Results for ' axiom of transfinite induction'

944 found
Order:
  1. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Problem of the Direct Quantum-Information Transformation of Chemical Substance.Vasil Penchev - 2020 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 3 (26):1-15.
    Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. A reductionist reading of Husserl’s phenomenology by Mach’s descriptivism and phenomenalism.Vasil Penchev - 2020 - Continental Philosophy eJournal 13 (9):1-4.
    Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction. A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
    The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave function describing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Inductive Support.Georg J. W. Dorn - 1991 - In Gerhard Schurz & Georg Dorn (eds.), Advances in Scientific Philosophy. Essays in Honour of Paul Weingartner on the Occasion of the 60th Anniversary of his Birthday. Rodopi. pp. 345.
    I set up two axiomatic theories of inductive support within the framework of Kolmogorovian probability theory. I call these theories ‘Popperian theories of inductive support’ because I think that their specific axioms express the core meaning of the word ‘inductive support’ as used by Popper (and, presumably, by many others, including some inductivists). As is to be expected from Popperian theories of inductive support, the main theorem of each of them is an anti-induction theorem, the stronger one of them (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Fermat’s Last Theorem Proved by Induction (and Accompanied by a Philosophical Comment).Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (8):1-8.
    A proof of Fermat’s last theorem is demonstrated. It is very brief, simple, elementary, and absolutely arithmetical. The necessary premises for the proof are only: the three definitive properties of the relation of equality (identity, symmetry, and transitivity), modus tollens, axiom of induction, the proof of Fermat’s last theorem in the case of n = 3 as well as the premises necessary for the formulation of the theorem itself. It involves a modification of Fermat’s approach of infinite descent. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Induction: Shadows and Light.Mark Andrews -
    Inductive conclusions rest upon the Uniformity Principle, that similar events lead to similar results. The principle derives from three fundamental axioms: Existence, that the observed object has an existence independent of the observer; Identity, that the objects observed, and the relationships between them, are what they are; and Continuity, that the objects observed, and the relationships between them, will continue unchanged absent a sufficient reason. Together, these axioms create a statement sufficiently precise to be falsified. -/- Simple enumeration of successful (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. A defense of Isaacson’s thesis, or how to make sense of the boundaries of finite mathematics.Pablo Dopico - 2024 - Synthese 203 (2):1-22.
    Daniel Isaacson has advanced an epistemic notion of arithmetical truth according to which the latter is the set of truths that we grasp on the basis of our understanding of the structure of natural numbers alone. Isaacson’s thesis is then the claim that Peano Arithmetic (PA) is the theory of finite mathematics, in the sense that it proves all and only arithmetical truths thus understood. In this paper, we raise a challenge for the thesis and show how it can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Suspension of judgment, non-additivity, and additivity of possibilities.Aldo Filomeno - forthcoming - Acta Analytica:1-22.
    In situations where we ignore everything but the space of possibilities, we ought to suspend judgment—that is, remain agnostic—about which of these possibilities is the case. This means that we cannot sum our degrees of belief in different possibilities, something that has been formalized as an axiom of non-additivity. Consistent with this way of representing our ignorance, I defend a doxastic norm that recommends that we should nevertheless follow a certain additivity of possibilities: even if we cannot sum degrees (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  17. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Nothing Infinite: A Summary of Forever Finite.Kip Sewell - 2023 - Rond Media Library.
    In 'Forever Finite: The Case Against Infinity' (Rond Books, 2023), the author argues that, despite its cultural popularity, infinity is not a logical concept and consequently cannot be a property of anything that exists in the real world. This article summarizes the main points in 'Forever Finite', including its overview of what debunking infinity entails for conceptual thought in philosophy, mathematics, science, cosmology, and theology.
    Download  
     
