Results for 'proof theory'

1000+ found
Order:
  1.  61
    Proof Theory of Finite-Valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  2. Stoic Sequent Logic and Proof Theory.Susanne Bobzien - 2019 - History and Philosophy of Logic 40 (3):234-265.
    This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Questions About Proof Theory Vis-À-Vis Natural Language Semantics (2007).Anna Szabolcsi - manuscript
    Semantics plays a role in grammar in at least three guises. (A) Linguists seek to account for speakers‘ knowledge of what linguistic expressions mean. This goal is typically achieved by assigning a model theoretic interpretation2 in a compositional fashion. For example, No whale flies is true if and only if the intersection of the sets of whales and fliers is empty in the model. (B) Linguists seek to account for the ability of speakers to make various inferences based on semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic.Matthias Baaz & Richard Zach - 2000 - In Peter G. Clote & Helmut Schwichtenberg (eds.), Computer Science Logic. 14th International Workshop, CSL 2000. Berlin: Springer. pp. 187– 201.
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the system is sound and complete, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  71
    Takeuti's Proof Theory in the Context of the Kyoto School.Andrew Arana - 2019 - Jahrbuch Für Philosophie Das Tetsugaku-Ronso 46:1-17.
    Gaisi Takeuti (1926–2017) is one of the most distinguished logicians in proof theory after Hilbert and Gentzen. He extensively extended Hilbert's program in the sense that he formulated Gentzen's sequent calculus, conjectured that cut-elimination holds for it (Takeuti's conjecture), and obtained several stunning results in the 1950–60s towards the solution of his conjecture. Though he has been known chiefly as a great mathematician, he wrote many papers in English and Japanese where he expressed his philosophical thoughts. In particular, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Recent Work on the Proof Paradox.Lewis D. Ross - 2020 - Philosophy Compass 15 (6).
    Recent years have seen fresh impetus brought to debates about the proper role of statistical evidence in the law. Recent work largely centres on a set of puzzles known as the ‘proof paradox’. While these puzzles may initially seem academic, they have important ramifications for the law: raising key conceptual questions about legal proof, and practical questions about DNA evidence. This article introduces the proof paradox, why we should care about it, and new work attempting to resolve (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value.John Corcoran - 1971 - Journal of Structural Learning 3 (2):1-16.
    1971. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value, Journal of Structural Learning 3, #2, 1–16. REPRINTED 1976. Structural Learning II Issues and Approaches, ed. J. Scandura, Gordon & Breach Science Publishers, New York, MR56#15263. -/- This is the second of a series of three articles dealing with application of linguistics and logic to the study of mathematical reasoning, especially in the setting of a concern for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. On the Alleged Simplicity of Impure Proof.Andrew Arana - 2017 - In Roman Kossak & Philip Ording (eds.), Simplicity: Ideals of Practice in Mathematics and the Arts. pp. 207-226.
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  79
    Slip-Proof Actions.Santiago Amaya - 2016 - In Roman Altshuler & Michael J. Sigrist (eds.), Time and the Philosophy of Action. Routledge. pp. 21-36.
    Most human actions are complex, but some of them are basic. Which are these? In this paper, I address this question by invoking slips, a common kind of mistake. The proposal is this: an action is basic if and only if it is not possible to slip in performing it. The argument discusses some well-established results from the psychology of language production in the context of a philosophical theory of action. In the end, the proposed criterion is applied to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Paratheism: A Proof That God Neither Exists nor Does Not Exist.Steven James Bartlett - 2016 - Willamette University Faculty Research Website: Http://Www.Willamette.Edu/~Sbartlet/Documents/Bartlett_Paratheism_A%20Proof%20that%20God%20neither%2 0Exists%20nor%20Does%20Not%20Exist.Pdf.
    Theism and its cousins, atheism and agnosticism, are seldom taken to task for logical-epistemological incoherence. This paper provides a condensed proof that not only theism, but atheism and agnosticism as well, are all of them conceptually self-undermining, and for the same reason: All attempt to make use of the concept of “transcendent reality,” which here is shown not only to lack meaning, but to preclude the very possibility of meaning. In doing this, the incoherence of theism, atheism, and agnosticism (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  11. Prove It! The Burden of Proof Game in Science Vs. Pseudoscience Disputes.Massimo Pigliucci & Maarten Boudry - 2014 - Philosophia 42 (2):487-502.
    The concept of burden of proof is used in a wide range of discourses, from philosophy to law, science, skepticism, and even in everyday reasoning. This paper provides an analysis of the proper deployment of burden of proof, focusing in particular on skeptical discussions of pseudoscience and the paranormal, where burden of proof assignments are most poignant and relatively clear-cut. We argue that burden of proof is often misapplied or used as a mere rhetorical gambit, with (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  12. The Reasonable and the Relevant: Legal Standards of Proof.Georgi Gardiner - 2019 - Philosophy and Public Affairs 47 (3):288-318.
    According to a common conception of legal proof, satisfying a legal burden requires establishing a claim to a numerical threshold. Beyond reasonable doubt, for example, is often glossed as 90% or 95% likelihood given the evidence. Preponderance of evidence is interpreted as meaning at least 50% likelihood given the evidence. In light of problems with the common conception, I propose a new ‘relevant alternatives’ framework for legal standards of proof. Relevant alternative accounts of knowledge state that a person (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics.Tim Lyon & Kees van Berkel - 2019 - In M. Baldoni, M. Dastani, B. Liao, Y. Sakurai & R. Zalila Wenkstern (eds.), PRIMA 2019: Principles and Practice of Multi-Agent Systems. 93413 Cham, Germany: Springer. pp. 202-218.
    This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the single-agent case, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Semantic Epistemology Redux: Proof and Validity in Quantum Mechanics.Arnold Cusmariu - 2016 - Logos and Episteme 7 (3):287-303.
    Definitions I presented in a previous article as part of a semantic approach in epistemology assumed that the concept of derivability from standard logic held across all mathematical and scientific disciplines. The present article argues that this assumption is not true for quantum mechanics (QM) by showing that concepts of validity applicable to proofs in mathematics and in classical mechanics are inapplicable to proofs in QM. Because semantic epistemology must include this important theory, revision is necessary. The one I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  67
    On Proof-Theoretic Approaches to the Paradoxes: Problems of Undergeneration and Overgeneration in the Prawitz-Tennant Analysis.Seungrak Choi - 2019 - Dissertation, Korea University
    In this dissertation, we shall investigate whether Tennant's criterion for paradoxicality(TCP) can be a correct criterion for genuine paradoxes and whether the requirement of a normal derivation(RND) can be a proof-theoretic solution to the paradoxes. Tennant’s criterion has two types of counterexamples. The one is a case which raises the problem of overgeneration that TCP makes a paradoxical derivation non-paradoxical. The other is one which generates the problem of undergeneration that TCP renders a non-paradoxical derivation paradoxical. Chapter 2 deals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Objectivity And Proof In A Classical Indian Theory Of Number.Jonardon Ganeri - 2001 - Synthese 129 (3):413-437.
    Download  
     
    Export citation  
     
    Bookmark  
  18.  54
    Sketch of a Proof-Theoretic Semantics for Necessity.Nils Kürbis - 2020 - In Nicola Olivetti, Rineke Verbrugge & Sara Negri (eds.), Advances in Modal Logic 13. Booklet of Short Papers. Helsinki: pp. 37-43.
    This paper considers proof-theoretic semantics for necessity within Dummett's and Prawitz's framework. Inspired by a system of Pfenning's and Davies's, the language of intuitionist logic is extended by a higher order operator which captures a notion of validity. A notion of relative necessary is defined in terms of it, which expresses a necessary connection between the assumptions and the conclusion of a deduction.
    Download  
     
    Export citation  
     
    Bookmark  
  19.  55
    The Changing Practices of Proof in Mathematics: Gilles Dowek: Computation, Proof, Machine. Cambridge: Cambridge University Press, 2015. Translation of Les Métamorphoses du Calcul, Paris: Le Pommier, 2007. Translation From the French by Pierre Guillot and Marion Roman, $124.00HB, $40.99PB.Andrew Arana - 2017 - Metascience 26 (1):131-135.
    Review of Dowek, Gilles, Computation, Proof, Machine, Cambridge University Press, Cambridge, 2015. Translation of Les Métamorphoses du calcul, Le Pommier, Paris, 2007. Translation from the French by Pierre Guillot and Marion Roman.
    Download  
     
    Export citation  
     
    Bookmark  
  20. Evolutionary Psychology: The Burdens of Proof.Elisabeth A. Lloyd - 1999 - Biology and Philosophy 14 (2):211-233.
    I discuss two types of evidential problems with the most widely touted experiments in evolutionary psychology, those performed by Leda Cosmides and interpreted by Cosmides and John Tooby. First, and despite Cosmides and Tooby's claims to the contrary, these experiments don't fulfil the standards of evidence of evolutionary biology. Second Cosmides and Tooby claim to have performed a crucial experiment, and to have eliminated rival approaches. Though they claim that their results are consistent with their theory but contradictory to (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  21. Scientific Proof of the Natural Moral Law.Eric Brown - manuscript
    Introduction to the Scientific Proof of the Natural Moral Law This paper proves that Aquinas has a means of demonstrating and deriving both moral goodness and the natural moral law from human nature alone. Aquinas scientifically proves the existence of the natural moral law as the natural rule of human operations from human nature alone. The distinction between moral goodness and transcendental goodness is affirmed. This provides the intellectual tools to refute the G.E. Moore (Principles of Ethics) attack against (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22.  18
    How to Write a Proof: Patterns of Justification in Strategic Documents for Educational Reform.Jitka Wirthová - 2019 - Teorie Vědy / Theory of Science 41 (2):307-335.
    Writing strategic documents is a major practice of many actors striving to see their educational ideas realised in the curriculum. In these documents, arguments are systematically developed to create the legitimacy of a new educational goal and competence to make claims about it. Through a qualitative analysis of the writing strategies used in these texts, I show how two of the main actors in the Czech educational discourse have developed a proof that a new educational goal is needed. I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Discourse Grammars and the Structure of Mathematical Reasoning III: Two Theories of Proof,.John Corcoran - 1971 - Journal of Structural Learning 3 (3):1-24.
    ABSTRACT This part of the series has a dual purpose. In the first place we will discuss two kinds of theories of proof. The first kind will be called a theory of linear proof. The second has been called a theory of suppositional proof. The term "natural deduction" has often and correctly been used to refer to the second kind of theory, but I shall not do so here because many of the theories so-called (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Is Euclid's Proof of the Infinitude of Prime Numbers Tautological?Zeeshan Mahmud - manuscript
    Euclid's classic proof about the infinitude of prime numbers has been a standard model of reasoning in student textbooks and books of elementary number theory. It has withstood scrutiny for over 2000 years but we shall prove that despite the deceptive appearance of its analytical reasoning it is tautological in nature. We shall argue that the proof is more of an observation about the general property of a prime numbers than an expository style of natural deduction of (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  25.  54
    On An Error In Grove's Proof.Koji Tanaka & Graham Priest - 1997 - Logique Et Analyse 158:215-217.
    Nearly a decade has past since Grove gave a semantics for the AGM postulates. The semantics, called sphere semantics, provided a new perspective of the area of study, and has been widely used in the context of theory or belief change. However, the soundness proof that Grove gives in his paper contains an error. In this note, we will point this out and give two ways of repairing it.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  26. A Theory of Presumption for Everyday Argumentation.David M. Godden & Douglas N. Walton - 2007 - Pragmatics and Cognition 15 (2):313-346.
    The paper considers contemporary models of presumption in terms of their ability to contribute to a working theory of presumption for argumentation. Beginning with the Whatelian model, we consider its contemporary developments and alternatives, as proposed by Sidgwick, Kauffeld, Cronkhite, Rescher, Walton, Freeman, Ullmann-Margalit, and Hansen. Based on these accounts, we present a picture of presumptions characterized by their nature, function, foundation and force. On our account, presumption is a modal status that is attached to a claim and has (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  27. The Theory of Judgment Aggregation: An Introductory Review.Christian List - 2012 - Synthese 187 (1):179-207.
    This paper provides an introductory review of the theory of judgment aggregation. It introduces the paradoxes of majority voting that originally motivated the field, explains several key results on the impossibility of propositionwise judgment aggregation, presents a pedagogical proof of one of those results, discusses escape routes from the impossibility and relates judgment aggregation to some other salient aggregation problems, such as preference aggregation, abstract aggregation and probability aggregation. The present illustrative rather than exhaustive review is intended to (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  28.  88
    A Simple Proof of Born’s Rule for Statistical Interpretation of Quantum Mechanics.Biswaranjan Dikshit - 2017 - Journal for Foundations and Applications of Physics 4 (1):24-30.
    The Born’s rule to interpret the square of wave function as the probability to get a specific value in measurement has been accepted as a postulate in foundations of quantum mechanics. Although there have been so many attempts at deriving this rule theoretically using different approaches such as frequency operator approach, many-world theory, Bayesian probability and envariance, literature shows that arguments in each of these methods are circular. In view of absence of a convincing theoretical proof, recently some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Three Unpublished Manuscripts From 1903: "Functions", "Proof That No Function Takes All Values", "Meaning and Denotation".Bertrand Russell & Kevin C. Klement - 2016 - Russell: The Journal of Bertrand Russell Studies 36 (1):5-44.
    I present and discuss three previously unpublished manuscripts written by Bertrand Russell in 1903, not included with similar manuscripts in Volume 4 of his Collected Papers. One is a one-page list of basic principles for his “functional theory” of May 1903, in which Russell partly anticipated the later Lambda Calculus. The next, catalogued under the title “Proof That No Function Takes All Values”, largely explores the status of Cantor’s proof that there is no greatest cardinal number in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30.  13
    From the Four-Color Theorem to a Generalizing “Four-Letter Theorem”: A Sketch for “Human Proof” and the Philosophical Interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can search for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31.  51
    Wittgenstein, Peirce, and Paradoxes of Mathematical Proof.Sergiy Koshkin - forthcoming - Analytic Philosophy.
    Wittgenstein's paradoxical theses that unproved propositions are meaningless, proofs form new concepts and rules, and contradictions are of limited concern, led to a variety of interpretations, most of them centered on rule-following skepticism. We argue, with the help of C. S. Peirce's distinction between corollarial and theorematic proofs, that his intuitions are better explained by resistance to what we call conceptual omniscience, treating meaning as fixed content specified in advance. We interpret the distinction in the context of modern epistemic logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32.  90
    Axiomatic Theories of Partial Ground I: The Base Theory.Johannes Korbmacher - 2018 - Journal of Philosophical Logic 47 (2):161-191.
    This is part one of a two-part paper, in which we develop an axiomatic theory of the relation of partial ground. The main novelty of the paper is the of use of a binary ground predicate rather than an operator to formalize ground. This allows us to connect theories of partial ground with axiomatic theories of truth. In this part of the paper, we develop an axiomatization of the relation of partial ground over the truths of arithmetic and show (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  33. A Simpler and More Realistic Subjective Decision Theory.Haim Gaifman & Yang Liu - 2018 - Synthese 195 (10):4205--4241.
    In his classic book “the Foundations of Statistics” Savage developed a formal system of rational decision making. The system is based on (i) a set of possible states of the world, (ii) a set of consequences, (iii) a set of acts, which are functions from states to consequences, and (iv) a preference relation over the acts, which represents the preferences of an idealized rational agent. The goal and the culmination of the enterprise is a representation theorem: Any preference relation that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. “Things Unreasonably Compulsory”: A Peircean Challenge to a Humean Theory of Perception, Particularly With Respect to Perceiving Necessary Truths.Catherine Legg - 2014 - Cognitio 15 (1):89-112.
    Much mainstream analytic epistemology is built around a sceptical treatment of modality which descends from Hume. The roots of this scepticism are argued to lie in Hume’s (nominalist) theory of perception, which is excavated, studied and compared with the very different (realist) theory of perception developed by Peirce. It is argued that Peirce’s theory not only enables a considerably more nuanced and effective epistemology, it also (unlike Hume’s theory) does justice to what happens when we appreciate (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  35. Minimal Type Theory (MTT).Pete Olcott - manuscript
    Minimal Type Theory (MTT) is based on type theory in that it is agnostic about Predicate Logic level and expressly disallows the evaluation of incompatible types. It is called Minimal because it has the fewest possible number of fundamental types, and has all of its syntax expressed entirely as the connections in a directed acyclic graph.
    Download  
     
    Export citation  
     
    Bookmark  
  36.  97
    Wittgenstein And Labyrinth Of ‘Actual Infinity’: The Critique Of Transfinite Set Theory.Valérie Lynn Therrien - 2012 - Ithaque 10:43-65.
    In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. A Review Of:“Information Theory, Evolution and the Origin of Life as a Digital Message How Life Resembles a Computer” Second Edition. Hubert P. Yockey, 2005, Cambridge University Press, Cambridge: 400 Pages, Index; Hardcover, US $60.00; ISBN: 0-521-80293-8. [REVIEW]Attila Grandpierre - 2006 - World Futures 62 (5):401-403.
    Information Theory, Evolution and The Origin ofLife: The Origin and Evolution of Life as a Digital Message: How Life Resembles a Computer, Second Edition. Hu- bert P. Yockey, 2005, Cambridge University Press, Cambridge: 400 pages, index; hardcover, US $60.00; ISBN: 0-521-80293-8. The reason that there are principles of biology that cannot be derived from the laws of physics and chemistry lies simply in the fact that the genetic information content of the genome for constructing even the simplest organisms is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. 1983 Review in Mathematical Reviews 83e:03005 Of: Cocchiarella, Nino “The Development of the Theory of Logical Types and the Notion of a Logical Subject in Russell's Early Philosophy: Bertrand Russell's Early Philosophy, Part I”. Synthese 45 (1980), No. 1, 71-115.John Corcoran - 1983 - MATHEMATICAL REVIEWS 83:03005.
    CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
    Download  
     
    Export citation  
     
    Bookmark  
  39. No Time for Quantum Theory.Hans Halvorson - manuscript
    I give a simple proof of the folklore result that quantum mechanics has no time observable.
    Download  
     
    Export citation  
     
    Bookmark  
  40.  98
    Plato's Theory of Forms and Other Papers.John-Michael Kuczynski - 2020 - Madison, WI, USA: College Papers Plus.
    Easy to understand philosophy papers in all areas. Table of contents: Three Short Philosophy Papers on Human Freedom The Paradox of Religions Institutions Different Perspectives on Religious Belief: O’Reilly v. Dawkins. v. James v. Clifford Schopenhauer on Suicide Schopenhauer’s Fractal Conception of Reality Theodore Roszak’s Views on Bicameral Consciousness Philosophy Exam Questions and Answers Locke, Aristotle and Kant on Virtue Logic Lecture for Erika Kant’s Ethics Van Cleve on Epistemic Circularity Plato’s Theory of Forms Can we trust our senses? (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Non-Constructive Procedural Theory of Propositional Problems and the Equivalence of Solutions.Ivo Pezlar - 2019 - In Igor Sedlár & Martin Blicha (eds.), The Logica Yearbook 2018. London: College Publications. pp. 197-210.
    We approach the topic of solution equivalence of propositional problems from the perspective of non-constructive procedural theory of problems based on Transparent Intensional Logic (TIL). The answer we put forward is that two solutions are equivalent if and only if they have equivalent solution concepts. Solution concepts can be understood as a generalization of the notion of proof objects from the Curry-Howard isomorphism.
    Download  
     
