Results for 'lambda calculus'

197 found
Order:
  1. Static and Dynamic Vector Semantics for Lambda Calculus Models of Natural Language.Mehrnoosh Sadrzadeh & Reinhard Muskens - 2018 - Journal of Language Modelling 6 (2):319-351.
    Vector models of language are based on the contextual aspects of language, the distributions of words and how they co-occur in text. Truth conditional models focus on the logical aspects of language, compositional properties of words and how they compose to form sentences. In the truth conditional approach, the denotation of a sentence determines its truth conditions, which can be taken to be a truth value, a set of possible worlds, a context change potential, or similar. In the vector models, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Strong Normalization of a Symmetric Lambda Calculus for Second-Order Classical Logic.Yoriyuki Yamagata - 2002 - Archive for Mathematical Logic 41 (1):91-99.
    Download  
     
    Export citation  
     
    Bookmark  
  3. Lambda Grammars and the Syntax-Semantics Interface.Reinhard Muskens - 2001 - In Robert Van Rooij & Martin Stokhof (eds.), Proceedings of the Thirteenth Amsterdam Colloquium. Amsterdam: ILLC. pp. 150-155.
    In this paper we discuss a new perspective on the syntax-semantics interface. Semantics, in this new set-up, is not ‘read off’ from Logical Forms as in mainstream approaches to generative grammar. Nor is it assigned to syntactic proofs using a Curry-Howard correspondence as in versions of the Lambek Calculus, or read off from f-structures using Linear Logic as in Lexical-Functional Grammar (LFG, Kaplan & Bresnan [9]). All such approaches are based on the idea that syntactic objects (trees, proofs, fstructures) (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  4. Context Update for Lambdas and Vectors.Reinhard Muskens & Mehrnoosh Sadrzadeh - 2016 - In Maxime Amblard, Philippe de Groote, Sylvain Pogodalla & Christian Retoré (eds.), Logical Aspects of Computational Linguistics. Celebrating 20 Years of LACL (1996--2016). Berlin Heidelberg: Springer. pp. 247--254.
    Vector models of language are based on the contextual aspects of words and how they co-occur in text. Truth conditional models focus on the logical aspects of language, the denotations of phrases, and their compositional properties. In the latter approach the denotation of a sentence determines its truth conditions and can be taken to be a truth value, a set of possible worlds, a context change potential, or similar. In this short paper, we develop a vector semantics for language based (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Proofs Are Programs: 19th Century Logic and 21st Century Computing.Philip Wadler - manuscript
    As the 19th century drew to a close, logicians formalized an ideal notion of proof. They were driven by nothing other than an abiding interest in truth, and their proofs were as ethereal as the mind of God. Yet within decades these mathematical abstractions were realized by the hand of man, in the digital stored-program computer. How it came to be recognized that proofs and programs are the same thing is a story that spans a century, a chase with as (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  6. Incompleteness and Computability. An Open Introduction to Gödel's Theorems.Richard Zach - 2019
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Download  
     
