Philosophy can shed light on mathematical modeling and the juxtaposition of modeling and empirical data. This paper explores three philosophical traditions of the structure of scientific theory—Syntactic, Semantic, and Pragmatic—to show that each illuminates mathematical modeling. The Pragmatic View identifies four critical functions of mathematical modeling: (1) unification of both models and data, (2) model fitting to data, (3) mechanism identification accounting for observation, and (4) prediction of future observations. Such facets are explored using a recent exchange between two (...) groups of mathematical modelers in plant biology. Scientific debate can arise from different modeling philosophies. (shrink)
There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article (...) lays out and compares these options, including their accounts of what X is, the examples supporting each theory, and the reasons for identifying the science of X with (most or all of) mathematics. Some comparison of the options is undertaken, but the main aim is to display the spectrum of viable alternatives to Platonism and nominalism. It is explained how these views answer Frege’s widely accepted argument that arithmetic cannot be about real features of the physical world, and arguments that such mathematical objects as large infinities and perfect geometrical figures cannot be physically realized. (shrink)
I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the (...) ‘why’). My argument shows that Hobbesian natural philosophy relies upon suppositions that bodies plausibly behave according to these borrowed causal principles from geometry, acknowledging that bodies in the world may not actually behave this way. First, I consider Hobbes's relation to Aristotelian mixed mathematics and to Isaac Barrow's broadening of mixed mathematics in Mathematical Lectures (1683). I show that for Hobbes maker's knowledge from geometry provides the ‘why’ in mixed-mathematical explanations. Next, I examine two explanations from De corpore Part IV: (1) the explanation of sense in De corpore 25.1-2; and (2) the explanation of the swelling of parts of the body when they become warm in De corpore 27.3. In both explanations, I show Hobbes borrowing and citing geometrical principles and mixing these principles with appeals to experience. (shrink)
A basic thesis of Neokantian epistemology and philosophy of science contends that the knowing subject and the object to be known are only abstractions. What really exists, is the relation between both. For the elucidation of this “knowledge relation ("Erkenntnisrelation") the Neokantians of the Marburg school used a variety of mathematical metaphors. In this con-tribution I reconsider some of these metaphors proposed by Paul Natorp, who was one of the leading members of the Marburg school. It is shown that (...) Natorp's metaphors are not unrelated to those used in some currents of contemporary epistemology and philosophy of science. (shrink)
This chapter argues that the standard conception of Spinoza as a fellow-travelling mechanical philosopher and proto-scientific naturalist is misleading. It argues, first, that Spinoza’s account of the proper method for the study of nature presented in the Theological-Political Treatise (TTP) points away from the one commonly associated with the mechanical philosophy. Moreover, throughout his works Spinoza’s views on the very possibility of knowledge of nature are decidedly sceptical (as specified below). Third, in the seventeenth-century debates over proper methods in (...) the sciences, Spinoza sided with those that criticized the aspirations of those (the physico-mathematicians, Galileo, Huygens, Wallis, Wren, etc) who thought the application of mathematics to nature was the way to make progress. In particular, he offers grounds for doubting their confidence in the significance of measurement as well as their piece-meal methodology (see section 2). Along the way, this chapter offers a new interpretation of common notions in the context of treating Spinoza’s account of motion (see section 3). (shrink)
Modern philosophy of mathematics has been dominated by Platonism and nominalism, to the neglect of the Aristotelian realist option. Aristotelianism holds that mathematics studies certain real properties of the world – mathematics is neither about a disembodied world of “abstract objects”, as Platonism holds, nor it is merely a language of science, as nominalism holds. Aristotle’s theory that mathematics is the “science of quantity” is a good account of at least elementary mathematics: the ratio (...) of two heights, for example, is a perceivable and measurable real relation between properties of physical things, a relation that can be shared by the ratio of two weights or two time intervals. Ratios are an example of continuous quantity; discrete quantities, such as whole numbers, are also realised as relations between a heap and a unit-making universal. For example, the relation between foliage and being-a-leaf is the number of leaves on a tree,a relation that may equal the relation between a heap of shoes and being-a-shoe. Modern higher mathematics, however, deals with some real properties that are not naturally seen as quantity, so that the “science of quantity” theory of mathematics needs supplementation. Symmetry, topology and similar structural properties are studied by mathematics, but are about pattern, structure or arrangement rather than quantity. (shrink)
