View topic on PhilPapers for more information
Related categories

40 found
Order:
More results on PhilPapers
Visualization in Mathematics
  1. The Epistemology of Mathematical Necessity.Cathy Legg - 2018 - In Peter Chapman, Gem Stapleton, Amirouche Moktefi, Sarah Perez-Kriz & Francesco Bellucci (eds.), Diagrammatic Representation and Inference10th International Conference, Diagrams 2018, Edinburgh, UK, June 18-22, 2018, Proceedings. Berlin: Springer-Verlag. pp. 810-813.
    It seems possible to know that a mathematical claim is necessarily true by inspecting a diagrammatic proof. Yet how does this work, given that human perception seems to just (as Hume assumed) ‘show us particular objects in front of us’? I draw on Peirce’s account of perception to answer this question. Peirce considered mathematics as experimental a science as physics. Drawing on an example, I highlight the existence of a primitive constraint or blocking function in our thinking which we might (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. From Models to Simulations.Franck Varenne - 2018 - London, UK: Routledge.
    This book analyses the impact computerization has had on contemporary science and explains the origins, technical nature and epistemological consequences of the current decisive interplay between technology and science: an intertwining of formalism, computation, data acquisition, data and visualization and how these factors have led to the spread of simulation models since the 1950s. -/- Using historical, comparative and interpretative case studies from a range of disciplines, with a particular emphasis on the case of plant studies, the author shows how (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. A Diagrammatic Representation for Entities and Mereotopological Relations in Ontologies.José M. Parente de Oliveira & Barry Smith - 2017 - In CEUR, vol. 1908.
    In the graphical representation of ontologies, it is customary to use graph theory as the representational background. We claim here that the standard graph-based approach has a number of limitations. We focus here on a problem in the graph-based representation of ontologies in complex domains such as biomedical, engineering and manufacturing: lack of mereotopological representation. Based on such limitation, we proposed a diagrammatic way to represent an entity’s structure and various forms of mereotopological relationships between the entities.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Envisioning Transformations – The Practice of Topology.Silvia De Toffoli & Valeria Giardino - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012--2014. Zurich, Switzerland: Birkhäuser. pp. 25-50.
    The objective of this article is twofold. First, a methodological issue is addressed. It is pointed out that even if philosophers of mathematics have been recently more and more concerned with the practice of mathematics, there is still a need for a sharp definition of what the targets of a philosophy of mathematical practice should be. Three possible objects of inquiry are put forward: (1) the collective dimension of the practice of mathematics; (2) the cognitives capacities requested to the practitioners; (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. An Inquiry Into the Practice of Proving in Low-Dimensional Topology.Silvia De Toffoli & Valeria Giardino - 2015 - In Gabriele Lolli, Giorgio Venturi & Marco Panza (eds.), From Logic to Practice. Zurich, Switzerland: Springer International Publishing. pp. 315-116.
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. ‘Chasing’ The Diagram - The Use of Visualizations in Algebraic Reasoning.Silvia De Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Finding Structure in a Meditative State.Bas Rasmussen - manuscript
    I have been experimenting with meditation for a long time, but just recently I seem to have come across another being in there. It may just be me looking at me, but whatever it is, it is showing me some really interesting arrangements of colored balls. At first, I thought it was just random colors and shapes, but it became very ordered. It was like this being (me?) was trying to talk to me but couldn’t, so was showing me some (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Perceiving Necessity.Catherine Legg & James Franklin - 2017 - Pacific Philosophical Quarterly 98 (3).
    In many diagrams one seems to perceive necessity – one sees not only that something is so, but that it must be so. That conflicts with a certain empiricism largely taken for granted in contemporary philosophy, which believes perception is not capable of such feats. The reason for this belief is often thought well-summarized in Hume's maxim: ‘there are no necessary connections between distinct existences’. It is also thought that even if there were such necessities, perception is too passive or (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Ortega y Gasset on Georg Cantor's Theory of Transfinite Numbers.Lior Rabi - 2016 - Kairos (15):46-70.
    Ortega y Gasset is known for his philosophy of life and his effort to propose an alternative to both realism and idealism. The goal of this article is to focus on an unfamiliar aspect of his thought. The focus will be given to Ortega’s interpretation of the advancements in modern mathematics in general and Cantor’s theory of transfinite numbers in particular. The main argument is that Ortega acknowledged the historical importance of the Cantor’s Set Theory, analyzed it and articulated a (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. “Things Unreasonably Compulsory”: A Peircean Challenge to a Humean Theory of Perception, Particularly With Respect to Perceiving Necessary Truths.Catherine Legg - 2014 - Cognitio 15 (1):89-112.
