it must reject even the realism advocated by otherwise ontologically restrained and epistemologically empiricist indispensability theorists. Indispensability arguments rely on the kind of inference to the best explanation the rejection of which is definitive of constructive empiricism. On the other hand, formalist and logicist anti-realist positions are also shown to be untenable. It is argued that a constructive empiricist philosophy of mathematics must be fictionalist. Borrowing and developing elements from both Philip Kitcher's constructive naturalism and Kendall Walton's theory of fiction, the account of mathematics advanced treats mathematics as a collection of stories told about an ideal agent and mathematical objects as fictions. The account explains what true portions of mathematics are about and why mathematics is useful, even while it is a story about an ideal agent operating in an ideal world; it connects theory and practice in mathematics with human experience of the phenomenal world. At the same time, the make-believe and game-playing aspects of the theory show how we can make sense of mathematics as fiction, as stories, without either undermining that explanation or being forced to accept abstract mathematical objects into our ontology. All of this occurs within the framework that constructive empiricism itself provides the epistemological limitations it mandates, the semantic view of theories, and an emphasis on the pragmatic dimension of our theories, our explanations, and of our relation to the language we use. (shrink)
Philosophy can shed light on mathematical modeling and the juxtaposition of modeling and empirical data. This paper explores three philosophical traditions of the structure of scientific theory—Syntactic, Semantic, and Pragmatic—to show that each illuminates mathematical modeling. The Pragmatic View identifies four critical functions of mathematical modeling: (1) unification of both models and data, (2) model fitting to data, (3) mechanism identification accounting for observation, and (4) prediction of future observations. Such facets are explored using a recent exchange between two groups (...) of mathematical modelers in plant biology. Scientific debate can arise from different modeling philosophies. (shrink)
Probability plays a crucial role regarding the understanding of the relationship which exists between mathematics and physics. It will be the point of departure of this brief reflection concerning this subject, as well as about the placement of Poincaré’s thought in the scenario offered by some contemporary perspectives.
The aim of this paper is to describe and analyze the epistemological justification of a proposal initially made by the biomathematician Robert Rosen in 1958. In this theoretical proposal, Rosen suggests using the mathematical concept of “category” and the correlative concept of “natural equivalence” in mathematical modeling applied to living beings. Our questions are the following: According to Rosen, to what extent does the mathematical notion of category give access to more “natural” formalisms in the modeling of living beings? Is (...) the so -called “naturalness” of some kinds of equivalences (which the mathematical notion of category makes it possible to generalize and to put at the forefront) analogous to the naturalness of living systems? Rosen appears to answer “yes” and to ground this transfer of the concept of “natural equivalence” in biology on such an analogy. But this hypothesis, although fertile, remains debatable. Finally, this paper makes a brief account of the later evolution of Rosen’s arguments about this topic. In particular, it sheds light on the new role played by the notion of “category” in his more recent objections to the computational models that have pervaded almost every domain of biology since the 1990s. (shrink)
Indispensablists contend that accepting scientific realism while rejecting mathematical realism involves a double standard. I refute this contention by developing an enhanced version of scientific realism, which I call interactive realism. It holds that interactively successful theories are typically approximately true, and that the interactive unobservable entities posited by them are likely to exist. It is immune to the pessimistic induction while mathematical realism is susceptible to it.
We show that critically accumulating "difficult" problems, contradictions and stagnation in modern science have the unified and well-specified mathematical origin in the explicit, artificial reduction of any interaction problem solution to an "exact", dynamically single-valued (or unitary) function, while in reality any unreduced interaction development leads to a dynamically multivalued solution describing many incompatible system configurations, or "realisations", that permanently replace one another in causally random order. We obtain thus the universal concept of dynamic complexity and chaos impossible in unitary (...)mathematics. This huge difference between the unreduced mathematics of real-world dynamics and strongly limited unitary “models” of traditional mathematics inevitably induces a growing series of “unsolvable” problems and other “mysteries” that culminate now in the crisis of the “end of science”, where the stagnating unitary “science” in question includes only the described limitation of the traditional mathematical framework (unfortunately accepted as the unique possible basis for any scientific knowledge). In this brief review, we show that science extension to the unreduced, dynamically multivalued mathematics of the intrinsically complex real-world dynamics provides stagnating problem solutions and reconstitution of the intrinsic causality and unity of science desperately missing in its artificially limited unitary framework. Painful stagnation of the latter should be replaced now by the unlimited new progress of the extended, causally complete knowledge of the universal science of complexity, which provides the urgently needed issue from the current impasse of the global civilisation development. (shrink)
Exploration of a hypothetical model of the structure of the Emergent Event. -/- Key Words: Emergent Event, Foundational Mathematical Categories, Emergent Meta-system, Orthogonal Centering Dialectic, Hegel, Sartre, Badiou, Derrida, Deleuze, Philosophy of Science.