Walter Dubislav (1895–1937) was a leading member of the Berlin Group for scientific philosophy. This “sister group” of the more famous Vienna Circle emerged around Hans Reichenbach’s seminars at the University of Berlin in 1927 and 1928. Dubislav was to collaborate with Reichenbach, an association that eventuated in their conjointly conducting university colloquia. Dubislav produced original work in philosophy of mathematics, logic, and science, consequently following David Hilbert’s axiomatic method. This brought him to defend formalism in these (...) disciplines as well as to explore the problems of substantiating (Begründung) human knowledge. Dubislav also developed elements of general philosophy of science. Sadly, the political changes in Germany in 1933 proved ruinous to Dubislav. He published scarcely anything after Hitler came to power and in 1937 committed suicide under tragic circumstances. The intent here is to pass in review Dubislav’s philosophy of logic, mathematics, and science and so to shed light on some seminal yet hitherto largely neglected currents in the history of philosophy of science. (shrink)
In the chapter of Difference and Repetition entitled ‘Ideas and the synthesis of difference,’ Deleuze mobilizes mathematics to develop a ‘calculus of problems’ that is based on the mathematical philosophy of Albert Lautman. Deleuze explicates this process by referring to the operation of certain conceptual couples in the field of contemporary mathematics: most notably the continuous and the discontinuous, the infinite and the finite, and the global and the local. The two mathematical theories that Deleuze draws upon (...) for this purpose are the differential calculus and the theory of dynamical systems, and Galois’ theory of polynomial equations. For the purposes of this paper I will only treat the first of these, which is based on the idea that the singularities of vector fields determine the local trajectories of solution curves, or their ‘topological behaviour’. These singularities can be described in terms of the given mathematical problematic, that is for example, how to solve two divergent series in the same field, and in terms of the solutions, as the trajectories of the solution curves to the problem. What actually counts as a solution to a problem is determined by the specific characteristics of the problem itself, typically by the singularities of this problem and the way in which they are distributed in a system. Deleuze understands the differential calculus essentially as a ‘calculus of problems’, and the theory of dynamical systems as the qualitative and topological theory of problems, which, when connected together, are determinative of the complex logic of different/ciation. (DR 209). Deleuze develops the concept of a problematic idea from the differential calculus, and following Lautman considers the concept of genesis in mathematics to ‘play the role of model ... with respect to all other domains of incarnation’. While Lautman explicated the philosophical logic of the actualization of ideas within the framework of mathematics, Deleuze (along with Guattari) follows Lautman’s suggestion and explicates the operation of this logic within the framework of a multiplicity of domains, including for example philosophy, science and art in What is Philosophy?, and the variety of domains which characterise the plateaus in A Thousand Plateaus. While for Lautman, a mathematical problem is resolved by the development of a new mathematical theory, for Deleuze, it is the construction of a concept that offers a solution to a philosophical problem; even if this newly constructed concept is characteristic of, or modelled on the new mathematical theory. (shrink)
Abstract In the new millennium there have been important empirical developments in the philosophy of mathematics. One of these is the so-called “Empirical Philosophy of Mathematics”(EPM) of Buldt, Löwe, Müller and Müller-Hill, which aims to complement the methodology of the philosophy of mathematics with empirical work. Among other things, this includes surveys of mathematicians, which EPM believes to give philosophically important results. In this paper I take a critical look at the sociological part of (...) EPM as a case study of ... (shrink)
Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. For Nietzsche, (...) math is an artistic and moral activity that has an essential role to play in the joyful wisdom. (shrink)
This essay offers a strategic reinterpretation of Kant’s philosophy of mathematics in Critique of Pure Reason via a broad, empirically based reconception of Kant’s conception of drawing. It begins with a general overview of Kant’s philosophy of mathematics, observing how he differentiates mathematics in the Critique from both the dynamical and the philosophical. Second, it examines how a recent wave of critical analyses of Kant’s constructivism takes up these issues, largely inspired by Hintikka’s unorthodox conception (...) of Kantian intuition. Third, it offers further analyses of three Kantian concepts vitally linked to that of drawing. It concludes with an etymologically based exploration of the seven clusters of meanings of the word drawing to gesture toward new possibilities for interpreting a Kantian philosophy of mathematics. (shrink)
Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...) appeals to relevance logic and uses resources in information theory to understand the explanatory relationship between mathematical and physical facts. 1Introduction2Anchoring3The Basic Deductive-Mathematical Account4The Genuineness Problem5Irrelevance6Relevance and Information7Objections and Replies 7.1Against relevance logic7.2Too epistemic7.3Informational containment8Conclusion. (shrink)
CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
In this paper, I present and discuss critically the main elements of Mario Bunge’s philosophy of mathematics. In particular, I explore how mathematical knowledge is accounted for in Bunge’s systemic emergent materialism.To Mario, with gratitude.
Throughout his work, John Dewey seeks to emancipate philosophical reflection from the influence of the classical tradition he traces back to Plato and Aristotle. For Dewey, this tradition rests upon a conception of knowledge based on the separation between theory and practice, which is incompatible with the structure of scientific inquiry. Philosophical work can make progress only if it is freed from its traditional heritage, i.e. only if it undergoes reconstruction. In this study I show that implicit appeals to the (...) classical tradition shape prominent debates in philosophy of mathematics, and I initiate a project of reconstruction within this field. (shrink)
Scholars have long been interested in the relation between Leibniz, the metaphysician-theologian, and Leibniz, the logician-mathematician. In this collection, we consider the important roles that rhetoric and the "art of thinking" have played in the development of mathematical ideas. By placing Leibniz in this rhetorical tradition, the present essay shows the extent to which he was a rhetorical thinker, and thereby answers the question about the relation between his work as a logician-mathematician and his other work. It becomes clear that (...)mathematics and logic are a part of his rhetorical methodology, because they constitute one set of tools that he used to excavate the truth. Mathematical and logical insights are thus all part of his "art of thinking," employed in the service of philosophy. (shrink)
We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of (...) Science, which gave rise to this special issue. Lastly, we provide a summary of the contributions to this issue. (shrink)
By the end of his life Plato had rearranged the theory of ideas into his teaching about ideal numbers, but no written records have been left. The Ideal mathematics of Plato is present in all his dialogues. It can be clearly grasped in relation to the effective use of mathematical modelling. Many problems of mathematical modelling were laid in the foundation of the method by cutting the three-level idealism of Plato to the single-level “ideism” of Aristotle. For a long (...) time, the real, ideal numbers of Plato’s Ideal mathematics eliminates many mathematical problems, extends the capabilities of modelling, and improves mathematics. (shrink)
This article examines the possibility of philosophizing about mathematics with children. It aims at outlining the nature of the practice of philosophy of mathematics with children in a mainly theoretical and exploratory way. First, an attempt at a definition is proposed. Second, I suggest some reasons that might motivate such a practice. My thesis is that one can identify an intrinsic as well as two extrinsic goals of philosophizing about mathematics with children. The intrinsic goal is (...) related to a presumed inherent importance of presenting children with some philosophical questions about mathematics. The extrinsic goals consist of first the positive effects such a practice can have on mathematical learning and abilities and second the fostering of children's understanding of philosophical method of inquiry and thinking and therefore of their philosophical thinking competences. Third, some examples found in the literature of previously developed ways of practising philosophy of mathematics with children are presented. This article aims at giving a general outlining picture of the issues surrounding the practice of philosophy of mathematics with children and should therefore be read as an encouragement to further development and studies. (shrink)
La matematica viene generalmente considerata uno degli ambiti più affidabili dell’intera impresa scientifica. Il suo successo e la sua solidità sono testimoniati, ad esempio, dall’uso imprescindibile che ne fanno le scienze empiriche e dall’accordo pressoché unanime con cui la comunità dei matematici delibera sulla validità di un nuovo risultato. Tuttavia, dal punto di vista filosofico la matematica rappresenta un puzzle tanto intrigante quanto intricato. Philosophy of Mathematics di Ø. Linnebo si propone di presentare e discutere le concezioni filosofiche (...) della matematica che hanno dominato la scena da Frege ai giorni nostri. (shrink)
An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
In this paper, I introduce the idea that some important parts of contemporary pure mathematics are moving away from what I call the extensional point of view. More specifically, these fields are based on criteria of identity that are not extensional. After presenting a few cases, I concentrate on homotopy theory where the situation is particularly clear. Moreover, homotopy types are arguably fundamental entities of geometry, thus of a large portion of mathematics, and potentially to all mathematics, (...) at least according to some speculative research programs. (shrink)
Book Review for Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, La Salle, IL: Open Court, 2002. Edited by David Malament. This volume includes thirteen original essays by Howard Stein, spanning a range of topics that Stein has written about with characteristic passion and insight. This review focuses on the essays devoted to history and philosophy of physics.
