Results for 'mathematical proofs, demonstrations, lines-of-reasoning'

998 found
Order:
  1. Some basic studies about Trigonometry--(second edition).Luis Antonio Freire - 2021
    The narrative develops itself through the perspective of someone who sees Mathematics, Physics, Geometry, etc, as a sequence of logical steps.
    Download  
     
    Export citation  
     
    Bookmark  
  2. REVIEW OF 1988. Saccheri, G. Euclides Vindicatus (1733), edited and translated by G. B. Halsted, 2nd ed. (1986), in Mathematical Reviews MR0862448. 88j:01013.John Corcoran - 1988 - MATHEMATICAL REVIEWS 88 (J):88j:01013.
    Girolamo Saccheri (1667--1733) was an Italian Jesuit priest, scholastic philosopher, and mathematician. He earned a permanent place in the history of mathematics by discovering and rigorously deducing an elaborate chain of consequences of an axiom-set for what is now known as hyperbolic (or Lobachevskian) plane geometry. Reviewer's remarks: (1) On two pages of this book Saccheri refers to his previous and equally original book Logica demonstrativa (Turin, 1697) to which 14 of the 16 pages of the editor's "Introduction" are devoted. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Some Basic Studies about Trigonometry.Luis Antonio Freire - 2015
    A guide to the first steps into the world of Geometry, Trigonometry and their lines-of-reasoning widely used through the high school and first years of college, in the exact-sciences context.
    Download  
     
    Export citation  
     
    Bookmark  
  4.  95
    Ancient Greek Mathematical Proofs and Metareasoning.Mario Bacelar Valente - 2024 - In Maria Zack (ed.), Research in History and Philosophy of Mathematics. Annals of the Canadian Society for History and Philosophy of Mathematics. pp. 15-33.
    We present an approach in which ancient Greek mathematical proofs by Hippocrates of Chios and Euclid are addressed as a form of (guided) intentional reasoning. Schematically, in a proof, we start with a sentence that works as a premise; this sentence is followed by another, the conclusion of what we might take to be an inferential step. That goes on until the last conclusion is reached. Guided by the text, we go through small inferential steps; in each one, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Evidence, Proofs, and Derivations.Andrew Aberdein - 2019 - ZDM 51 (5):825-834.
    The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  6. Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  7. Mathematical Wit and Mathematical Cognition.Andrew Aberdein - 2013 - Topics in Cognitive Science 5 (2):231-250.
    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  8. An Elementary, Pre-formal, Proof of FLT: Why is x^n+y^n=z^n solvable only for n<3?Bhupinder Singh Anand - manuscript
    Andrew Wiles' analytic proof of Fermat's Last Theorem FLT, which appeals to geometrical properties of real and complex numbers, leaves two questions unanswered: (i) What technique might Fermat have used that led him to, even if only briefly, believe he had `a truly marvellous demonstration' of FLT? (ii) Why is x^n+y^n=z^n solvable only for n<3? In this inter-disciplinary perspective, we offer insight into, and answers to, both queries; yielding a pre-formal proof of why FLT can be treated as a true (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Why did Fermat believe he had `a truly marvellous demonstration' of FLT?Bhupinder Singh Anand - manuscript
    Conventional wisdom dictates that proofs of mathematical propositions should be treated as necessary, and sufficient, for entailing `significant' mathematical truths only if the proofs are expressed in a---minimally, deemed consistent---formal mathematical theory in terms of: * Axioms/Axiom schemas * Rules of Deduction * Definitions * Lemmas * Theorems * Corollaries. Whilst Andrew Wiles' proof of Fermat's Last Theorem FLT, which appeals essentially to geometrical properties of real and complex numbers, can be treated as meeting this criteria, it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Aristotle's demonstrative logic.John Corcoran - 2009 - History and Philosophy of Logic 30 (1):1-20.