    Much mainstream analytic epistemology is built around a sceptical treatment of modality which descends from Hume. The roots of this scepticism are argued to lie in Hume’s (nominalist) theory of perception, which is excavated, studied and compared with the very different (realist) theory of perception developed by Peirce. It is argued that Peirce’s theory not only enables a considerably more nuanced and effective epistemology, it also (unlike Hume’s theory) does justice to what happens when we appreciate a proof in mathematics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Forms and Roles of Diagrams in Knot Theory.Silvia De Toffoli & Valeria Giardino - 2014 - Erkenntnis 79 (4):829-842.
    The aim of this article is to explain why knot diagrams are an effective notation in topology. Their cognitive features and epistemic roles will be assessed. First, it will be argued that different interpretations of a figure give rise to different diagrams and as a consequence various levels of representation for knots will be identified. Second, it will be shown that knot diagrams are dynamic by pointing at the moves which are commonly applied to them. For this reason, experts must (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Diagrammatic Reasoning and Modelling in the Imagination: The Secret Weapons of the Scientific Revolution.James Franklin - 2000 - In Guy Freeland & Anthony Corones (eds.), 1543 and All That: Image and Word, Change and Continuity in the Proto-Scientific Revolution. Kluwer Academic Publishers.
    Just before the Scientific Revolution, there was a "Mathematical Revolution", heavily based on geometrical and machine diagrams. The "faculty of imagination" (now called scientific visualization) was developed to allow 3D understanding of planetary motion, human anatomy and the workings of machines. 1543 saw the publication of the heavily geometrical work of Copernicus and Vesalius, as well as the first Italian translation of Euclid.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   16 citations  
Mathematical Cognition, Misc
  1. The Mathematical Facts Of Games Of Chance Between Exposure, Teaching, And Contribution To Cognitive Therapies: Principles Of An Optimal Mathematical Intervention For Responsible Gambling.Catalin Barboianu - 2013 - Romanian Journal of Experimental Applied Psychology 4 (3):25-40.
    On the question of whether gambling behavior can be changed as result of teaching gamblers the mathematics of gambling, past studies have yielded contradictory results, and a clear conclusion has not yet been drawn. In this paper, I bring some criticisms to the empirical studies that tended to answer no to this hypothesis, regarding the sampling and laboratory testing, and I argue that an optimal mathematical scholastic intervention with the objective of preventing problem gambling is possible, by providing the principles (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Extended Mathematical Cognition: External Representations with Non-Derived Content.Karina Vold & Dirk Schlimm - forthcoming - Synthese:1-21.
    Vehicle externalism maintains that the vehicles of our mental representations can be located outside of the head, that is, they need not be instantiated by neurons located inside the brain of the cogniser. But some disagree, insisting that ‘non-derived’, or ‘original’, content is the mark of the cognitive and that only biologically instantiated representational vehicles can have non-derived content, while the contents of all extra-neural representational vehicles are derived and thus lie outside the scope of the cognitive. In this paper (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Intuição e Conceito: A Transformação do Pensamento Matemático de Kant a Bolzano.Humberto de Assis Clímaco - 2014 - Dissertation, Universidade Federal de Goiás, Brazil
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  4. Envisioning Transformations – The Practice of Topology.Silvia De Toffoli & Valeria Giardino - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012--2014. Zurich, Switzerland: Birkhäuser. pp. 25-50.
    The objective of this article is twofold. First, a methodological issue is addressed. It is pointed out that even if philosophers of mathematics have been recently more and more concerned with the practice of mathematics, there is still a need for a sharp definition of what the targets of a philosophy of mathematical practice should be. Three possible objects of inquiry are put forward: (1) the collective dimension of the practice of mathematics; (2) the cognitives capacities requested to the practitioners; (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. An Inquiry Into the Practice of Proving in Low-Dimensional Topology.Silvia De Toffoli & Valeria Giardino - 2015 - In Gabriele Lolli, Giorgio Venturi & Marco Panza (eds.), From Logic to Practice. Zurich, Switzerland: Springer International Publishing. pp. 315-116.
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Improving Algebraic Thinking Skill, Beliefs And Attitude For Mathematics Throught Learning Cycle Based On Beliefs.Widodo Winarso & Toheri - 2017 - Munich University Library.
    In the recent years, problem-solving become a central topic that discussed by educators or researchers in mathematics education. it’s not only as the ability or as a method of teaching. but also, it is a little in reviewing about the components of the support to succeed in problem-solving, such as student's belief and attitude towards mathematics, algebraic thinking skills, resources and teaching materials. In this paper, examines the algebraic thinking skills as a foundation for problem-solving, and learning cycle as a (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
Phenomenology of Mathematics
  1. Mathematician's Call for Interdisciplinary Research Effort.Catalin Barboianu - 2013 - International Gambling Studies 13 (3):430-433.