    Export citation  
     
    Bookmark  
  42. A Methodological Note on Proving Agreement Between the Elementary Process Theory and Modern Interaction Theories.Cabbolet Marcoen - manuscript
    The Elementary Process Theory (EPT) is a collection of seven elementary process-physical principles that describe the individual processes by which interactions have to take place for repulsive gravity to exist. One of the two main problems of the EPT is that there is no proof that the four fundamental interactions (gravitational, electromagnetic, strong, and weak) as we know them can take place in the elementary processes described by the EPT. This paper sets forth the method by which it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. David Wolpert on Impossibility, Incompleteness, the Liar Paradox, the Limits of Computation, a Non-Quantum Mechanical Uncertainty Principle and the Universe as Computer—the Ultimate Theorem in Turing Machine Theory.Michael Starks - manuscript
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. A Philosophical Rejection of The Big Bang Theory.Khuram Rafique - 2018 - Realism & Physics.
    Scientific inquiry takes onward course from the point where previous scientists had reached. But philosophical analysis initiates from scratch. Philosophy questions everything and chooses starting point for itself after having ruled out all the unsubstantiated and doubtful elements of the topic under study. Secondly, known realities must make sense. If a theory is officially 'counterintuitive', then either it is mere fiction or at the most; a distorted form of truth. This book's analysis is based on the philosophical principle that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45.  83
    Review Of: Garciadiego, A., "Emergence Of...Paradoxes...Set Theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. The Ontology of Knowledge, Logic, Arithmetic, Sets Theory and Geometry (Issue 20201211).Jean-Louis Boucon - 2020 - Published.
    Issue 202011211 includes additional chapter about appearence of the form. At ordinary scales, the ontological model proposed by Ontology of Knowledge (OK) does not call into question the representation of the world elaborated by common sense or science. This is not the world such as it appears to us and as science describes it that is challenged by the OK but the way it appears to the knowing subject and science. In spite of the efforts made to separate scientific reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47.  13
    All Science as Rigorous Science: The Principle of Constructive Mathematizability of Any Theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. The Physics of God and the Quantum Gravity Theory of Everything.James Redford - manuscript
    Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman-DeWitt-Weinberg quantum gravity/Standard Model Theory of Everything (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49.  64
    Wolpert, Chaitin and Wittgenstein on Impossibility, Incompleteness, the Liar Paradox, Theism, the Limits of Computation, a Non-Quantum Mechanical Uncertainty Principle and the Universe as Computer—the Ultimate Theorem in Turing Machine Theory (Revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization -- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 294-299.
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. ‘Risk in a Simple Temporal Framework for Expected Utility Theory and for SKAT, the Stages of Knowledge Ahead Theory’, Risk and Decision Analysis, 2(1), 5-32. Selten Co-Author.Robin Pope & Reinhard Selten - 2010/2011 - Risk and Decision Analysis 2 (1).
    The paper re-expresses arguments against the normative validity of expected utility theory in Robin Pope (1983, 1991a, 1991b, 1985, 1995, 2000, 2001, 2005, 2006, 2007). These concern the neglect of the evolving stages of knowledge ahead (stages of what the future will bring). Such evolution is fundamental to an experience of risk, yet not consistently incorporated even in axiomatised temporal versions of expected utility. Its neglect entails a disregard of emotional and financial effects on well-being before a particular risk (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000