    Demonstrative logic, the study of demonstration as opposed to persuasion, is the subject of Aristotle's two-volume Analytics. Many examples are geometrical. Demonstration produces knowledge (of the truth of propositions). Persuasion merely produces opinion. Aristotle presented a general truth-and-consequence conception of demonstration meant to apply to all demonstrations. According to him, a demonstration, which normally proves a conclusion not previously known to be true, is an extended argumentation beginning with premises known to be truths and containing a chain of reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  12.  85
    Operator Counterparts of Types of Reasoning.Urszula Wybraniec-Skardowska - 2023 - Logica Universalis 17 (4):511-528.
    Logical and philosophical literature provides different classifications of reasoning. In the Polish literature on the subject, for instance, there are three popular ones accepted by representatives of the Lvov-Warsaw School: Jan Łukasiewicz, Tadeusz Czeżowski and Kazimierz Ajdukiewicz (Ajdukiewicz in Logika pragmatyczna [Pragmatic Logic]. PWN, Warsaw (1965, 2nd ed. 1974). Translated as: Pragmatic Logic. Reidel & PWN, Dordrecht, 1975). The author of this paper, having modified those classifications, distinguished the following types of reasoning: (1) deductive and (2) non-deductive, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Participation and organizational commitment during change: From utopist to realist perspectives.Rune Lines & Marcus Selart - 2013 - In Skipton Leonard, Rachel Lewis, Arthur Freedman & Jonathan Passmore (eds.), Handbook of the psychology of leadership, change, and organizational development. Wiley-Blackwell. pp. 289-313.
    Trust has a great potential for furthering our understanding of organizational change and learning. This potential however remains largely untapped. It is argued that two reasons as for why this potential remains unrealized are: (i) A narrow conceptualization of change as implementation and (ii) an emphasis on direct and aggregated effects of individual trust to the exclusion of other effects. It is further suggested that our understanding of the effects of trust on organizational change, should benefit from including effects of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Review of Macbeth, D. Diagrammatic reasoning in Frege's Begriffsschrift. Synthese 186 (2012), no. 1, 289–314. Mathematical Reviews MR 2935338.John Corcoran - 2014 - MATHEMATICAL REVIEWS 2014:2935338.
    A Mathematical Review by John Corcoran, SUNY/Buffalo -/- Macbeth, Danielle Diagrammatic reasoning in Frege's Begriffsschrift. Synthese 186 (2012), no. 1, 289–314. ABSTRACT This review begins with two quotations from the paper: its abstract and the first paragraph of the conclusion. The point of the quotations is to make clear by the “give-them-enough-rope” strategy how murky, incompetent, and badly written the paper is. I know I am asking a lot, but I have to ask you to read the quoted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Late scholastic probable arguments and their contrast with rhetorical and demonstrative arguments.James Franklin - 2022 - Philosophical Inquiries 10 (2).
    Aristotle divided arguments that persuade into the rhetorical (which happen to persuade), the dialectical (which are strong so ought to persuade to some degree) and the demonstrative (which must persuade if rightly understood). Dialectical arguments were long neglected, partly because Aristotle did not write a book about them. But in the sixteenth and seventeenth century late scholastic authors such as Medina, Cano and Soto developed a sound theory of probable arguments, those that have logical and not merely psychological force but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value.John Corcoran - 1971 - Journal of Structural Learning 3 (2):1-16.
    1971. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value, Journal of Structural Learning 3, #2, 1–16. REPRINTED 1976. Structural Learning II Issues and Approaches, ed. J. Scandura, Gordon & Breach Science Publishers, New York, MR56#15263. -/- This is the second of a series of three articles dealing with application of linguistics and logic to the study of mathematical reasoning, especially in the setting of a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Discourse Grammars and the Structure of Mathematical Reasoning III: Two Theories of Proof,.John Corcoran - 1971 - Journal of Structural Learning 3 (3):1-24.
    ABSTRACT This part of the series has a dual purpose. In the first place we will discuss two kinds of theories of proof. The first kind will be called a theory of linear proof. The second has been called a theory of suppositional proof. The term "natural deduction" has often and correctly been used to refer to the second kind of theory, but I shall not do so here because many of the theories so-called are not of the second kind--they (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  73
    Notes from a course introducing logarithms.Luis Antonio Freire - manuscript
    Notes from a quick course of 4 weeks, emphasizing the importance of proofs in an introductory course on logarithm, for high school students.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Probabilistic Proofs, Lottery Propositions, and Mathematical Knowledge.Yacin Hamami - 2021 - Philosophical Quarterly 72 (1):77-89.
    In mathematics, any form of probabilistic proof obtained through the application of a probabilistic method is not considered as a legitimate way of gaining mathematical knowledge. In a series of papers, Don Fallis has defended the thesis that there are no epistemic reasons justifying mathematicians’ rejection of probabilistic proofs. This paper identifies such an epistemic reason. More specifically, it is argued here that if one adopts a conception of mathematical knowledge in which an epistemic subject can know a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Sufficient Reason & The Axiom of Choice, an Ontological Proof for One Unique Transcendental God for Every Possible World.Assem Hamdy - manuscript
    Chains of causes appear when the existence of God is discussed. It is claimed by some that these chains must be finite and terminated by God. But these chains seem endless through our knowledge search. This endlessness for the physical reasons for any world event expresses the greatness and complexity of God’s creation and so the transcendence of God. So, only we can put our hands on physical reasons in an endless forage for knowledge. Yet, the endlessness of the physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Last bastion of reason. [REVIEW]James Franklin - 2000 - New Criterion 18 (9):74-78.
    Attacks the irrationalism of Lakatos's Proofs and Refutations and defends mathematics as a "last bastion" of reason against postmodernist and deconstructionist currents.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Plato’s Metaphysical Development before Middle Period Dialogues.Mohammad Bagher Ghomi - manuscript
    Regarding the relation of Plato’s early and middle period dialogues, scholars have been divided to two opposing groups: unitarists and developmentalists. While developmentalists try to prove that there are some noticeable and even fundamental differences between Plato’s early and middle period dialogues, the unitarists assert that there is no essential difference in there. The main goal of this article is to suggest that some of Plato’s ontological as well as epistemological principles change, both radically and fundamentally, between the early and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics.Tim Lyon & Kees van Berkel - 2019 - In M. Baldoni, M. Dastani, B. Liao, Y. Sakurai & R. Zalila Wenkstern (eds.), PRIMA 2019: Principles and Practice of Multi-Agent Systems. Springer. pp. 202-218.
    This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the single-agent case, we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  26. Review of: Garciadiego, A., "Emergence of...paradoxes...set theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Rationale of the Mathematical Joke.Andrew Aberdein - 2010 - In Alison Pease, Markus Guhe & Alan Smaill (eds.), Proceedings of AISB 2010 Symposium on Mathematical Practice and Cognition. AISB. pp. 1-6.
    A widely circulated list of spurious proof types may help to clarify our understanding of informal mathematical reasoning. An account in terms of argumentation schemes is proposed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Supreme Mathematics: The Five Percenter Model of Divine Self-Realization and Its Commonalities to Interpretations of the Pythagorean Tetractys in Western Esotericism.Martin A. M. Gansinger - 2023 - Interdisciplinary Journal for Religion and Transformation in Contemporary Society 1 (1):1-22.
    This contribution aims to explore the historical predecessors of the Five Percenter model of self-realization, as popularized by Hip Hop artists such as Supreme Team, Rakim Allah, Brand Nubian, Wu-Tang Clan, or Sunz of Man. As compared to frequent considerations of the phenomenon as a creative mythological background for a socio-political struggle, Five Percenter teachings shall be discussed as contemporary interpretations of historical models of self-realization in various philosophical, religious, and esoteric systems. By putting the coded system of the tenfold (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. God, Human Memory, and the Certainty of Geometry: An Argument Against Descartes.Marc Champagne - 2016 - Philosophy and Theology 28 (2):299–310.
    Descartes holds that the tell-tale sign of a solid proof is that its entailments appear clearly and distinctly. Yet, since there is a limit to what a subject can consciously fathom at any given moment, a mnemonic shortcoming threatens to render complex geometrical reasoning impossible. Thus, what enables us to recall earlier proofs, according to Descartes, is God’s benevolence: He is too good to pull a deceptive switch on us. Accordingly, Descartes concludes that geometry and belief in God must (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem?Annie Selden - 2003 - Journal for Mathematics Education Research 34 (1):4-36.
    We report on an exploratory study of the way eight mid-level undergraduate mathematics majors read and reflected on four student-generated arguments purported to be proofs of a single theorem. The results suggest that mid-level undergraduates tend to focus on surface features of such arguments and that their ability to determine whether arguments are proofs is very limited -- perhaps more so than either they or their instructors recognize. We begin by discussing arguments (purported proofs) regarded as texts and validations of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32. Religion and ideological confrontations in early Soviet mathematics: The case of P.A. Nekrasov.Dimitris Kilakos - 2018 - Almagest 9 (2):13-38.
    The influence of religious beliefs to several leading mathematicians in early Soviet years, especially among members of the Moscow Mathematical Society, had drawn the attention of militant Soviet marxists, as well as Soviet authorities. The issue has also drawn significant attention from scholars in the post-Soviet period. According to the currently prevailing interpretation, reported purges against Moscow mathematicians due to their religious inclination are the focal point of the relevant history. However, I maintain that historical data arguably offer reasons (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Mary Shepherd on the role of proofs in our knowledge of first principles.M. Folescu - 2022 - Noûs 56 (2):473-493.
    This paper examines the role of reason in Shepherd's account of acquiring knowledge of the external world via first principles. Reason is important, but does not have a foundational role. Certain principles enable us to draw the required inferences for acquiring knowledge of the external world. These principles are basic, foundational and, more importantly, self‐evident and thus justified in other ways than by demonstration. Justificatory demonstrations of these principles are neither required, nor possible. By drawing on textual and contextual evidence, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  34. Mathematical Gettier Cases and Their Implications.Neil Barton - manuscript
    Let mathematical justification be the kind of justification obtained when a mathematician provides a proof of a theorem. Are Gettier cases possible for this kind of justification? At first sight we might think not: The standard for mathematical justification is proof and, since proof is bound at the hip with truth, there is no possibility of having an epistemically lucky justification of a true mathematical proposition. In this paper, I argue that Gettier cases are possible (and indeed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Sound Reasoning : Prospects and Challenges of Current Acoustic Logics.Marc Champagne - 2015 - Logica Universalis 9 (3):331-343.
    Building on the notational principles of C. S. Peirce’s graphical logic, Pietarinen has tried to develop a propositional logic unfolding in the medium of sound. Apart from its intrinsic interest, this project serves as a concrete test of logic’s range. However, I argue that Pietarinen’s inaugural proposal, while promising, has an important shortcoming, since it cannot portray double-negation without thereby portraying a contradiction.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  36. Review of M. Giaquinto's Visual thinking in mathematics. [REVIEW]Andrew Arana - 2009 - Analysis 69 (2):401-403.
    Our visual experience seems to suggest that no continuous curve can cover every point of the unit square, yet in the late nineteenth century Giuseppe Peano proved that such a curve exists. Examples like this, particularly in analysis (in the sense of the infinitesimal calculus) received much attention in the nineteenth century. They helped instigate what Hans Hahn called a “crisis of intuition”, wherein visual reasoning in mathematics came to be thought to be epistemically problematic. Hahn described this “crisis” (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Existential inertia and the Aristotelian proof.Joseph C. Schmid - 2020 - International Journal for Philosophy of Religion 89 (3):201-220.
    Edward Feser defends the ‘Aristotelian proof’ for the existence of God, which reasons that the only adequate explanation of the existence of change is in terms of an unchangeable, purely actual being. His argument, however, relies on the falsity of the Existential Inertia Thesis, according to which concrete objects tend to persist in existence without requiring an existential sustaining cause. In this article, I first characterize the dialectical context of Feser’s Aristotelian proof, paying special attention to EIT and its rival (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  38. Unpacking the logic of mathematical statements.Annie Selden - 1995 - Educational Studies in Mathematics 29:123-151.
