Results for 'biomedical'

447 found
Order:
  1. Biomedical Terminologies and Ontologies: Enabling Biomedical Semantic Interoperability and Standards in Europe.Bernard de Bono, Mathias Brochhausen, Sybo Dijkstra, Dipak Kalra, Stephan Keifer & Barry Smith - 2009 - In Bernard de Bono, Mathias Brochhausen, Sybo Dijkstra, Dipak Kalra, Stephan Keifer & Barry Smith (eds.), European Large-Scale Action on Electronic Health.
    In the management of biomedical data, vocabularies such as ontologies and terminologies (O/Ts) are used for (i) domain knowledge representation and (ii) interoperability. The knowledge representation role supports the automated reasoning on, and analysis of, data annotated with O/Ts. At an interoperability level, the use of a communal vocabulary standard for a particular domain is essential for large data repositories and information management systems to communicate consistently with one other. Consequently, the interoperability benefit of selecting a particular O/T as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Putting Biomedical Ontologies to Work.Barry Smith & Mathias Brochhausen - 2010 - Methods of Information in Medicine 49 (2):135-40.
    Biomedical ontologies exist to serve integration of clinical and experimental data, and it is critical to their success that they be put to widespread use in the annotation of data. How, then, can ontologies achieve the sort of user-friendliness, reliability, cost-effectiveness, and breadth of coverage that is necessary to ensure extensive usage? Methods: Our focus here is on two different sets of answers to these questions that have been proposed, on the one hand in medicine, by the SNOMED CT (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  3. Enhancement, Biomedical.Thomas Douglas - 2013 - In Hugh LaFollette (ed.), The International Encyclopedia of Ethics. Hoboken, NJ: Blackwell.
    Biomedical technologies can increasingly be used not only to combat disease, but also to augment the capacities or traits of normal, healthy people – a practice commonly referred to as biomedical enhancement. Perhaps the best‐established examples of biomedical enhancement are cosmetic surgery and doping in sports. But most recent scientific attention and ethical debate focuses on extending lifespan, lifting mood, and augmenting cognitive capacities.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  4. The Ontology for Biomedical Investigations.Anita Bandrowski, Ryan Brinkman, Mathias Brochhausen, Matthew H. Brush, Bill Bug, Marcus C. Chibucos, Kevin Clancy, Mélanie Courtot, Dirk Derom, Michel Dumontier, Liju Fan, Jennifer Fostel, Gilberto Fragoso, Frank Gibson, Alejandra Gonzalez-Beltran, Melissa A. Haendel, Yongqun He, Mervi Heiskanen, Tina Hernandez-Boussard, Mark Jensen, Yu Lin, Allyson L. Lister, Phillip Lord, James Malone, Elisabetta Manduchi, Monnie McGee, Norman Morrison, James A. Overton, Helen Parkinson, Bjoern Peters, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Daniel Schober, Barry Smith, Larisa N. Soldatova, Christian J. Stoeckert, Chris F. Taylor, Carlo Torniai, Jessica A. Turner, Randi Vita, Patricia L. Whetzel & Jie Zheng - 2016 - PLoS ONE 11 (4):e0154556.
    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  5. Biomedical imaging ontologies: A survey and proposal for future work.Barry Smith, Sivaram Arabandi, Mathias Brochhausen, Michael Calhoun, Paolo Ciccarese, Scott Doyle, Bernard Gibaud, Ilya Goldberg, Charles E. Kahn Jr, James Overton, John Tomaszewski & Metin Gurcan - 2015 - Journal of Pathology Informatics 6 (37):37.
    Ontology is one strategy for promoting interoperability of heterogeneous data through consistent tagging. An ontology is a controlled structured vocabulary consisting of general terms (such as “cell” or “image” or “tissue” or “microscope”) that form the basis for such tagging. These terms are designed to represent the types of entities in the domain of reality that the ontology has been devised to capture; the terms are provided with logical defi nitions thereby also supporting reasoning over the tagged data. Aim: This (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Biomedical technocracy, the networked public sphere and the biopolitics of COVID-19: notes on the Agamben affair.Tim Christiaens - 2022 - Culture Theory and Critique 1 (63):1-18.
    Download  
     
    Export citation  
     
    Bookmark  
  7. A Unified Framework for Biomedical Terminologies and Ontologies.Werner Ceusters & Barry Smith - 2010 - Studies in Health Technology and Informatics 160:1050-1054.