    The article addresses the necessity of increasing the role of mathematics in the psychological intervention in problem gambling, including cognitive therapies. It also calls for interdisciplinary research with the direct contribution of mathematics. The current contributions and limitations of the role of mathematics are analysed with an eye toward the professional profiles of the researchers. An enhanced collaboration between these two disciplines is suggested and predicted.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Mathematical Models of Games of Chance: Epistemological Taxonomy and Potential in Problem-Gambling Research.Catalin Barboianu - 2015 - UNLV Gaming Research and Review Journal 19 (1):17-30.
    Games of chance are developed in their physical consumer-ready form on the basis of mathematical models, which stand as the premises of their existence and represent their physical processes. There is a prevalence of statistical and probabilistic models in the interest of all parties involved in the study of gambling – researchers, game producers and operators, and players – while functional models are of interest more to math-inclined players than problem-gambling researchers. In this paper I present a structural analysis of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. On the Embodiment of Space and Time: Triadic Logic, Quantum Indeterminacy and the Metaphysics of Relativity.Timothy M. Rogers - manuscript
    Triadic (systemical) logic can provide an interpretive paradigm for understanding how quantum indeterminacy is a consequence of the formal nature of light in relativity theory. This interpretive paradigm is coherent and constitutionally open to ethical and theological interests. -/- In this statement: -/- (1) Triadic logic refers to a formal pattern that describes systemic (collaborative) processes involving signs that mediate between interiority (individuation) and exteriority (generalized worldview or Umwelt). It is also called systemical logic or the logic of relatives. The (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. A Phenomenological Study of the Lived Experiences of Non-Traditional Students in Higher Level Mathematics at Midwest University.Brian Bush Wood - 2017 - Dissertation, Keiser Univeristy
    The current literature suggests that the use of Husserl’s and Heidegger’s approaches to phenomenology is still practiced. However, a clear gap exists on how these approaches are viewed in the context of constructivism, particularly with non-traditional female students’ study of mathematics. The dissertation attempts to clarify the constructivist role of phenomenology within a transcendental framework from the first-hand meanings associated with the expression of the relevancy as expressed by interviews of six nontraditional female students who have studied undergraduate mathematics. Comparisons (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Logos and its Footnotes.Paul Bali - manuscript
    on ontologs, or words that are the thing they name; a volitional solution to Zeno's Line and Arrow paradoxes; on Sokal as unintentional non-parody; and more.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. A Case Study of Misconceptions Students in the Learning of Mathematics; The Concept Limit Function in High School.Widodo Winarso & Toheri Toheri - 2017 - Jurnal Riset Pendidikan Matematika 4 (1): 120-127.
    This study aims to find out how high the level and trends of student misconceptions experienced by high school students in Indonesia. The subject of research that is a class XI student of Natural Science (IPA) SMA Negeri 1 Anjatan with the subject matter limit function. Forms of research used in this study is a qualitative research, with a strategy that is descriptive qualitative research. The data analysis focused on the results of the students' answers on the test essay subject (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. On the History of Differentiable Manifolds.Giuseppe Iurato - 2012 - International Mathematical Forum 7 (10):477-514.
    We discuss central aspects of history of the concept of an affine differentiable manifold, as a proposal confirming the need for using some quantitative methods (drawn from elementary Model Theory) in Mathematical Historiography. In particular, we prove that this geometric structure is a syntactic rigid designator in the sense of Kripke-Putnam.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Mathematical Symbols as Epistemic Actions.De Cruz Helen & De Smedt Johan - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols are not only used to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  9. Objectivity Sans Intelligibility. Hermann Weyl's Symbolic Constructivism.Iulian D. Toader - 2011 - Dissertation, University of Notre Dame
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
Numerical Cognition
  1. What Frege Asked Alex the Parrot: Inferentialism, Number Concepts, and Animal Cognition.Erik Nelson - forthcoming - Philosophical Psychology.
    While there has been significant philosophical debate on whether nonlinguistic animals can possess conceptual capabilities, less time has been devoted to considering 'talking' animals, such as parrots. When they are discussed, their capabilities are often downplayed as mere mimicry. The most explicit philosophical example of this can be seen in Brandom's frequent comparisons of parrots and thermostats. Brandom argues that because parrots (like thermostats) cannot grasp the implicit inferential connections between concepts, their vocal articulations do not actually have any conceptual (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. The Olympic Medals Ranks, Lexicographic Ordering and Numerical Infinities.Yaroslav Sergeyev - 2015 - The Mathematical Intelligencer 37 (2):4-8.
    Several ways used to rank countries with respect to medals won during Olympic Games are discussed. In particular, it is shown that the unofficial rank used by the Olympic Committee is the only rank that does not allow one to use a numerical counter for ranking – this rank uses the lexicographic ordering to rank countries: one gold medal is more precious than any number of silver medals and one silver medal is more precious than any number of bronze medals. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. The Exact (Up to Infinitesimals) Infinite Perimeter of the Koch Snowflake and its Finite Area.Yaroslav Sergeyev - 2016 - Communications in Nonlinear Science and Numerical Simulation 31 (1-3):21–29.