    Export citation  
     
    Bookmark  
  7. Language, Lambdas, and Logic.Reinhard Muskens - 2003 - In R. Oehrle & J. Kruijff (eds.), Resource Sensitivity, Binding, and Anaphora (Studies in Linguistics and Philosophy 80). Dordrecht: Kluwer Academic Publishers. pp. 23--54.
    The paper develops Lambda Grammars, a form of categorial grammar that, unlike other categorial formalisms, is non-directional. Linguistic signs are represented as sequences of lambda terms and are combined with the help of linear combinators.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  8. Binding On the Fly: Cross-Sentential Anaphora in Variable— Free Semantics.Anna Szabolcsi - 2003 - In R. Oehrle & J. Kruijff (eds.), Resource Sensitivity, Binding, and Anaphora. Kluwer Academic Publishers. pp. 215--227.
    Combinatory logic (Curry and Feys 1958) is a “variable-free” alternative to the lambda calculus. The two have the same expressive power but build their expressions differently. “Variable-free” semantics is, more precisely, “free of variable binding”: it has no operation like abstraction that turns a free variable into a bound one; it uses combinators—operations on functions—instead. For the general linguistic motivation of this approach, see the works of Steedman, Szabolcsi, and Jacobson, among others. The standard view in linguistics is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  84
    Transparent Quantification Into Hyperpropositional Contexts de Re.Duží Marie & Bjørn Jespersen - 2012 - Logique & Analyse 55 (220):513-554.
    This paper is the twin of (Duží and Jespersen, in submission), which provides a logical rule for transparent quantification into hyperprop- ositional contexts de dicto, as in: Mary believes that the Evening Star is a planet; therefore, there is a concept c such that Mary be- lieves that what c conceptualizes is a planet. Here we provide two logical rules for transparent quantification into hyperpropositional contexts de re. (As a by-product, we also offer rules for possible- world propositional contexts.) One (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Kurt Gödel and Computability Theory.Richard Zach - 2006 - In Arnold Beckmann, Ulrich Berger, Benedikt Löwe & John V. Tucker (eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Swansea. Proceedings. Berlin: Springer. pp. 575--583.
    Although Kurt Gödel does not figure prominently in the history of computabilty theory, he exerted a significant influence on some of the founders of the field, both through his published work and through personal interaction. In particular, Gödel’s 1931 paper on incompleteness and the methods developed therein were important for the early development of recursive function theory and the lambda calculus at the hands of Church, Kleene, and Rosser. Church and his students studied Gödel 1931, and Gödel taught (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Three Unpublished Manuscripts From 1903: "Functions", "Proof That No Function Takes All Values", "Meaning and Denotation".Bertrand Russell & Kevin C. Klement - 2016 - Russell: The Journal of Bertrand Russell Studies 36 (1):5-44.
    I present and discuss three previously unpublished manuscripts written by Bertrand Russell in 1903, not included with similar manuscripts in Volume 4 of his Collected Papers. One is a one-page list of basic principles for his “functional theory” of May 1903, in which Russell partly anticipated the later Lambda Calculus. The next, catalogued under the title “Proof That No Function Takes All Values”, largely explores the status of Cantor’s proof that there is no greatest cardinal number in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Strong Normalization via Natural Ordinal.Daniel Durante Pereira Alves - 1999 - Dissertation,
    The main objective of this PhD Thesis is to present a method of obtaining strong normalization via natural ordinal, which is applicable to natural deduction systems and typed lambda calculus. The method includes (a) the definition of a numerical assignment that associates each derivation (or lambda term) to a natural number and (b) the proof that this assignment decreases with reductions of maximal formulas (or redex). Besides, because the numerical assignment used coincide with the length of a (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  13. A Theory of Structured Propositions.Andrew Bacon - manuscript
    This paper argues that the theory of structured propositions is not undermined by the Russell-Myhill paradox. I develop a theory of structured propositions in which the Russell-Myhill paradox doesn't arise: the theory does not involve ramification or compromises to the underlying logic, but rather rejects common assumptions, encoded in the notation of the $\lambda$-calculus, about what properties and relations can be built. I argue that the structuralist had independent reasons to reject these underlying assumptions. The theory is given (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  14. ""Lambda Theory: Introduction of a Constant for" Nothing" Into Set Theory, a Model of Consistency and Most Noticeable Conclusions.Laurent Dubois - 2013 - Logique Et Analyse 56 (222):165-181.
    The purpose of this article is to present several immediate consequences of the introduction of a new constant called Lambda in order to represent the object ``nothing" or ``void" into a standard set theory. The use of Lambda will appear natural thanks to its role of condition of possibility of sets. On a conceptual level, the use of Lambda leads to a legitimation of the empty set and to a redefinition of the notion of set. It lets (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  52
    A Calculus for Belnap's Logic in Which Each Proof Consists of Two Trees.Stefan Wintein & Reinhard Muskens - 2012 - Logique Et Analyse 220:643-656.
    In this paper we introduce a Gentzen calculus for (a functionally complete variant of) Belnap's logic in which establishing the provability of a sequent in general requires \emph{two} proof trees, one establishing that whenever all premises are true some conclusion is true and one that guarantees the falsity of at least one premise if all conclusions are false. The calculus can also be put to use in proving that one statement \emph{necessarily approximates} another, where necessary approximation is a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. A Cut-Free Sequent Calculus for Defeasible Erotetic Inferences.Jared Millson - 2019 - Studia Logica (6):1-34.
    In recent years, the e ffort to formalize erotetic inferences (i.e., inferences to and from questions) has become a central concern for those working in erotetic logic. However, few have sought to formulate a proof theory for these inferences. To fill this lacuna, we construct a calculus for (classes of) sequents that are sound and complete for two species of erotetic inferences studied by Inferential Erotetic Logic (IEL): erotetic evocation and regular erotetic implication. While an attempt has been made (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  17. L'esordio del libro Lambda della Metafisica.Silvia Fazzo - 2008 - Rivista di Filosofia Neo-Scolastica 100 (2):159-181.
    The particular subject of this article is the very first sentence of Aristotle’s Metaphysics book Lambda: what does it really mean? I would stick to the most generous sense: (Aristotelian) theoria is about substance. Indeed, it has been often held that Lambda ignores the so-called focal meaning, and shows a remarkably rough stage of Aristotle’s conception of prime philosophy. By contrast, in this light, the very incipit of Lambda appears to testify Aristotle’s concern in an ontological foundation (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  18.  75
    A Gentzen Calculus for Nothing but the Truth.Stefan Wintein & Reinhard Muskens - 2016 - Journal of Philosophical Logic 45 (4):451-465.
    In their paper Nothing but the Truth Andreas Pietz and Umberto Rivieccio present Exactly True Logic, an interesting variation upon the four-valued logic for first-degree entailment FDE that was given by Belnap and Dunn in the 1970s. Pietz & Rivieccio provide this logic with a Hilbert-style axiomatisation and write that finding a nice sequent calculus for the logic will presumably not be easy. But a sequent calculus can be given and in this paper we will show that a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  19. The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  20. The Narrative Calculus.Antti Kauppinen - 2015 - Oxford Studies in Normative Ethics 5.
    This paper examines systematically which features of a life story (or history) make it good for the subject herself - not aesthetically or morally good, but prudentially good. The tentative narrative calculus presented claims that the prudential narrative value of an event is a function of the extent to which it contributes to her concurrent and non-concurrent goals, the value of those goals, and the degree to which success in reaching the goals is deserved in virtue of exercising agency. (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   8 citations  
  21. A Nonmonotonic Sequent Calculus for Inferentialist Expressivists.Ulf Hlobil - 2016 - In Pavel Arazim & Michal Dančák (eds.), The Logica Yearbook 2015. College Publications. pp. 87-105.
    I am presenting a sequent calculus that extends a nonmonotonic consequence relation over an atomic language to a logically complex language. The system is in line with two guiding philosophical ideas: (i) logical inferentialism and (ii) logical expressivism. The extension defined by the sequent rules is conservative. The conditional tracks the consequence relation and negation tracks incoherence. Besides the ordinary propositional connectives, the sequent calculus introduces a new kind of modal operator that marks implications that hold monotonically. Transitivity (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Is Leibnizian Calculus Embeddable in First Order Logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Lambda 7. 1072 b 2-3.Silvia Fazzo - 2002 - Elenchos: Rivista di Studi Sul Pensiero Antico 23 (2):357-376.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  24. A Tableau Calculus for Partial Functions.Manfred Kerber Michael Kohlhase - unknown
    Even though it is not very often admitted, partial functions do play a significant role in many practical applications of deduction systems. Kleene has already given a semantic account of partial functions using a three-valued logic decades ago, but there has not been a satisfactory mechanization. Recent years have seen a thorough investigation of the framework of many-valued truth-functional logics. However, strong Kleene logic, where quantification is restricted and therefore not truthfunctional, does not fit the framework directly. We solve this (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  25. A Prioridade Ontológica das Substâncias Imóveis segundo o livro Lambda da Metafísica de Aristóteles.Meline Costa Souza - 2018 - Archai: Revista de Estudos Sobre as Origens Do Pensamento Ocidental 22:65-97.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  26. Polynomial Ring Calculus for Modal Logics: A New Semantics and Proof Method for Modalities: Polynomial Ring Calculus for Modal Logics.Juan C. Agudelo - 2011 - Review of Symbolic Logic 4 (1):150-170.
    A new proof style adequate for modal logics is defined from the polynomial ring calculus. The new semantics not only expresses truth conditions of modal formulas by means of polynomials, but also permits to perform deductions through polynomial handling. This paper also investigates relationships among the PRC here defined, the algebraic semantics for modal logics, equational logics, the Dijkstra???Scholten equational-proof style, and rewriting systems. The method proposed is throughly exemplified for S 5, and can be easily extended to other (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  27. Differential Calculus Based on the Double Contradiction.Kazuhiko Kotani - 2016 - Open Journal of Philosophy 6 (4):420-427.
    The derivative is a basic concept of differential calculus. However, if we calculate the derivative as change in distance over change in time, the result at any instant is 0/0, which seems meaningless. Hence, Newton and Leibniz used the limit to determine the derivative. Their method is valid in practice, but it is not easy to intuitively accept. Thus, this article describes the novel method of differential calculus based on the double contradiction, which is easier to accept intuitively. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Deleuze on Leibniz : Difference, Continuity, and the Calculus.Daniel W. Smith - 2005 - In Current Continental Theory and Modern Philosophy. Northwestern University Press.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  29. From Logical Calculus to Logical Formality—What Kant Did with Euler’s Circles.Huaping Lu-Adler - 2017 - In Corey W. Dyck & Falk Wunderlich (eds.), Kant and His German Contemporaries : Volume 1, Logic, Mind, Epistemology, Science and Ethics. Cambridge: Cambridge University Press. pp. 35-55.
    John Venn has the “uneasy suspicion” that the stagnation in mathematical logic between J. H. Lambert and George Boole was due to Kant’s “disastrous effect on logical method,” namely the “strictest preservation [of logic] from mathematical encroachment.” Kant’s actual position is more nuanced, however. In this chapter, I tease out the nuances by examining his use of Leonhard Euler’s circles and comparing it with Euler’s own use. I do so in light of the developments in logical calculus from G. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. The Quantified Argument Calculus and Natural Logic.Hanoch Ben-Yami - forthcoming - Dialectica.
    The formalisation of Natural Language arguments in a formal language close to it in syntax has been a central aim of Moss’s Natural Logic. I examine how the Quantified Argument Calculus (Quarc) can handle the inferences Moss has considered. I show that they can be incorporated in existing versions of Quarc or in straightforward extensions of it, all within sound and complete systems. Moreover, Quarc is closer in some respects to Natural Language than are Moss’s systems – for instance, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. A Speech Act Calculus. A Pragmatised Natural Deduction Calculus and its Meta-Theory.Moritz Cordes & Friedrich Reinmuth - manuscript
    Building on the work of Peter Hinst and Geo Siegwart, we develop a pragmatised natural deduction calculus, i.e. a natural deduction calculus that incorporates illocutionary operators at the formal level, and prove its adequacy. In contrast to other linear calculi of natural deduction, derivations in this calculus are sequences of object-language sentences which do not require graphical or other means of commentary in order to keep track of assumptions or to indicate subproofs. (Translation of our German paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32.  19
    Of the Exterior Calculus and Relativistic Quantum Mechanics.Jose G. Vargas - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  33. From Syllogism to Predicate Calculus.Thomas J. McQuade - 1994 - Teaching Philosophy 17 (4):293-309.
    The purpose of this paper is to outline an alternative approach to introductory logic courses. Traditional logic courses usually focus on the method of natural deduction or introduce predicate calculus as a system. These approaches complicate the process of learning different techniques for dealing with categorical and hypothetical syllogisms such as alternate notations or alternate forms of analyzing syllogisms. The author's approach takes up observations made by Dijkstrata and assimilates them into a reasoning process based on modified notations. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Hegel on Calculus.Christopher Yeomans & Ralph Kaufmann - 2017 - History of Philosophy Quarterly 34 (4):371-390.
    It is fair to say that Georg Wilhelm Friedrich Hegel's philosophy of mathematics and his interpretation of the calculus in particular have not been popular topics of conversation since the early part of the twentieth century. Changes in mathematics in the late nineteenth century, the new set-theoretical approach to understanding its foundations, and the rise of a sympathetic philosophical logic have all conspired to give prior philosophies of mathematics (including Hegel's) the untimely appearance of naïveté. The common view was (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Completeness of a Hypersequent Calculus for Some First-Order Gödel Logics with Delta.Matthias Baaz, Norbert Preining & Richard Zach - 2006 - In 36th International Symposium on Multiple-valued Logic. May 2006, Singapore. Proceedings. Los Alamitos: IEEE Press.
    All first-order Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF.
    Download  
     