    The goal of the OBO (Open Biomedical Ontologies) Foundry initiative is to create and maintain an evolving collection of non-overlapping interoperable ontologies that will offer unambiguous representations of the types of entities in biological and biomedical reality. These ontologies are designed to serve non-redundant annotation of data and scientific text. To achieve these ends, the Foundry imposes strict requirements upon the ontologies eligible for inclusion. While these requirements are not met by most existing biomedical terminologies, the latter (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  8. Biomedical Ontologies.Barry Smith - 2022 - In Peter L. Elkin (ed.), Terminology, Ontology and Their Implementations: Teaching Guide and Notes. Springer. pp. 125-169.
    We begin at the beginning, with an outline of Aristotle’s views on ontology and with a discussion of the influence of these views on Linnaeus. We move from there to consider the data standardization initiatives launched in the 19th century, and then turn to investigate how the idea of computational ontologies developed in the AI and knowledge representation communities in the closing decades of the 20th century. We show how aspects of this idea, particularly those relating to the use of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Biomedical informatics and granularity.Anand Kumar & Barry Smith - 2004 - Comparative and Functional Genomics 5 (6-7):501-508.
    An explicit formal-ontological representation of entities existing at multiple levels of granularity is an urgent requirement for biomedical information processing. We discuss some fundamental principles which can form a basis for such a representation. We also comment on some of the implicit treatments of granularity in currently available ontologies and terminologies (GO, FMA, SNOMED CT).
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  10. Biomedical ontology alignment: An approach based on representation learning.Prodromos Kolyvakis, Alexandros Kalousis, Barry Smith & Dimitris Kiritsis - 2018 - Journal of Biomedical Semantics 9 (21).
    While representation learning techniques have shown great promise in application to a number of different NLP tasks, they have had little impact on the problem of ontology matching. Unlike past work that has focused on feature engineering, we present a novel representation learning approach that is tailored to the ontology matching task. Our approach is based on embedding ontological terms in a high-dimensional Euclidean space. This embedding is derived on the basis of a novel phrase retrofitting strategy through which semantic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Clonal complexes in biomedical ontologies.Albert Goldfain, Lindsay Cowell & Barry Smith - 2009 - In Barry Smith (ed.), ICBO 2009: Proceedings of the First International Conference on Biomedical Ontology. Buffalo: NCOR. pp. 168.
    An accurate classification of bacteria is essential for the proper identification of patient infections and subsequent treatment decisions. Multi-Locus Sequence Typing (MLST) is a genetic technique for bacterial classification. MLST classifications are used to cluster bacteria into clonal complexes. Importantly, clonal complexes can serve as a biological species concept for bacteria, facilitating an otherwise difficult taxonomic classification. In this paper, we argue for the inclusion of terms relating to clonal complexes in biomedical ontologies.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Causal inference in biomedical research.Tudor M. Baetu - 2020 - Biology and Philosophy 35 (4):1-19.
    Current debates surrounding the virtues and shortcomings of randomization are symptomatic of a lack of appreciation of the fact that causation can be inferred by two distinct inference methods, each requiring its own, specific experimental design. There is a non-statistical type of inference associated with controlled experiments in basic biomedical research; and a statistical variety associated with randomized controlled trials in clinical research. I argue that the main difference between the two hinges on the satisfaction of the comparability requirement, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Reduction in the Biomedical Sciences.Holly Andersen - 2016 - In Miriam Solomon, Jeremy Simon & Harold Kincaid (eds.), Routledge Companion to Philosophy of Medicine. Routledge.
    This chapter discusses several kinds of reduction that are often found in the biomedical sciences, in contrast to reduction in fields such as physics. This includes reduction as a methodological assumption for how to investigate phenomena like complex diseases, and reduction as a conceptual tool for relating distinct models of the same phenomenon. The case of Parkinson’s disease illustrates a wide variety of ways in which reductionism is an important tool in medicine.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Abolishing morality in biomedical ethics.Parker Crutchfield & Scott Scheall - 2024 - Bioethics 38 (4):316-325.