    This study focuses on undergraduate students' ability to unpack informally written mathematical statements into the language of predicate calculus. Data were collected between 1989 and 1993 from 61students in six small sections of a “bridge" course designed to introduce proofs and mathematical reasoning. We discuss this data from a perspective that extends the notion of concept image to that of statement image and introduces the notion of proof framework to indicate the top-level logical structure of a proof. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Leibniz's Calculus Proof of Snell's Laws Violates Ptolemy's Theorem. Radhakrishanamurty - manuscript
    Leibniz proposed the ‘Most Determined Path Principle’ in seventeenth century. According to it, ‘ease’ of travel is the end purpose of motion. Using this principle and his calculus method he demonstrated Snell’s Laws of reflection and refraction. This method shows that light follows extremal (local minimum or maximum) time path in going from one point to another, either directly along a straight line path or along a broken line path when it undergoes reflection or refraction at plane or spherical (concave (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content to key (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  41. A mathematical theory of truth and an application to the regress problem.S. Heikkilä - forthcoming - Nonlinear Studies 22 (2).
    In this paper a class of languages which are formal enough for mathematical reasoning is introduced. Its languages are called mathematically agreeable. Languages containing a given MA language L, and being sublanguages of L augmented by a monadic predicate, are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of those languages. MTT makes them fully interpreted MA languages which posses their own truth predicates. MTT is shown to conform well with the eight norms (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. How can a line segment with extension be composed of extensionless points?Brian Reese, Michael Vazquez & Scott Weinstein - 2022 - Synthese 200 (2):1-28.
    We provide a new interpretation of Zeno’s Paradox of Measure that begins by giving a substantive account, drawn from Aristotle’s text, of the fact that points lack magnitude. The main elements of this account are (1) the Axiom of Archimedes which states that there are no infinitesimal magnitudes, and (2) the principle that all assignments of magnitude, or lack thereof, must be grounded in the magnitude of line segments, the primary objects to which the notion of linear magnitude applies. Armed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Exploring students' image concept of mathematical functions through error analysis.Melanie Gurat - 2018 - International Journal of Advanced Research and Publications 2 (9):33-46.
    Students do not necessarily use the definitions presented to them when determining examples or non-examples of given mathematical ideas. Instead, they utilize the concept image they carry with them as a result of experiences with such examples and nonexamples. Hence, teachers should try exploring students‟ images of various mathematical concepts in order to improve communication between students and teachers. This suggestion can be addressed through error analysis. This study therefore is a descriptive-qualitative type that looked into the errors (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Computational reverse mathematics and foundational analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Bayesian perspectives on mathematical practice.James Franklin - 2020 - Handbook of the History and Philosophy of Mathematical Practice.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  47. Kant on Negative Quantities, Real Opposition and Inertia.Jennifer McRobert - manuscript
    Kant's obscure essay entitled An Attempt to Introduce the Concept of Negative Quantities into Philosophy has received virtually no attention in the Kant literature. The essay has been in English translation for over twenty years, though not widely available. In his original 1983 translation, Gordon Treash argues that the Negative Quantities essay should be understood as part of an ongoing response to the philosophy of Christian Wolff. Like Hoffmann and Crusius before him, the Kant of 1763 is at odds with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2021 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of (...) instrumentalism are defeated by Gödel’s theorem, not all are. By considering inductive reasons in mathematics, we show that some mathematical instrumentalisms survive the theorem. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Evidence, Risk, and Proof Paradoxes: Pessimism about the Epistemic Project.Giada Fratantonio - 2021 - International Journal of Evidence and Proof:online first.
    Why can testimony alone be enough for findings of liability? Why statistical evidence alone can’t? These questions underpin the “Proof Paradox” (Redmayne 2008, Enoch et al. 2012). Many epistemologists have attempted to explain this paradox from a purely epistemic perspective. I call it the “Epistemic Project”. In this paper, I take a step back from this recent trend. Stemming from considerations about the nature and role of standards of proof, I define three requirements that any successful account in line with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
1 — 50 / 998