In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, (...) D—the challenge to justify our D-beliefs—with the reliability challenge for D-realism—the challenge to explain the reliability of our D-beliefs. Harman’s contrast is relevant to the first, but not, evidently, to the second. One upshot of the discussion is that genealogical debunking arguments are fallacious. Another is that indispensability considerations cannot answer the Benacerraf–Field challenge for mathematical realism. (shrink)
Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...) they relate to the sorts of explanation encountered in philosophy of science and metaphysics? (shrink)
The discrete–structural structure of the world is described. In comparison with the idea of Heraclitus about an indissoluble world, preference is given to the discrete world of Democritus. It is noted that if the discrete atoms of Democritus were simple and indivisible, the atoms of the modern world indicated in the article would possess, rather, a structural structure. The article proves the problem of how the mutual connection of mathematics and philosophy influences cognition, which creates a discrete–structural worldview. (...) The author notes that the appearance of writing, symbolic language and the depiction of the picture of the world through mathematics, led us into the sphere of discrete mathematical mathematics. (shrink)
An influential position in the philosophy of biology claims that there are no biological laws, since any apparently biological generalization is either too accidental, fact-like or contingent to be named a law, or is simply reducible to physical laws that regulate electrical and chemical interactions taking place between merely physical systems. In the following I will stress a neglected aspect of the debate that emerges directly from the growing importance of mathematical models of biological phenomena. My main aim is (...) to defend, as well as reinforce, the view that there are indeed laws also in biology, and that their difference in stability, contingency or resilience with respect to physical laws is one of degrees, and not of kind . (shrink)
In this review, as well as discussing the pedagogical of this text book, I also discuss Linnebo's approach to the Caesar problem and the use of metaphysical notions to explicate mathematics.
Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance for (...) a taxonomy of diagrams in the context of a practice-based philosophy of mathematics, privileging examples from contemporary mathematics. In doing so, I move away from vague, ordinary notions. I define mathematical diagrams as forming notational systems and as being geometric/topological representations or two-dimensional representations. I also examine the relationship between mathematical diagrams and spatiotemporal intuition. By proposing an explication of diagrams, I explain certain controversies in the existing literature. Moreover, I shed light on why mathematical diagrams are so effective in certain instances, and, at other times, dangerously misleading. (shrink)
Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...) of themes in recent philosophy of mathematics (concerning a priority and fictionalism, for example) in revealing new light. (shrink)
Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts as a mathematical object, and how (...) we can have knowledge about an unchanging object. (shrink)
We argue that if Stephen Yablo (2005) is right that philosophers of mathematics ought to endorse a fictionalist view of number-talk, then there is a compelling reason for deflationists about truth to endorse a fictionalist view of truth-talk. More specifically, our claim will be that, for deflationists about truth, Yablo’s argument for mathematical fictionalism can be employed and mounted as an argument for truth-theoretic fictionalism.
Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation (...) or theorem and its proof. An attempt is made to meet directly some of Wittgenstein’s critical comments on the mathematical treatment of infinity and irrational numbers. (shrink)
A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...) treatment of the problem of mathematical explanations of physical phenomena. This problem is of central importance in two different recent philosophical disputes: the dispute about the existence on non-causal scientific explanations and the dispute between realists and antirealists in the philosophy of mathematics. My aim in this paper is twofold. I will first argue that Lange (2013) and Pincock (2015) fail to make a significant contribution to these disputes. They fail to contribute to the dispute in the philosophy of mathematics because, in this context, their approach can be seen as question begging. They also fail to contribute to the dispute in the general philosophy of science because, as I will argue, there are important problems with the cases discussed by Lange and Pincock. I will then argue that the source of the problems with these two papers has to do with the fact that the piecemeal approach used to account for mathematical explanation is problematic. (shrink)
Introduction to the Special Volume, “Method, Science and Mathematics: Neo-Kantianism and Analytic Philosophy,” edited by Scott Edgar and Lydia Patton. At its core, analytic philosophy concerns urgent questions about philosophy’s relation to the formal and empirical sciences, questions about philosophy’s relation to psychology and the social sciences, and ultimately questions about philosophy’s place in a broader cultural landscape. This picture of analytic philosophy shapes this collection’s focus on the history of the philosophy (...) of mathematics, physics, and psychology. The following essays uncover, reflect on, and exemplify modes of philosophy that are engaged with these allied disciplines. They make the case that, to the extent that analytic philosophers are still concerned with philosophy’s ties to these disciplines, we would do well to pay attention to neo-Kantian views on those ties. (shrink)
Willem Jacob ’s Gravesande is widely remembered as a leading advocate of Isaac Newton’s work. In the first half of the eighteenth century, ’s Gravesande was arguably Europe’s most important proponent of what would become known as Newtonian physics. ’s Gravesande himself minimally described this discipline, which he called «physica», as studying empirical regularities mathematically while avoiding hypotheses. Commentators have as yet not progressed much beyond this view of ’s Gravesande’s physics. Therefore, much of its precise nature, its methodology, and (...) its relation to Newton’s actual work remains unclear. This article discusses one particular methodological element that ’s Gravesande himself often stressed in detail, namely the use of mathematics in philosophy and physics. In doing so, it takes exception to the claim that mathematics played only a minor role in ’s Gravesande’s work, a view put forward in recent historiography. Besides that, this article casts new light on the interpretation of ’s Gravesande’s philosophical notion of «mathematical reasoning», a notion that has remained somewhat obscure thus far. (shrink)
Since the publication of the Remarks on the Foundations of Mathematics, Wittgenstein’s interpreters have endeavored to reconcile his general constructivist/anti-realist attitude towards mathematics with his confessed anti-revisionary philosophy. In this article, the author revisits the issue and presents a solution. The basic idea consists in exploring the fact that the so-called “non-constructive results” could be interpreted so that they do not appear non-constructive at all. The author substantiates this solution by showing how the translation of mathematical results, (...) given by the possibility of translation between logics, can be seen as a tool for partially implementing the solution Wittgenstein had in mind. (shrink)
In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is remediable in each (...) case by appeal to ontic facts that account for why the explanation is acceptable in one direction and unacceptable in the other direction. The mathematics involved in these examples cannot play this crucial normative role. While Lange's examples fail to demonstrate the existence of distinctively mathematical explanations, they help to emphasize that many superficially natural scientific explanations rely for their explanatory force on relations of stronger-than-natural necessity. These are not opposing kinds of scientific explanations; they are different aspects of scientific explanation. (shrink)
Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e., the hidden logical order of things and its relations determined by natural (...) laws. Therefore mathematics is viewed not only as an appropriate tool to investigate human language and genetic code structures through computer sciencebased formal language theory but is itself a depiction of material reality. This confusion between language as a scientific tool to describe observations/experiences within cognitive constructed models and formal language as a direct depiction of material reality occurs not only in current approaches but was the central focus of the philosophy of science debate in the twentieth century, with rather unexpected results. This article recalls these results and their implications for more recent mathematical approaches that also attempt to explain the evolution of human language. (shrink)
This rich book differs from much contemporary philosophy of mathematics in the author’s witty, down to earth style, and his extensive experience as a working mathematician. It accords with the field in focusing on whether mathematical entities are real. Franklin holds that recent discussion of this has oscillated between various forms of Platonism, and various forms of nominalism. He denies nominalism by holding that universals exist and denies Platonism by holding that they are concrete, not abstract - looking (...) to Aristotle for inspiration. (shrink)
This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors (...) tried to naturalize mathematics by relying on evolutionism. But several difficulties arise when we try to do this. This chapter suggests that, in order to naturalize mathematics, it is better to take the method of mathematics to be the analytic method, rather than the axiomatic method, and thus conceive of mathematical knowledge as plausible knowledge. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.