    In biomedical ethics, there is widespread acceptance of moral realism, the view that moral claims express a proposition and that at least some of these propositions are true. Biomedical ethics is also in the business of attributing moral obligations, such as “S should do X.” The problem, as we argue, is that against the background of moral realism, most of these attributions are erroneous or inaccurate. The typical obligation attribution issued by a biomedical ethicist fails to truly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. National Center for Biomedical Ontology: Advancing biomedicine through structured organization of scientific knowledge.Daniel L. Rubin, Suzanna E. Lewis, Chris J. Mungall, Misra Sima, Westerfield Monte, Ashburner Michael, Christopher G. Chute, Ida Sim, Harold Solbrig, M. A. Storey, Barry Smith, John D. Richter, Natasha Noy & Mark A. Musen - 2006 - Omics: A Journal of Integrative Biology 10 (2):185-198.
    The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. The National Center for Biomedical Ontology.Mark A. Musen, Natalya F. Noy, Nigam H. Shah, Patricia L. Whetzel, Christopher G. Chute, Margaret-Anne Story & Barry Smith - 2012 - Journal of the American Medical Informatics Association 19 (2):190-195.
    The National Center for Biomedical Ontology is now in its seventh year. The goals of this National Center for Biomedical Computing are to: create and maintain a repository of biomedical ontologies and terminologies; build tools and web services to enable the use of ontologies and terminologies in clinical and translational research; educate their trainees and the scientific community broadly about biomedical ontology and ontology-based technology and best practices; and collaborate with a variety of groups who develop (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. Relations in Biomedical Ontologies.Barry Smith, Werner Ceusters, Bert Klagges, Jacob Köhler, Anand Kuma, Jane Lomax, Chris Mungall, , Fabian Neuhaus, Alan Rector & Cornelius Rosse - 2005 - Genome Biology 6 (5):R46.
    To enhance the treatment of relations in biomedical ontologies we advance a methodology for providing consistent and unambiguous formal definitions of the relational expressions used in such ontologies in a way designed to assist developers and users in avoiding errors in coding and annotation. The resulting Relation Ontology can promote interoperability of ontologies and support new types of automated reasoning about the spatial and temporal dimensions of biological and medical phenomena.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  18. New desiderata for biomedical terminologies.Barry Smith - 2008 - In Katherine Munn & Barry Smith (eds.), Applied Ontology: An Introduction. Ontos. pp. 83-109.
    It is only by fixing on agreed meanings of terms in biomedical terminologies that we will be in a position to achieve that accumulation and integration of knowledge that is indispensable to progress at the frontiers of biomedicine. Standardly, the goal of fixing meanings is seen as being realized through the alignment of terms on what are called ‘concepts’. Part I addresses three versions of the concept-based approach – by Cimino, by Wüster, and by Campbell and associates – and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  19. Protein-centric connection of biomedical knowledge: Protein Ontology research and annotation tools.Cecilia N. Arighi, Darren A. Natale, Judith A. Blake, Carol J. Bult, Michael Caudy, Alexander D. Diehl, Harold J. Drabkin, Peter D'Eustachio, Alexei Evsikov, Hongzhan Huang, Barry Smith & Others - 2011 - In Proceedings of the 2nd International Conference on Biomedical Ontology. Buffalo, NY: NCOR. pp. 285-287.
    The Protein Ontology (PRO) web resource provides an integrative framework for protein-centric exploration and enables specific and precise annotation of proteins and protein complexes based on PRO. Functionalities include: browsing, searching and retrieving, terms, displaying selected terms in OBO or OWL format, and supporting URIs. In addition, the PRO website offers multiple ways for the user to request, submit, or modify terms and/or annotation. We will demonstrate the use of these tools for protein research and annotation.
    Download  
     
    Export citation  
     
    Bookmark  
  20. Risk, predictability and biomedical neo-pragmatism.Olaf Dammann - 2009 - Acta Paediatrica 98:1093–5.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Discussion of “Biomedical informatics: We are what we publish”.Geissbuhler Antoine, W. E. Hammond, A. Hasman, R. Hussein, R. Koppel, C. A. Kulikowski, V. Maojo, F. Martin-Sanchez, P. W. Moorman, Moura La, F. G. De Quiros, M. J. Schuemle, Barry Smith & J. Talmon - 2013 - Methods of Information in Medicine 52 (6):547-562.
    This article is part of a For-Discussion-Section of Methods of Information in Medicine about the paper "Biomedical Informatics: We Are What We Publish", written by Peter L. Elkin, Steven H. Brown, and Graham Wright. It is introduced by an editorial. This article contains the combined commentaries invited to independently comment on the Elkin et al. paper. In subsequent issues the discussion can continue through letters to the editor.
    Download  
     
    Export citation  
     
    Bookmark  
  22. Publication Ethics in Biomedical Journals from Countries in Central and Eastern Europe.Mindaugas Broga, Goran Mijaljica, Marcin Waligora, Aime Keis & Ana Marusic - 2013 - Science and Engineering Ethics (1):1-11.
    Publication ethics is an important aspect of both the research and publication enterprises. It is particularly important in the field of biomedical science because published data may directly affect human health. In this article, we examine publication ethics policies in biomedical journals published in Central and Eastern Europe. We were interested in possible differences between East European countries that are members of the European Union (Eastern EU) and South-East European countries (South-East Europe) that are not members of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  23. The Role of Foundational Relations in the Alignment of Biomedical Ontologies.Barry Smith & Cornelius Rosse - 2004 - In M. Fieschi, E. Coiera & Y.-C. J. Li (eds.), Medinfo. IOS Press. pp. 444-448.
    The Foundational Model of Anatomy (FMA) symbolically represents the structural organization of the human body from the macromolecular to the macroscopic levels, with the goal of providing a robust and consistent scheme for classifying anatomical entities that is designed to serve as a reference ontology in biomedical informatics. Here we articulate the need for formally clarifying the is-a and part-of relations in the FMA and similar ontology and terminology systems. We diagnose certain characteristic errors in the treatment of these (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  24. Towards the multileveled and processual conceptualisation of racialised individuals in biomedical research.Joanna Karolina Malinowska & Tomasz Żuradzki - 2023 - Synthese 201 (1):1-36.
    In this paper, we discuss the processes of racialisation on the example of biomedical research. We argue that applying the concept of racialisation in biomedical research can be much more precise, informative and suitable than currently used categories, such as race and ethnicity. For this purpose, we construct a model of the different processes affecting and co-shaping the racialisation of an individual, and consider these in relation to biomedical research, particularly to studies on hypertension. We finish with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. A Scientometric Approach to the Integrated History and Philosophy of Science: Entrenched Biomedical Standardisation and Citation-Exemplar.Karen Yan, Meng-Li Tsai & Tsung-Ren Huang - 2023 - International Studies in the Philosophy of Science 36 (2):143-165.
    1. Biomedical sciences are fast-growing fields with unprecedented speed of research outputs, especially in the quantities of papers. Philosophers aiming to study ongoing biomedical changes face cha...
    Download  
     
    Export citation  
     
    Bookmark  
  26. “What if There's Something Wrong with Her?”‐How Biomedical Technologies Contribute to Epistemic Injustice in Healthcare.Joel Michael Reynolds - 2020 - Southern Journal of Philosophy 58 (1):161-185.
    While there is a steadily growing literature on epistemic injustice in healthcare, there are few discussions of the role that biomedical technologies play in harming patients in their capacity as knowers. Through an analysis of newborn and pediatric genetic and genomic sequencing technologies (GSTs), I argue that biomedical technologies can lead to epistemic injustice through two primary pathways: epistemic capture and value partitioning. I close by discussing the larger ethical and political context of critical analyses of GSTs and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. A strategy for improving and integrating biomedical ontologies.Cornelius Rosse, Anand Kumar, Jose L. V. Mejino, Daniel L. Cook, Landon T. Detwiler & Barry Smith - 2005 - In Proceedings of the Annual Symposium of the American Medical Informatics Association. AMIA. pp. 639-643.
    The integration of biomedical terminologies is indispensable to the process of information integration. When terminologies are linked merely through the alignment of their leaf terms, however, differences in context and ontological structure are ignored. Making use of the SNAP and SPAN ontologies, we show how three reference domain ontologies can be integrated at a higher level, through what we shall call the OBR framework (for: Ontology of Biomedical Reality). OBR is designed to facilitate inference across the boundaries of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  28. Towards a Reference Terminology for Ontology Research and Development in the Biomedical Domain.Barry Smith, Waclaw Kusnierczyk, Daniel Schober, & Werner Ceusters - 2006 - In Barry Smith, Waclaw Kusnierczyk, Schober & Werner Ceusters (eds.), Proceedings of KR-MED, CEUR, vol. 222. pp. 57-65.