    Export citation  
     
    Bookmark  
  36. A Matéria (Hyle) no Livro Lambda da Metafísica.Marcelo Fonseca Ribeiro de Oliveira - 2014 - Inconfindentia 2 (3):1-12.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  37. Hallden Incomplete Calculus of Names.Piotr Kulicki - 2010 - Buletin of the Section of Logic 39 (1/2):53-55.
    Download  
     
    Export citation  
     
    Bookmark  
  38. The Differential Point of View of the Infinitesimal Calculus in Spinoza, Leibniz and Deleuze.Simon Duffy - 2006 - Journal of the British Society for Phenomenology 37 (3):286-307.
    In Hegel ou Spinoza,1 Pierre Macherey challenges the influence of Hegel’s reading of Spinoza by stressing the degree to which Spinoza eludes the grasp of the Hegelian dialectical progression of the history of philosophy. He argues that Hegel provides a defensive misreading of Spinoza, and that he had to “misread him” in order to maintain his subjective idealism. The suggestion being that Spinoza’s philosophy represents, not a moment that can simply be sublated and subsumed within the dialectical progression of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. A Survey of Geometric Algebra and Geometric Calculus.Alan Macdonald - 2017 - Advances in Applied Clifford Algebras 27:853-891.
    The paper is an introduction to geometric algebra and geometric calculus for those with a knowledge of undergraduate mathematics. No knowledge of physics is required. The section Further Study lists many papers available on the web.
    Download  
     
    Export citation  
     
    Bookmark  
  40. A Simple Logical Matrix and Sequent Calculus for Parry’s Logic of Analytic Implication.Damian E. Szmuc - forthcoming - Studia Logica:1-38.
    We provide a logical matrix semantics and a Gentzen-style sequent calculus for the first-degree entailments valid in W. T. Parry's logic of Analytic Implication. We achieve the former by introducing a logical matrix closely related to that inducing paracomplete weak Kleene logic, and the latter by presenting a calculus where the initial sequents and the left and right rules for negation are subject to linguistic constraints.
    Download  
     
    Export citation  
     
    Bookmark  
  41.  92
    A Simple Interpretation of Quantity Calculus.Boris Culina - manuscript
    A simple interpretation of quantity calculus is given. Quantities are described as functions from objects, states or processes (or some combination of them) into numbers that satisfy the mutual measurability property. Quantity calculus is based on a notational simplification of the concept of quantity. A key element of the notational simplification is that we consider units intentionally unspecified numbers that are measures of exactly specified objects, states or processes. This interpretation of quantity calculus combines all the advantages (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. On Classical Finite Probability Theory as a Quantum Probability Calculus.David Ellerman - manuscript
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. The point is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Leibniz y las matemáticas: Problemas en torno al cálculo infinitesimal / Leibniz on Mathematics: Problems Concerning Infinitesimal calculus.Alberto Luis López - 2018 - In Luis Antonio Velasco Guzmán & Víctor Manuel Hernández Márquez (eds.), Gottfried Wilhelm Leibniz: Las bases de la modernidad. México: Universidad Nacional Autónoma de México. pp. 31-62.
    El cálculo infinitesimal elaborado por Leibniz en la segunda mitad del siglo XVII tuvo, como era de esperarse, muchos adeptos pero también importantes críticos. Uno pensaría que cuatro siglos después de haber sido presentado éste, en las revistas, academias y sociedades de la época, habría ya poco qué decir sobre el mismo; sin embargo, cuando uno se acerca al cálculo de Leibniz –tal y como me sucedió hace tiempo– fácilmente puede percatarse de que el debate en torno al cálculo leibniziano (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  44.  71
    Understanding and Calculating the Odds: Probability Theory Basics and Calculus Guide for Beginners, with Applications in Games of Chance and Everyday Life.Catalin Barboianu - 2006 - Craiova, Romania: Infarom.
    Download  
     
    Export citation  
     
    Bookmark  
  45. Axiomatic Investigations of the Propositional Calculus of Principia Mathematica.Paul Bernays - 2012 - In Universal Logic: An Anthology. New York and Basel: pp. 43-58.
    Download  
     
    Export citation  
     
    Bookmark  
  46. New Directions in Type-Theoretic Grammars.Reinhard Muskens - 2010 - Journal of Logic, Language and Information 19 (2):129-136.
    This paper argues for the idea that in describing language we should follow Haskell Curry in distinguishing between the structure of an expression and its appearance or manifestation . It is explained how making this distinction obviates the need for directed types in type-theoretic grammars and a simple grammatical formalism is sketched in which representations at all levels are lambda terms. The lambda term representing the abstract structure of an expression is homomorphically translated to a lambda term (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47.  73
    Separating Syntax and Combinatorics in Categorial Grammar.Reinhard Muskens - 2007 - Research on Language and Computation 5 (3):267-285.
    The ‘syntax’ and ‘combinatorics’ of my title are what Curry (1961) referred to as phenogrammatics and tectogrammatics respectively. Tectogrammatics is concerned with the abstract combinatorial structure of the grammar and directly informs semantics, while phenogrammatics deals with concrete operations on syntactic data structures such as trees or strings. In a series of previous papers (Muskens, 2001a; Muskens, 2001b; Muskens, 2003) I have argued for an architecture of the grammar in which finite sequences of lambda terms are the basic data (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  48. Aristoteles, Met. XII – eine Theologie?Erwin Sonderegger - 1996 - Méthexis:58–83.
    The aim of this article is to free Aristotle's Metaphysics, especially book XII (Lambda), frome some metaphysical and theological presuppositions by detecting their inappropriate conceptual framwork, which one was progressive, but now holds an obsolete position. Ousia, being (not substance, a much later concept, construed to solve other problems than Aristotle's), stand for a question, not for an answer. Book Lambda develops a highly speculative argument for this queston. The famous noesis noeseos says that empirical being and knowledge (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  49. On Minimal Models for Pure Calculi of Names.Piotr Kulicki - 2013 - Logic and Logical Philosophy 22 (4):429–443.
    By pure calculus of names we mean a quantifier-free theory, based on the classical propositional calculus, which defines predicates known from Aristotle’s syllogistic and Leśniewski’s Ontology. For a large fragment of the theory decision procedures, defined by a combination of simple syntactic operations and models in two-membered domains, can be used. We compare the system which employs `ε’ as the only specific term with the system enriched with functors of Syllogistic. In the former, we do not need an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. From Display to Labelled Proofs for Tense Logics.Agata Ciabattoni, Tim Lyon & Revantha Ramanayake - 2018 - In Anil Nerode & Sergei Artemov (eds.), Logical Foundations of Computer Science. Springer International Publishing. pp. 120 - 139.
    We introduce an effective translation from proofs in the display calculus to proofs in the labelled calculus in the context of tense logics. We identify the labelled calculus proofs in the image of this translation as those built from labelled sequents whose underlying directed graph possesses certain properties. For the basic normal tense logic Kt, the image is shown to be the set of all proofs in the labelled calculus G3Kt.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 197