We have reached the peculiar situation where the advance of mainstream science has required us to dismiss as unreal our own existence as free, creative agents, the very condition of there being science at all. Efforts to free science from this dead-end and to give a place to creative becoming in the world have been hampered by unexamined assumptions about what science should be, assumptions which presuppose that if creative becoming is explained, it will be explained away as an illusion. (...) In this paper it is shown that this problem has permeated the whole of European civilization from the Ancient Greeks onwards, leading to a radical disjunction between cosmology which aims at a grasp of the universe through mathematics and history which aims to comprehend human action through stories. By going back to the Ancient Greeks and tracing the evolution of the denial of creative becoming, I trace the layers of assumptions that must in some way be transcended if we are to develop a truly post-Egyptian science consistent with the forms of understanding and explanation that have evolved within history. (shrink)
In the last couple of years, a few seemingly independent debates on scientific explanation have emerged, with several key questions that take different forms in different areas. For example, the questions what makes an explanation distinctly mathematical and are there any non-causal explanations in sciences (i.e., explanations that don’t cite causes in the explanans) sometimes take a form of the question of what makes mathematical models explanatory, especially whether highly idealized models in science can be explanatory and in virtue of (...) what they are explanatory. These questions raise further issues about counterfactuals, modality, and explanatory asymmetries: i.e., do mathematical and non-causal explanations support counterfactuals, and how ought we to understand explanatory asymmetries in non-causal explanations? Even though these are very common issues in the philosophy of physics and mathematics, they can be found in different guises in the philosophy of biology where there is the statistical interpretation of the Modern Synthesis theory of evolution, according to which the post-Darwinian theory of natural selection explains evolutionary change by citing statistical properties of populations and not the causes of changes. These questions also arise in philosophy of ecology or neuroscience in regard to the nature of topological explanations. The question here is can the mathematical (or more precisely topological) properties in network models in biology, ecology, neuroscience, and computer science be explanatory of physical phenomena, or are they just different ways to represent causal structures. The aim of this special issue is to unify all these debates around several overlapping questions. These questions are: are there genuinely or distinctively mathematical and non-causal explanations?; are all distinctively mathematical explanations also non-causal; in virtue of what they are explanatory; does the instantiation, implementation, or in general, applicability of mathematical structures to a variety of phenomena and systems play any explanatory role? This special issue provides a platform for unifying the debates around several key issues and thus opens up avenues for better understanding of mathematical and non-causal explanations in general, but also, it will enable even better understanding of key issues within each of the debates. (shrink)
Taking into account some basic epistemological considerations on psychoanalysis by Ignacio Matte Blanco, it is possible to deduce some first simple remarks on certain logical aspects of schizophrenic reasoning. Further remarks on mathematical thought are also made in the light of what established, taking into account the comparison with the schizophrenia pattern.
In the first part of this article we survey general similarities and differences between biological and social macroevolution. In the second (and main) part, we consider a concrete mathematical model capable of describing important features of both biological and social macroevolution. In mathematical models of historical macrodynamics, a hyperbolic pattern of world population growth arises from non-linear, second-order positive feedback between demographic growth and technological development. Based on diverse paleontological data and an analogy with macrosociological models, we suggest that the (...) hyperbolic character of biodiversity growth can be similarly accounted for by non-linear, second-order positive feedback between diversity growth and the complexity of community structure. We discuss how such positive feedback mechanisms can be modelled mathematically. (shrink)
The present yearbook (which is the fourth in the series) is subtitled Trends & Cycles. It is devoted to cyclical and trend dynamics in society and nature; special attention is paid to economic and demographic aspects, in particular to the mathematical modeling of the Malthusian and post-Malthusian traps' dynamics. An increasingly important role is played by new directions in historical research that study long-term dynamic processes and quantitative changes. This kind of history can hardly develop without the application of mathematical (...) methods. There is a tendency to study history as a system of various processes, within which one can detect waves and cycles of different lengths – from a few years to several centuries, or even millennia. The contributions to this yearbook present a qualitative and quantitative analysis of global historical, political, economic and demographic processes, as well as their mathematical models. This issue of the yearbook consists of three main sections: (I) Long-Term Trends in Nature and Society; (II) Cyclical Processes in Pre-industrial Societies; (III) Contemporary History and Processes. We hope that this issue of the yearbook will be interesting and useful both for historians and mathematicians, as well as for all those dealing with various social and natural sciences. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.