    Ontology is a burgeoning field, involving researchers from the computer science, philosophy, data and software engineering, logic, linguistics, and terminology domains. Many ontology-related terms with precise meanings in one of these domains have different meanings in others. Our purpose here is to initiate a path towards disambiguation of such terms. We draw primarily on the literature of biomedical informatics, not least because the problems caused by unclear or ambiguous use of terms have been there most thoroughly addressed. We advance (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  29. On the proper treatment of pathologies in biomedical ontologies.Barry Smith & Anand Kumar - 2005 - In Barry Smith & Anand Kumar (eds.), Proceedings of the Bio-Ontologies Workshop, Intelligent Systems for Molecular Biology (ISMB 2005). Detroit: pp. 22-23.
    In previous work on biomedical ontologies we showed how the provision of formal definitions for relations such as is_a and part_of can support new types of auto-mated reasoning about biomedical phenomena. We here extend this approach to the transformation_of characteristic of pathologies.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. A realism-based approach to the evolution of biomedical ontologies.Barry Smith - 2006 - In Proceedings of the Annual AMIA Symposium. Washington, DC: American Medical Informatics Association. pp. 121-125.
    We present a novel methodology for calculating the improvements obtained in successive versions of biomedical ontologies. The theory takes into account changes both in reality itself and in our understanding of this reality. The successful application of the theory rests on the willingness of ontology authors to document changes they make by following a number of simple rules. The theory provides a pathway by which ontology authoring can become a science rather than an art, following principles analogous to those (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  31. A comparative analysis of biomedical research ethics regulation systems in Europe and Latin America with regard to the protection of human subjects.E. Lamas, M. Ferrer, A. Molina, R. Salinas, A. Hevia, A. Bota, D. Feinholz, M. Fuchs, R. Schramm, J. -C. Tealdi & S. Zorrilla - 2010 - Journal of Medical Ethics 36 (12):750-753.
    The European project European and Latin American Systems of Ethics Regulation of Biomedical Research Project (EULABOR) has carried out the first comparative analysis of ethics regulation systems for biomedical research in seven countries in Europe and Latin America, evaluating their roles in the protection of human subjects. We developed a conceptual and methodological framework defining ‘ethics regulation system for biomedical research’ as a set of actors, institutions, codes and laws involved in overseeing the ethics of biomedical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  32. WOMEN AND BIOMEDICAL HEALTHCARE IN A COMMUNITY IN GHANA.Samuel Adu-Gyamfi - 2020 - Current Issues of Social Studies and History of Medіcine 28 (4):59-64.
    The contribution of women to the development of societies and medicine around the world cannot be overstated. Their contribution to medicine is great; this is seen, in particular, in their role among other physicians, obstetricians, nurses, herbalists, and assistant physicians. Despite the significant contribution of women to medicine and health care, the have often been largely omitted in the history of medicine and other scientific literature. Therefore, my study contains an obvious novelty: the urgent need to consider the diverse role (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. The Environment Ontology: Contextualising biological and biomedical entities.Pier Luigi Buttigieg, Norman Morrison, Barry Smith, Christopher J. Mungall & Suzanna E. Lewis - 2013 - Journal of Biomedical Semantics 4 (43):1-9.
    As biological and biomedical research increasingly reference the environmental context of the biological entities under study, the need for formalisation and standardisation of environment descriptors is growing. The Environment Ontology (ENVO) is a community-led, open project which seeks to provide an ontology for specifying a wide range of environments relevant to multiple life science disciplines and, through an open participation model, to accommodate the terminological requirements of all those needing to annotate data using ontology classes. This paper summarises ENVO’s (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  34. Reductionist methodology and the ambiguity of the categories of race and ethnicity in biomedical research: an exploratory study of recent evidence.Joanna Karolina Malinowska & Tomasz Żuradzki - 2022 - Medicine, Health Care and Philosophy (1):1-14.
    In this article, we analyse how researchers use the categories of race and ethnicity with reference to genetics and genomics. We show that there is still considerable conceptual “messiness” (despite the wide-ranging and popular debate on the subject) when it comes to the use of ethnoracial categories in genetics and genomics that among other things makes it difficult to properly compare and interpret research using ethnoracial categories, as well as draw conclusions from them. Finally, we briefly reconstruct some of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. The National Center for Biomedical Ontology: Advancing Biomedicine through Structured Organization of Scientific Knowledge. Rubin - 2012 - Journal of the American Medical Informatics Association 19 (2):190-195.
    The National Center for Biomedical Ontology is now in its seventh year. The goals of this National Center for Biomedical Computing are to: create and maintain a repository of biomedical ontologies and terminologies; build tools and web services to enable the use of ontologies and terminologies in clinical and translational research; educate their trainees and the scientific community broadly about biomedical ontology and ontology-based technology and best practices; and collaborate with a variety of groups who develop (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Philosophy and Biomedical Information Systems.Barry Smith & Bert Klagges - 2008 - In Katherine Munn & Barry Smith (eds.), Applied Ontology: An Introduction. Ontos. pp. 17-30.
    The pathbreaking scientific advances of recent years call for a new philosophical consideration of the fundamental categories of biology and its neighboring disciplines. Above all, the new information technologies used in biomedical research, and the necessity to master the continuously growing flood of data that is associated therewith, demand a profound and systematic reflection on the systematization and classification of biological data. This, however, demands robust theories of basic concepts such as kind, species, part, whole, function, process, fragment, sequence, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Investigating Subsumption in SNOMED CT: An Exploration into Large Description Logic-Based Biomedical Terminologies.Olivier Bodenreider, Barry Smith, Anand Kumar & Anita Burgun - 2007 - Artificial Intelligence in Medicine 39 (3):183-195.
    Formalisms based on one or other flavor of Description Logic (DL) are sometimes put forward as helping to ensure that terminologies and controlled vocabularies comply with sound ontological principles. The objective of this paper is to study the degree to which one DL-based biomedical terminology (SNOMED CT) does indeed comply with such principles. We defined seven ontological principles (for example: each class must have at least one parent, each class must differ from its parent) and examined the properties of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  38. Towards Interoperability of Biomedical Ontologies - Report Number 07132.Mark Musen, Michael Schroeder & Barry Smith - 2008 - In Towards Interoperability of Biomedical Ontologies. Schloss Dagstuhl-Leibniz-Zentrum Fuer Informatik.
    The meeting focused on uses of ontologies, with a special focus on spatial ontologies, in addressing the ever increasing needs faced by biology and medicine to cope with ever expanding quantities of data. To provide effective solutions computers need to integrate data deriving from myriad heterogeneous sources by bringing the data together within a single framework. The meeting brought together leaders in the field of what are called "top-level ontologies" to address this issue, and to establish strategies among leaders in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. An evaluative conservative case for biomedical enhancement.John Danaher - 2016 - Journal of Medical Ethics 42 (9):611-618.
    It is widely believed that a conservative moral outlook is opposed to biomedical forms of human enhancement. In this paper, I argue that this widespread belief is incorrect. Using Cohen’s evaluative conservatism as my starting point, I argue that there are strong conservative reasons to prioritise the development of biomedical enhancements. In particular, I suggest that biomedical enhancement may be essential if we are to maintain our current evaluative equilibrium (i.e. the set of values that undergird and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  40. An ontology-based methodology for the migration of biomedical terminologies to electronic health records.Barry Smith & Werner Ceusters - 2005 - In Smith Barry & Ceusters Werner (eds.), Proceedings of AMIA Symposium 2005, Washington DC,. AMIA. pp. 704-708.
    Biomedical terminologies are focused on what is general, Electronic Health Records (EHRs) on what is particular, and it is commonly assumed that the step from the one to the other is unproblematic. We argue that this is not so, and that, if the EHR of the future is to fulfill its promise, then the foundations of both EHR architectures and biomedical terminologies need to be reconceived. We accordingly describe a new framework for the treatment of both generals and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. ICBO 2009: Proceedings of the First International Conference on Biomedical Ontology.Barry Smith (ed.) - 2009 - Buffalo: NCOR.
    Download  
     
    Export citation  
     
    Bookmark  
  42. One danger of biomedical enhancements.Alex Rajczi - 2008 - Bioethics 22 (6):328–336.
    In the near future, our society may develop a vast array of medical enhancements. There is a large debate about enhancements, and that debate has identified many possible harms. This paper describes a harm that has so far been overlooked. Because of some particular features of enhancements, we could come to place more value on them than we actually should. This over-valuation would lead us to devote time, energy, and resources to enhancements that could be better spent somewhere else. That (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. The ethics of biomedical military research: Therapy, prevention, enhancement, and risk.Alexandre Erler & Vincent C. Müller - 2021 - In Daniel Messelken & David Winkler (eds.), Health Care in Contexts of Risk, Uncertainty, and Hybridity. Springer. pp. 235-252.
    What proper role should considerations of risk, particularly to research subjects, play when it comes to conducting research on human enhancement in the military context? We introduce the currently visible military enhancement techniques (1) and the standard discussion of risk for these (2), in particular what we refer to as the ‘Assumption’, which states that the demands for risk-avoidance are higher for enhancement than for therapy. We challenge the Assumption through the introduction of three categories of enhancements (3): therapeutic, preventive, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Ontology as the core discipline of biomedical informatics: Legacies of the past and recommendations for the future direction of research.Barry Smith & Werner Ceusters - 2007 - In Gordana Dodig Crnkovic & Susan Stuart (eds.), Computation, Information, Cognition: The Nexus and the Liminal. Cambridge Scholars Publishing. pp. 104-122.
    The automatic integration of rapidly expanding information resources in the life sciences is one of the most challenging goals facing biomedical research today. Controlled vocabularies, terminologies, and coding systems play an important role in realizing this goal, by making it possible to draw together information from heterogeneous sources – for example pertaining to genes and proteins, drugs and diseases – secure in the knowledge that the same terms will also represent the same entities on all occasions of use. In (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  45. Run the experiment, publish the study, close the sale: Commercialized biomedical research.Aleta Quinn - 2016 - De Ethica 2 (3):5-21.
    Business models for biomedical research prescribe decentralization due to market selection pressures. I argue that decentralized biomedical research does not match four normative philosophical models of the role of values in science. Non-epistemic values affect the internal stages of for-profit biomedical science. Publication planning, effected by Contract Research Organizations, inhibits mechanisms for transformative criticism. The structure of contracted research precludes attribution of responsibility for foreseeable harm resulting from methodological choices. The effectiveness of business strategies leads to overrepresentation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Formal ontology for biomedical knowledge systems integration.J. M. Fielding, J. Simon & Barry Smith - 2004 - Proceedings of Euromise:12-17.
    The central hypothesis of the collaboration between Language and Computing (L&C) and the Institute for Formal Ontology and Medical Information Science (IFOMIS) is that the methodology and conceptual rigor of a philosophically inspired formal ontology will greatly benefit software application ontologies. To this end LinKBase®, L&C’s ontology, which is designed to integrate and reason across various external databases simultaneously, has been submitted to the conceptual demands of IFOMIS’s Basic Formal Ontology (BFO). With this, we aim to move beyond the level (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Negative findings in electronic health records and biomedical ontologies: a realist approach.Werner Ceusters, Peter Elkin & Barry Smith - 2007 - International Journal of Medical Informatics 76 (3):S326-S333.
    PURPOSE—A substantial fraction of the observations made by clinicians and entered into patient records are expressed by means of negation or by using terms which contain negative qualifiers (as in “absence of pulse” or “surgical procedure not performed”). This seems at first sight to present problems for ontologies, terminologies and data repositories that adhere to a realist view and thus reject any reference to putative non-existing entities. Basic Formal Ontology (BFO) and Referent Tracking (RT) are examples of such paradigms. The (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  48. The Obligation to Participate in Biomedical Research.G. Owen Schaefer, Ezekiel J. Emanuel & Alan Wertheimer - 2009 - Journal of the American Medical Association 302 (1):67-72.
    The current prevailing view is that participation in biomedical research is above and beyond the call of duty. While some commentators have offered reasons against this, we propose a novel public goods argument for an obligation to participate in biomedical research. Biomedical knowledge is a public good, available to any individual even if that individual does not contribute to it. Participation in research is a critical way to support an important public good. Consequently, all have a duty (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  49. Classificatory Theory in Data-intensive Science: The Case of Open Biomedical Ontologies.Sabina Leonelli - 2012 - International Studies in the Philosophy of Science 26 (1):47 - 65.
    Knowledge-making practices in biology are being strongly affected by the availability of data on an unprecedented scale, the insistence on systemic approaches and growing reliance on bioinformatics and digital infrastructures. What role does theory play within data-intensive science, and what does that tell us about scientific theories in general? To answer these questions, I focus on Open Biomedical Ontologies, digital classification tools that have become crucial to sharing results across research contexts in the biological and biomedical sciences, and (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  50. Towards Interoperability of Biomedical Ontologies.Musen Mark, A. Schroeder, Michael Smith & Barry - 2008 - Schloss Dagstuhl: Leibniz-Zentrum für Informatik.
    Report on Dagstuhl Seminar 07132, Schloss Dagstuhl, March 27-30 , 2007.
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 447