    The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Numerical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer patented in USA and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. The Difficulty of Prime Factorization is a Consequence of the Positional Numeral System.Yaroslav Sergeyev - 2016 - International Journal of Unconventional Computing 12 (5-6):453–463.
    The importance of the prime factorization problem is very well known (e.g., many security protocols are based on the impossibility of a fast factorization of integers on traditional computers). It is necessary from a number k to establish two primes a and b giving k = a · b. Usually, k is written in a positional numeral system. However, there exists a variety of numeral systems that can be used to represent numbers. Is it true that the prime factorization is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Numerical Infinities and Infinitesimals: Methodology, Applications, and Repercussions on Two Hilbert Problems.Yaroslav Sergeyev - 2017 - EMS Surveys in Mathematical Sciences 4 (2):219–320.
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Testimony and Children’s Acquisition of Number Concepts.Helen De Cruz - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge. Approaches from Philosophy, Psychology and Cognitive Science. London, UK: pp. 172-186.
    An enduring puzzle in philosophy and developmental psychology is how young children acquire number concepts, in particular the concept of natural number. Most solutions to this problem conceptualize young learners as lone mathematicians who individually reconstruct the successor function and other sophisticated mathematical ideas. In this chapter, I argue for a crucial role of testimony in children’s acquisition of number concepts, both in the transfer of propositional knowledge (e.g., the cardinality concept), and in knowledge-how (e.g., the counting routine).
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Infants, Animals, and the Origins of Number.Eric Margolis - 2017 - Behavioral and Brain Sciences 40.
    Where do human numerical abilities come from? This article is a commentary on Leibovich et al.’s “From 'sense of number' to 'sense of magnitude' —The role of continuous magnitudes in numerical cognition”. Leibovich et al. argue against nativist views of numerical development by noting limitations in newborns’ vision and limitations regarding newborns’ ability to individuate objects. I argue that these considerations do not undermine competing nativist views and that Leibovich et al.'s model itself presupposes that infant learners have numerical representations.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Numerical Cognition and Mathematical Realism.Helen De Cruz - 2016 - Philosophers' Imprint 16.
    Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that they prima (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. The Encoding of Spatial Information During Small-Set Enumeration.Harry Haladjian, Manish Singh, Zenon Pylyshyn & Randy Gallistel - 2010 - In S. Ohlsson & R. Catrambone (eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society. Cognitive Science Society.
    Using a novel enumeration task, we examined the encoding of spatial information during subitizing. Observers were shown masked presentations of randomly-placed discs on a screen and were required to mark the perceived locations of these discs on a subsequent blank screen. This provided a measure of recall for object locations and an indirect measure of display numerosity. Observers were tested on three stimulus durations and eight numerosities. Enumeration performance was high for displays containing up to six discs—a higher subitizing range (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Education Enhances the Acuity of the Nonverbal Approximate Number System.Manuela Piazza, Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2013 - Psychological Science 24 (4):p.
    All humans share a universal, evolutionarily ancient approximate number system (ANS) that estimates and combines the numbers of objects in sets with ratio-limited precision. Interindividual variability in the acuity of the ANS correlates with mathematical achievement, but the causes of this correlation have never been established. We acquired psychophysical measures of ANS acuity in child and adult members of an indigene group in the Amazon, the Mundurucú, who have a very restricted numerical lexicon and highly variable access to mathematics education. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. Non-Symbolic Halving in an Amazonian Indigene Group.Koleen McCrink, Elizabeth Spelke, Stanislas Dehaene & Pierre Pica - 2013 - Developmental Science 16 (3):451-462.
    Much research supports the existence of an Approximate Number System (ANS) that is recruited by infants, children, adults, and non-human animals to generate coarse, non-symbolic representations of number. This system supports simple arithmetic operations such as addition, subtraction, and ordering of amounts. The current study tests whether an intuition of a more complex calculation, division, exists in an indigene group in the Amazon, the Mundurucu, whose language includes no words for large numbers. Mundurucu children were presented with a video event (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Numerical Architecture.Eric Mandelbaum - 2013 - Topics in Cognitive Science 5 (1):367-386.
    The idea that there is a “Number Sense” (Dehaene, 1997) or “Core Knowledge” of number ensconced in a modular processing system (Carey, 2009) has gained popularity as the study of numerical cognition has matured. However, these claims are generally made with little, if any, detailed examination of which modular properties are instantiated in numerical processing. In this article, I aim to rectify this situation by detailing the modular properties on display in numerical cognitive processing. In the process, I review literature (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.
    A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique framework. The (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation