In the first edition of his book on the completeness of Kant’s table of judgments, Klaus Reich shortly indicates that the B-version of the metaphysical exposition of space in the Critique of pure reason is structured following the inverse order of the table of categories. In this paper, I develop Reich’s claim and provide further evidence for it. My argumentation is as follows: Through analysis of our actually given representation of space as some kind of object (the formal intuition (...) of space in general), the metaphysical exposition will show that this representation is secondary to space considered as an original, undetermined and as such unrepresentable intuitive manifold. Now, following Kant, the representation of any kind of object involves diversity, synthesis and unity. In the case of our representation of space as formal intuition, this involves, firstly, a manifold a priori, i.e. space as pure form, delivered by the transcendental Aesthetic, secondly, a figurative, productive synthesis of that manifold, and, thirdly, the unity provided by the categories. Analysing our given representation of space – the task of the metaphysical exposition – amounts to dismantling its unity and determine its characteristics with respect to the categories. (shrink)
In previous articles, it has been shown that the deductive system developed by Aristotle in his "second logic" is a natural deduction system and not an axiomatic system as previously had been thought. It was also stated that Aristotle's logic is self-sufficient in two senses: First, that it presupposed no other logical concepts, not even those of propositional logic; second, that it is (strongly) complete in the sense that every valid argument expressible in the language of the system is deducible (...) by means of a formal deduction in the system. Review of the system makes the first point obvious. The purpose of the present article is to prove the second. Strong completeness is demonstrated for the Aristotelian system. (shrink)
Well-known results due to David Makinson show that there are exactly two Post complete normal modal logics, that in both of them, the modal operator is truth-functional, and that every consistent normal modal logic can be extended to at least one of them. Lloyd Humberstone has recently shown that a natural analog of this result in congruential modal logics fails, by showing that not every congruential modal logic can be extended to one in which the modal operator is truth-functional. As (...) Humberstone notes, the issue of Post completeness in congruential modal logics is not well understood. The present article shows that in contrast to normal modal logics, the extent of the property of Post completeness among congruential modal logics depends on the background set of logics. Some basic results on the corresponding properties of Post completeness are established, in particular that although a congruential modal logic is Post complete among all modal logics if and only if its modality is truth-functional, there are continuum many modal logics Post complete among congruential modal logics. (shrink)
We investigate a lattice of conditional logics described by a Kripke type semantics, which was suggested by Chellas and Segerberg – Chellas–Segerberg (CS) semantics – plus 30 further principles. We (i) present a non-trivial frame-based completeness result, (ii) a translation procedure which gives one corresponding trivial frame conditions for arbitrary formula schemata, and (iii) non-trivial frame conditions in CS semantics which correspond to the 30 principles.
Any explanation of one fact in terms of another will appeal to some sort of connection between the two. In a causal explanation, the connection might be a causal mechanism or law. But not all explanations are causal, and neither are all explanatory connections. For example, in explaining the fact that a given barn is red in terms of the fact that it is crimson, we might appeal to a non-causal connection between things’ being crimson and their being red. Many (...) such connections, like this one, are general rather than particular. I call these general non-causal explanatory connections 'laws of metaphysics'. In this paper I argue that some of these laws are to be found in the world at its most fundamental level, forming a bridge between fundamental reality and everything else. It is only by admitting fundamental laws, I suggest, that we can do justice to the explanatory relationship between what is fundamental and what is not. And once these laws are admitted, we are able to provide a nice resolution of the puzzle of why there are any non-fundamental facts in the first place. (shrink)
The claim defended in the paper is that the mechanistic account of explanation can easily embrace idealization in big-scale brain simulations, and that only causally relevant detail should be present in explanatory models. The claim is illustrated with two methodologically different models: Blue Brain, used for particular simulations of the cortical column in hybrid models, and Eliasmith’s SPAUN model that is both biologically realistic and able to explain eight different tasks. By drawing on the mechanistic theory of computational explanation, I (...) argue that large-scale simulations require that the explanandum phenomenon is identified; otherwise, the explanatory value of such explanations is difficult to establish, and testing the model empirically by comparing its behavior with the explanandum remains practically impossible. The completeness of the explanation, and hence of the explanatory value of the explanatory model, is to be assessed vis-à-vis the explanandum phenomenon, which is not to be conflated with raw observational data and may be idealized. I argue that idealizations, which include building models of a single phenomenon displayed by multi-functional mechanisms, lumping together multiple factors in a single causal variable, simplifying the causal structure of the mechanisms, and multi-model integration, are indispensable for complex systems such as brains; otherwise, the model may be as complex as the explanandum phenomenon, which would make it prone to so-called Bonini paradox. I conclude by enumerating dimensions of empirical validation of explanatory models according to new mechanism, which are given in a form of a “checklist” for a modeler. (shrink)
The 'completeness of physics' is the key premise in the causal argument for physicalism. Standard formulations of it fail to rule out emergent downwards causation. I argue that it must do this if it is tare in a valid causal argument for physicalism. Drawing on the notion of conferring causal power, I formulate a suitable principle, 'strong completeness'. I investigate the metaphysical implications of distinguishing this principle from emergent downwards causation, and I argue that categoricalist accounts of properties (...) are better equipped to sustain the distinction than dispositional essentialist accounts. Finally, I argue that the additional evidence needed for strong completeness renders the causal argument otiose for any properties amenable to scientific reduction. (shrink)
Some of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917-1923. The aim of this paper is to describe these results, (...) focussing primarily on propositional logic, and to put them in their historical context. It is argued that truth-value semantics, syntactic ("Post-") and semantic completeness, decidability, and other results were first obtained by Hilbert and Bernays in 1918, and that Bernays's role in their discovery and the subsequent development of mathematical logic is much greater than has so far been acknowledged. (shrink)
A strongly independent preorder on a possibly in finite dimensional convex set that satisfi es two of the following conditions must satisfy the third: (i) the Archimedean continuity condition; (ii) mixture continuity; and (iii) comparability under the preorder is an equivalence relation. In addition, if the preorder is nontrivial (has nonempty asymmetric part) and satisfi es two of the following conditions, it must satisfy the third: (i') a modest strengthening of the Archimedean condition; (ii') mixture continuity; and (iii') completeness. (...) Applications to decision making under conditions of risk and uncertainty are provided. (shrink)
In a previous work we introduced the algorithm \SQEMA\ for computing first-order equivalents and proving canonicity of modal formulae, and thus established a very general correspondence and canonical completeness result. \SQEMA\ is based on transformation rules, the most important of which employs a modal version of a result by Ackermann that enables elimination of an existentially quantified predicate variable in a formula, provided a certain negative polarity condition on that variable is satisfied. In this paper we develop several extensions (...) of \SQEMA\ where that syntactic condition is replaced by a semantic one, viz. downward monotonicity. For the first, and most general, extension \SSQEMA\ we prove correctness for a large class of modal formulae containing an extension of the Sahlqvist formulae, defined by replacing polarity with monotonicity. By employing a special modal version of Lyndon's monotonicity theorem and imposing additional requirements on the Ackermann rule we obtain restricted versions of \SSQEMA\ which guarantee canonicity, too. (shrink)
We generalize Harsanyi's social aggregation theorem. We allow the population to be infi nite, and merely assume that individual and social preferences are given by strongly independent preorders on a convex set of arbitrary dimension. Thus we assume neither completeness nor any form of continuity. Under Pareto indifference, the conclusion of Harsanyi's theorem nevertheless holds almost entirely unchanged when utility values are taken to be vectors in a product of lexicographic function spaces. The addition of weak or strong Pareto (...) has essentially the same implications in the general case as it does in Harsanyi's original setting. (shrink)
The present work is focussed on the completeness of physics, or what is here called the Completeness Thesis: the claim that the domain of the physical is causally closed. Two major questions are tackled: How best is the Completeness Thesis to be formulated? What can be said in defence of the Completeness Thesis? My principal conclusions are that the Completeness Thesis can be coherently formulated, and that the evidence in favour if it significantly outweighs that (...) against it. In opposition to those who argue that formulation is impossible because no account of what is to count as physical can be provided, I argue that as long as the purpose of the argument in which the account is to be used are borne in mind there are no significant difficulties. The account of the physical which I develop holds as physical whatever is needed to fix the likelihood of pre-theoretically given physical effects, and hypothesises in addition that no chemical, biological or psychological factors will be needed in this way. The thus formulated Completeness Thesis is coherent, and has significant empirical content. In opposition to those who defend the doctrine of emergentism by means of philosophical arguments I contend that those arguments are flawed, setting up misleading dichotomies between needlessly attenuated alternatives and assuming the truth of what is to be proved. Against those who defend emergentism by appeal to the evidence, I argue that the history of science since the nineteenth century shows clearly that the empirical credentials of the view that the world is causally closed at the level of a small number of purely physical forces and types of energy is stronger than ever, and the credentials of emergentism correspondingly weaker. In opposition to those who argue that difficulties with reductionism point to the implausibility of the Completeness Thesis I argue that completeness in no way entails the kinds of reductionism which give rise to the difficulties in question. I argue further that the truth of the Completeness Thesis is in fact compatible with a great deal of taxonomic disorder and the impossibility of any general reduction of non-fundamental descriptions to fundamental ones. In opposition to those who argue that the epistemological credentials of fundamental physical laws are poor, and that those laws should in fact be seen as false, I contend that truth preserving accounts of fundamental laws can be developed. Developing such an account, I test it by considering cases of the composition of forces and causes, where what takes place is different to what is predicted by reference to any single law, and argue that viewing laws as tendencies allows their truth to be preserved, and sense to be made of both the experimental discovery of laws, and the fact that composition enables accurate prediction in at least some cases. (shrink)
According to an increasing number of authors, the best, if not the only, argument in favour of physicalism is the so-called 'overdetermination argument'. This argument, if sound, establishes that all the entities that enter into causal interactions with the physical world are physical. One key premise in the overdetermination argument is the principle of the causal closure of the physical world, said to be supported by contemporary physics. In this paper, I examine various ways in which physics may support the (...) principle, either as a methodological guide or as depending on some other laws and principles of physics. (shrink)
The first-order temporal logics with □ and ○ of time structures isomorphic to ω (discrete linear time) and trees of ω-segments (linear time with branching gaps) and some of its fragments are compared: the first is not recursively axiomatizable. For the second, a cut-free complete sequent calculus is given, and from this, a resolution system is derived by the method of Maslov.
Higher-order theories of properties, relations, and propositions are known to be essentially incomplete relative to their standard notions of validity. It turns out that the first-order theory of PRPs that results when first-order logic is supplemented with a generalized intensional abstraction operation is complete. The construction involves the development of an intensional algebraic semantic method that does not appeal to possible worlds, but rather takes PRPs as primitive entities. This allows for a satisfactory treatment of both the modalities and the (...) propositional attitudes, and it suggests a general strategy for developing a comprehensive treatment of intensional logic. (shrink)
The previously introduced algorithm \sqema\ computes first-order frame equivalents for modal formulae and also proves their canonicity. Here we extend \sqema\ with an additional rule based on a recursive version of Ackermann's lemma, which enables the algorithm to compute local frame equivalents of modal formulae in the extension of first-order logic with monadic least fixed-points \mffo. This computation operates by transforming input formulae into locally frame equivalent ones in the pure fragment of the hybrid mu-calculus. In particular, we prove that (...) the recursive extension of \sqema\ succeeds on the class of `recursive formulae'. We also show that a certain version of this algorithm guarantees the canonicity of the formulae on which it succeeds. (shrink)
All first-order Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF.
We investigate an enrichment of the propositional modal language L with a "universal" modality ■ having semantics x ⊧ ■φ iff ∀y(y ⊧ φ), and a countable set of "names" - a special kind of propositional variables ranging over singleton sets of worlds. The obtained language ℒ $_{c}$ proves to have a great expressive power. It is equivalent with respect to modal definability to another enrichment ℒ(⍯) of ℒ, where ⍯ is an additional modality with the semantics x ⊧ ⍯φ (...) iff Vy(y ≠ x → y ⊧ φ). Model-theoretic characterizations of modal definability in these languages are obtained. Further we consider deductive systems in ℒ $_{c}$ . Strong completeness of the normal ℒ $_{c}$ logics is proved with respect to models in which all worlds are named. Every ℒ $_{c}$ -logic axiomatized by formulae containing only names (but not propositional variables) is proved to be strongly frame-complete. Problems concerning transfer of properties ([in]completeness, filtration, finite model property etc.) from ℒ to ℒ $_{c}$ are discussed. Finally, further perspectives for names in multimodal environment are briefly sketched. (shrink)
What justifies the allocation of funding to research in physics when many would argue research in the life and social sciences may have more immediate impact in transforming our world for the better? Many of the justifications for such spending depend on the claim that physics enjoys a kind of special status vis-a-vis the other sciences, that physics or at least some branches of physics exhibit a form of fundamentality. The goal of this paper is to articulate a conception of (...) fundamentality that can support such justifications. I argue that traditional conceptions of fundamentality in terms of dynamical or ontic completeness rest on mistaken assumptions about the nature and scope of physical explanations. (shrink)
Chapin reviewed this 1972 ZEITSCHRIFT paper that proves the completeness theorem for the logic of variable-binding-term operators created by Corcoran and his student John Herring in the 1971 LOGIQUE ET ANALYSE paper in which the theorem was conjectured. This leveraging proof extends completeness of ordinary first-order logic to the extension with vbtos. Newton da Costa independently proved the same theorem about the same time using a Henkin-type proof. This 1972 paper builds on the 1971 “Notes on a Semantic (...) Analysis of Variable Binding Term Operators” (Co-author John Herring), Logique et Analyse 55, 646–57. MR0307874 (46 #6989). A variable binding term operator (vbto) is a non-logical constant, say v, which combines with a variable y and a formula F containing y free to form a term (vy:F) whose free variables are exact ly those of F, excluding y. Kalish-Montague 1964 proposed using vbtos to formalize definite descriptions “the x: x+x=2”, set abstracts {x: F}, minimization in recursive function theory “the least x: x+x>2”, etc. However, they gave no semantics for vbtos. Hatcher 1968 gave a semantics but one that has flaws described in the 1971 paper and admitted by Hatcher. In 1971 we give a correct semantic analysis of vbtos. We also give axioms for using them in deductions. And we conjecture strong completeness for the deductions with respect to the semantics. The conjecture, proved in this paper with Hatcher’s help, was proved independently about the same time by Newton da Costa. (shrink)
We introduce and study hierarchies of extensions of the propositional modal and temporal languages with pairs of new syntactic devices: point of reference-reference pointer which enable semantic references to be made within a formula. We propose three different but equivalent semantics for the extended languages, discuss and compare their expressiveness. The languages with reference pointers are shown to have great expressive power (especially when their frugal syntax is taken into account), perspicuous semantics, and simple deductive systems. For instance, Kamp's and (...) Stavi's temporal operators, as well as nominals (names, clock variables), are definable in them. Universal validity in these languages is proved undecidable. The basic modal and temporal logics with reference pointers are uniformly axiomatized and a strong completeness theorem is proved for them and extended to some classes of their extensions. (shrink)
It is widely taken that the first-order part of Frege's Begriffsschrift is complete. However, there does not seem to have been a formal verification of this received claim. The general concern is that Frege's system is one axiom short in the first-order predicate calculus comparing to, by now, the standard first-order theory. Yet Frege has one extra inference rule in his system. Then the question is whether Frege's first-order calculus is still deductively sufficient as far as the first-order completeness (...) is concerned. In this short note we confirm that the missing axiom is derivable from his stated axioms and inference rules, and hence the logic system in the Begriffsschrift is indeed first-order complete. (shrink)
In their recent book Every Thing Must Go Ladyman and Ross (Ladyman et al. 2007) claim: (1) Physics is analytically complete since it is the only science that cannot be left incomplete (cf. Ladyman et al. 2007, 283). (2) There might not be an ontologically fundamental level (cf. Ladyman et al. 2007, 178). (3) We should not admit anything into our ontology unless it has explanatory and predictive utility (cf. Ladyman et al. 2007, 179). In this discussion note I aim (...) to show that the ontological commitment in (3) implies that the completeness of no science can be achieved where no fundamental level exists. Therefore, if claim (1) requires a science to actually be complete in order to be considered as physics, (1), and if Ladyman and Ross’s “tentative metaphysical hypothesis […] that there is no fundamental level” (178) is true, (2), then there simply is no physics. Ladyman and Ross can, however, avoid this unwanted result if they merely require physics to ever strive for completeness rather than to already be complete. (shrink)
A semantics is presented for Storrs McCall's separate axiomatizations of Aristotle's accepted and rejected polysyllogisms. The polysyllogisms under discussion are made up of either assertoric or apodeictic propositions. The semantics is given by associating a property with a pair of sets: one set consists of things having the property essentially and the other of things having it accidentally. A completeness proof and a semantic decision procedure are given.
We give a complete axiomatization of the identities of the basic game algebra valid with respect to the abstract game board semantics. We also show that the additional conditions of termination and determinacy of game boards do not introduce new valid identities. En route we introduce a simple translation of game terms into plain modal logic and thus translate, while preserving validity both ways game identities into modal formulae. The completeness proof is based on reduction of game terms to (...) a certain 'minimal canonical form', by using only the axiomatic identities, and on showing that the equivalence of two minimal canonical terms can be established from these identities. (shrink)
We introduce and study a variety of modal logics of parallelism, orthogonality, and affine geometries, for which we establish several completeness, decidability and complexity results and state a number of related open, and apparently difficult problems. We also demonstrate that lack of the finite model property of modal logics for sufficiently rich affine or projective geometries (incl. the real affine and projective planes) is a rather common phenomenon.
The aim of this paper is to show that every topological space gives rise to a wealth of topological models of the modal logic S4.1. The construction of these models is based on the fact that every space defines a Boolean closure algebra (to be called a McKinsey algebra) that neatly reflects the structure of the modal system S4.1. It is shown that the class of topological models based on McKinsey algebras contains a canonical model that can be used to (...) prove a completeness theorem for S4.1. Further, it is shown that the McKinsey algebra MKX of a space X endoewed with an alpha-topologiy satisfies Esakia's GRZ axiom. (shrink)
This paper explores the logical consequences of the the thesis that all of the essential properties of consciousness can be known introspectively (Completeness, called "Strong Transparency" in the paper, following D.M. Armstrong's older terminology). It is argued that it can be known introspectively that consciousness does not have complete access to its essential properties; and it is show how this undermines conceivability arguments for dualism.
A certain type of inference rules in modal logics, generalizing Gabbay's Irreflexivity rule, is introduced and some general completeness results about modal logics axiomatized with such rules are proved.
Consequence rleations over sets of "judgments" are defined by using "overdetermined" as well as "underdetermined" valuations. Some of these relations are shown to be categorical. And generalized soundness and completeness results are given for both multiple and single conclusion consequence relations.
In this paper we focus our attention on tableau methods for propositional interval temporal logics. These logics provide a natural framework for representing and reasoning about temporal properties in several areas of computer science. However, while various tableau methods have been developed for linear and branching time point-based temporal logics, not much work has been done on tableau methods for interval-based ones. We develop a general tableau method for Venema's \cdt\ logic interpreted over partial orders (\nsbcdt\ for short). It combines (...) features of the classical tableau method for first-order logic with those of explicit tableau methods for modal logics with constraint label management, and it can be easily tailored to most propositional interval temporal logics proposed in the literature. We prove its soundness and completeness, and we show how it has been implemented. (shrink)
In this paper we prove the completeness of three logical systems I LI, IL2 and IL3. IL1 deals solely with identities {a = b), and its deductions are the direct deductions constructed with the three traditional rules: (T) from a = b and b = c infer a = c, (S) from a = b infer b = a and (A) infer a = a(from anything). IL2 deals solely with identities and inidentities {a ± b) and its deductions include (...) both the direct and the indirect deductions constructed with the three traditional rules. IL3 is a hybrid of IL1 and IL2: its deductions are all direct as in IL1 but it deals with identities and inidentities as in IL2. IL1 and IL2 have a high degree of naturalness. Although the hybrid system IL3 was constructed as an artifact useful in the mathematical study of IL1 and IL2, it nevertheless has some intrinsically interesting aspects. The main motivation for describing and studying such simple systems is pedagogical. In teaching beginning logic one would like to present a system of logic which has the following properties. First, it exemplifies the main ideas of logic: implication, deduction, non-implication, counterargument(or countermodel), logical truth, self-contradiction, consistency,satisfiability, etc. Second, it exemplifies the usual general metaprinciples of logic: contraposition and transitivity of implication, cut laws, completeness,soundness, etc. Third, it is simple enough to be thoroughly grasped by beginners. Fourth, it is obvious enough so that its rules do not appear to be arbitrary or purely conventional. Fifth, it does not invite confusions which must be unlearned later. Sixth, it involves a minimum of presuppositions which are no longer accepted in mainstream contemporary logic. (shrink)
Abstract. Aristotelian assertoric syllogistic, which is currently of growing interest, has attracted the attention of the founders of modern logic, who approached it in several (semantical and syntactical) ways. Further approaches were introduced later on. These approaches (with few exceptions) are here discussed, developed and interrelated. Among other things, di-erent facets of soundness, completeness, decidability and independence are investigated. Speci/cally arithmetization (Leibniz), algebraization (Leibniz and Boole), and Venn models (Euler and Venn) are closely examined. All proofs are simple. In (...) particular there is no recourse to maximal nor minimal conditions (with only one, dispensable, exception), which makes the long awaited deciphering of the enigmatic Leibniz characteristic numbers possible. The problem was how to look at matters from the right perspective. (shrink)
This work studies some problems connected to the role of negation in logic, treating the positive fragments of propositional calculus in order to deal with two main questions: the proof of the completeness theorems in systems lacking negation, and the puzzle raised by positive paradoxes like the well-known argument of Haskel Curry. We study the constructive com- pleteness method proposed by Leon Henkin for classical fragments endowed with implication, and advance some reasons explaining what makes difficult to extend this (...) constructive method to non-classical fragments equipped with weaker implications (that avoid Curry's objection). This is the case, for example, of Jan Lukasiewicz's n-valued logics and Wilhelm Ackermann's logic of restricted implication. Besides such problems, both Henkin's method and the triviality phenomenon enable us to propose a new positive tableau proof system which uses only positive meta-linguistic resources, and to mo- tivate a new discussion concerning the role of negation in logic proposing the concept of paratriviality. In this way, some relations between positive reasoning and infinity, the possibilities to obtain a ¯first-order positive logic as well as the philosophical connection between truth and meaning are dis- cussed from a conceptual point of view. (shrink)
In the proof-theoretic semantics approach to meaning, harmony , requiring a balance between introduction-rules (I-rules) and elimination rules (E-rules) within a meaning conferring natural-deduction proof-system, is a central notion. In this paper, we consider two notions of harmony that were proposed in the literature: 1. GE-harmony , requiring a certain form of the E-rules, given the form of the I-rules. 2. Local intrinsic harmony : imposes the existence of certain transformations of derivations, known as reduction and expansion . We propose (...) a construction of the E-rules (in GE-form) from given I-rules, and prove that the constructed rules satisfy also local intrinsic harmony. The construction is based on a classification of I-rules, and constitute an implementation to Gentzen’s (and Pawitz’) remark, that E-rules can be “read off” I-rules. (shrink)
I examine the meaning and merits of a premise in the Exclusion Argument, the causal closure principle that all physical effects have physical causes. I do so by addressing two questions. First, if we grant the other premises, exactly what kind of closure principle is required to make the Exclusion Argument valid? Second, what are the merits of the requisite closure principle? Concerning the first, I argue that the Exclusion Argument requires a strong, “stringently pure” version of closure. The latter (...) employs two qualifications concerning the physical sufficiency and relative proximity of the physical cause required for every physical effect. The second question is addressed in two steps. I begin by challenging the adequacy of the empirical support offered by David Papineau for closure. Then I assess the merits of “level” and “domain” versions of stringently pure closure. I argue that a domain version lacks adequate and non-question-begging support within the context of the Exclusion Argument. And I argue that the level version leads to a puzzling metaphysics of the physical domain. Thus, we have grounds for rejecting the version of closure required for the Exclusion Argument. This means we can resist the Exclusion Argument while avoiding the implausible implications that come with rejecting one of its other premises. That is, because there are grounds to reject causal closure, one can reasonably affirm the non-overdeterminative causal efficacy of conscious mental states while denying that the latter are identical with physical states. (shrink)
In this paper we give an analytic tableau calculus P L 1 6 for a functionally complete extension of Shramko and Wansing’s logic. The calculus is based on signed formulas and a single set of tableau rules is involved in axiomatising each of the four entailment relations ⊧ t, ⊧ f, ⊧ i, and ⊧ under consideration—the differences only residing in initial assignments of signs to formulas. Proving that two sets of formulas are in one of the first three entailment (...) relations will in general require developing four tableaux, while proving that they are in the ⊧ relation may require six. (shrink)
Kaum eine Äußerung Einsteins ist so bekannt wie sein Wort, dass Gott nicht würfelt. In ähnlicher Weise, wie Einstein dies unerläutert gelassen hat, ist seine gesamte Position zur Quantenmechanik, auf die es sich bezieht, von Uneindeutigkeiten nicht frei geblieben. Für seine Würfelmetapher ergibt sich ein Spielraum von gegensätzlichen Sichtweisen. Sie lässt sich zum einen mit jüngeren Forschungsresultaten verbinden und weist zum anderen auf rückschrittliche Elemente in Einsteins Denken hin. Ich wende mich zuerst diesen Elementen zu und betrachte dann eine dazu (...) entgegengerichtete Interpretationsvariante, die an den neueren Resultaten anknüpft. (shrink)
After a short preface, the first of the three sections of this paper is devoted to historical and philosophic aspects of categoricity. The second section is a self-contained exposition, including detailed definitions, of a proof that every mathematical system whose domain is the closure of its set of distinguished individuals under its distinguished functions is categorically characterized by its induction principle together with its true atoms (atomic sentences and negations of atomic sentences). The third section deals with applications especially those (...) involving the distinction between characterizing a system and axiomatizing the truths of a system. (shrink)
This paper deals with a collection of concerns that, over a period of time, led the author away from the Routley–Meyer semantics, and towards proof- theoretic approaches to relevant logics, and indeed to the weak relevant logic MC of meaning containment.
In the present article we attempt to show that Aristotle's syllogistic is an underlying logiC which includes a natural deductive system and that it isn't an axiomatic theory as had previously been thought. We construct a mathematical model which reflects certain structural aspects of Aristotle's logic. We examine the relation of the model to the system of logic envisaged in scattered parts of Prior and Posterior Analytics. Our interpretation restores Aristotle's reputation as a logician of consummate imagination and skill. Several (...) attributions of shortcomings and logical errors to Aristotle are shown to be without merit. Aristotle's logic is found to be self-sufficient in several senses: his theory of deduction is logically sound in every detail. (His indirect deductions have been criticized, but incorrectly on our account.) Aristotle's logic presupposes no other logical concepts, not even those of propositional logic. The Aristotelian system is seen to be complete in the sense that every valid argument expressible in his system admits of a deduction within his deductive system: every semantically valid argument is deducible. (shrink)
This presentation includes a complete bibliography of John Corcoran’s publications relevant on Aristotle’s logic. The Sections I, II, III, and IV list respectively 23 articles, 44 abstracts, 3 books, and 11 reviews. Section I starts with two watershed articles published in 1972: the Philosophy & Phenomenological Research article—from Corcoran’s Philadelphia period that antedates his discovery of Aristotle’s natural deduction system—and the Journal of Symbolic Logic article—from his Buffalo period first reporting his original results. It ends with works published in 2015. (...) Some items are annotated as listed or with endnotes connecting them with other work and pointing out passages that, in retrospect, are seen to be misleading and in a few places erroneous. In addition, Section V, “Discussions”, is a nearly complete secondary bibliography of works describing, interpreting, extending, improving, supporting, and criticizing Corcoran’s work: 10 items published in the 1970s, 24 in the 1980s, 42 in the 1990s, 60 in the 2000s, and 70 in the current decade. The secondary bibliography is also annotated as listed or with endnotes: some simply quoting from the cited item, but several answering criticisms and identifying errors. Section VI, “Alternatives”, lists recent works on Aristotle’s logic oblivious of Corcoran’s research and, more generally in some cases, even of the Łukasiewicz-initiated tradition. As is evident from Section VII, “Acknowledgements”, Corcoran’s publications benefited from consultation with other scholars, most notably George Boger, Charles Kahn, John Mulhern, Mary Mulhern, Anthony Preus, Timothy Smiley, Michael Scanlan, Roberto Torretti, and Kevin Tracy. All of Corcoran’s Greek translations were done in collaboration with two or more classicists. Corcoran never published a sentence without discussing it with his colleagues and students. (shrink)
A complete axiomatic system CTL$_{rp}$ is introduced for a temporal logic for finitely branching $\omega^+$-trees in a temporal language extended with so called reference pointers. Syntactic and semantic interpretations are constructed for the branching time computation tree logic CTL* into CTL$_{rp}$. In particular, that yields a complete axiomatization for the translations of all valid CTL*-formulae. Thus, the temporal logic with reference pointers is brought forward as a simpler (with no path quantifiers), but in a way more expressive medium for reasoning (...) about branching time. (shrink)
Corcoran’s 27 entries in the 1999 second edition of Robert Audi’s Cambridge Dictionary of Philosophy [Cambridge: Cambridge UP]. -/- ancestral, axiomatic method, borderline case, categoricity, Church (Alonzo), conditional, convention T, converse (outer and inner), corresponding conditional, degenerate case, domain, De Morgan, ellipsis, laws of thought, limiting case, logical form, logical subject, material adequacy, mathematical analysis, omega, proof by recursion, recursive function theory, scheme, scope, Tarski (Alfred), tautology, universe of discourse. -/- The entire work is available online free at more than (...) one website. Paste the whole URL. http://archive.org/stream/RobertiAudi_The.Cambridge.Dictionary.of.Philosophy/Robert.Audi_The.Cambrid ge.Dictionary.of.Philosophy -/- The 2015 third edition will be available soon. Before you think of buying it read some reviews on Amazon and read reviews of its competition: For example, my review of the 2008 Oxford Companion to Philosophy, History and Philosophy of Logic,29:3,291-292. URL: http://dx.doi.org/10.1080/01445340701300429 -/- Some of the entries have already been found to be flawed. For example, Tarski’s expression ‘materially adequate’ was misinterpreted in at least one article and it was misused in another where ‘materially correct’ should have been used. The discussion provides an opportunity to bring more flaws to light. -/- Acknowledgements: Each of these entries was presented at meetings of The Buffalo Logic Dictionary Project sponsored by The Buffalo Logic Colloquium. The members of the colloquium read drafts before the meetings and were generous with corrections, objections, and suggestions. Usually one 90-minute meeting was devoted to one entry although in some cases, for example, “axiomatic method”, took more than one meeting. Moreover, about half of the entries are rewrites of similarly named entries in the 1995 first edition. Besides the help received from people in Buffalo, help from elsewhere was received by email. We gratefully acknowledge the following: José Miguel Sagüillo, John Zeis, Stewart Shapiro, Davis Plache, Joseph Ernst, Richard Hull, Concha Martinez, Laura Arcila, James Gasser, Barry Smith, Randall Dipert, Stanley Ziewacz, Gerald Rising, Leonard Jacuzzo, George Boger, William Demopolous, David Hitchcock, John Dawson, Daniel Halpern, William Lawvere, John Kearns, Ky Herreid, Nicolas Goodman, William Parry, Charles Lambros, Harvey Friedman, George Weaver, Hughes Leblanc, James Munz, Herbert Bohnert, Robert Tragesser, David Levin, Sriram Nambiar, and others. -/- . (shrink)
This paper deploys a Cantor-style diagonal argument which indicates that there is more possible mathematical content than there are propositional functions in Russell and Whitehead's Principia Mathematica and similar formal systems. This technical result raises a historical question: "How did Russell, who was himself an expert in diagonal arguments, not see this coming?" It turns out that answering this question requires an appreciation of Russell's understanding of what logic is, and how he construed the relationship between logic and Principia Mathematica.
Complete deductive systems are constructed for the non-valid (refutable) formulae and sequents of some propositional modal logics. Thus, complete syntactic characterizations in the sense of Lukasiewicz are established for these logics and, in particular, purely syntactic decision procedures for them are obtained. The paper also contains some historical remarks and a general discussion on refutation systems.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.