    Export citation  
     
    Bookmark  
  19. God, Logic, and Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-10.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time is what generates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. The temporal foundation of the principle of maximal entropy.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (11):1-3.
    The principle of maximal entropy (further abbreviated as “MaxEnt”) can be founded on the formal mechanism, in which future transforms into past by the mediation of present. This allows of MaxEnt to be investigated by the theory of quantum information. MaxEnt can be considered as an inductive analog or generalization of “Occam’s razor”. It depends crucially on choice and thus on information just as all inductive methods of reasoning. The essence shared by Occam’s razor and MaxEnt is for the relevant (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Matter as Information. Quantum Information as Matter.Vasil Penchev - 2016 - Nodi. Collana di Storia Della Filosofia 2016 (2):127-138.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time is what generates (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Chance and the Continuum Hypothesis.Daniel Hoek - 2020 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  23. Z badań nad teorią zdań odrzuconych.Urszula Wybraniec-Skardowska & Grzegorz Bryll - 1969 - Opole, Poland: Wydawnictwo Wyższej Szkoły Pedagogicznej w Opolu, Zeszyty Naukowe, Seria B: Studia i Monografie nr 22. Edited by Urszula Wybraniec-Skardowska & Grzegorz Bryll.
    The monograph contains three works on research on the concept of a rejected sentence. This research, conducted under the supervision of Prof. Jerzy Słupecki by U. Wybraniec-Skardowska (1) "Theory of rejected sentences" and G. Bryll (2) "Some supplements of theory of rejected sentences" and (3) "Logical relations between sentences of empirical sciences" led to the construction of a theory rejected sentences and made it possible to formalize certain issues in the methodology of empirical sciences. The concept of a rejected sentence (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Schemata: The concept of schema in the history of logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  25. From Traditional Set Theory – that of Cantor, Hilbert , Gödel, Cohen – to Its Necessary Quantum Extension.Edward G. Belaga - manuscript
    The original purpose of the present study, 2011, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
    Download  
     
    Export citation  
     
    Bookmark  
  26. Consistency proof of a fragment of pv with substitution in bounded arithmetic.Yoriyuki Yamagata - 2018 - Journal of Symbolic Logic 83 (3):1063-1090.
    This paper presents proof that Buss's S22 can prove the consistency of a fragment of Cook and Urquhart's PV from which induction has been removed but substitution has been retained. This result improves Beckmann's result, which proves the consistency of such a system without substitution in bounded arithmetic S12. Our proof relies on the notion of "computation" of the terms of PV. In our work, we first prove that, in the system under consideration, if an equation is proved and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. (1 other version)God and the Numbers.Paul Studtmann - 2023 - Journal of Philosophy 120 (12):641-655.
    According to Augustine, abstract objects are ideas in the mind of God. Because numbers are a type of abstract object, it would follow that numbers are ideas in the mind of God. Call such a view the “Augustinian View of Numbers” (AVN). In this paper, I present a formal theory for AVN. The theory stems from the symmetry conception of God as it appears in Studtmann (2021). I show that the theory in Studtmann’s paper can interpret the axioms of Peano (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Fast-Collapsing Theories.Samuel A. Alexander - 2013 - Studia Logica (1):1-21.
    Reinhardt’s conjecture, a formalization of the statement that a truthful knowing machine can know its own truthfulness and mechanicalness, was proved by Carlson using sophisticated structural results about the ordinals and transfinite induction just beyond the first epsilon number. We prove a weaker version of the conjecture, by elementary methods and transfinite induction up to a smaller ordinal.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. A mathematically derived definitional/semantical theory of truth.Seppo Heikkilä - 2018 - Nonlinear Studies 25 (1):173-189.
    Ordinary and transfinite recursion and induction and ZF set theory are used to construct from a fully interpreted object language and from an extra formula a new language. It is fully interpreted under a suitably defined interpretation. This interpretation is equivalent to the interpretation by meanings of sentences if the object language is so interpreted. The added formula provides a truth predicate for the constructed language. The so obtained theory of truth satisfies the norms presented in Hannes Leitgeb's (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. The construction of transfinite equivalence algorithms.Han Geurdes - manuscript
    Context: Consistency of mathematical constructions in numerical analysis and the application of computerized proofs in the light of the occurrence of numerical chaos in simple systems. Purpose: To show that a computer in general and a numerical analysis in particular can add its own peculiarities to the subject under study. Hence the need of thorough theoretical studies on chaos in numerical simulation. Hence, a questioning of what e.g. a numerical disproof of a theorem in physics or a prediction in numerical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Qualitative Axioms of Uncertainty as a Foundation for Probability and Decision-Making.Patrick Suppes - 2016 - Minds and Machines 26 (2):185-202.
    Although the concept of uncertainty is as old as Epicurus’s writings, and an excellent quantitative theory, with entropy as the measure of uncertainty having been developed in recent times, there has been little exploration of the qualitative theory. The purpose of the present paper is to give a qualitative axiomatization of uncertainty, in the spirit of the many studies of qualitative comparative probability. The qualitative axioms are fundamentally about the uncertainty of a partition of the probability space of events. Of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. The Axiom of choice in Quine's New Foundations for Mathematical Logic.Ernst P. Specker - 1954 - Journal of Symbolic Logic 19 (2):127-128.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  33. Sufficient Reason & The Axiom of Choice, an Ontological Proof for One Unique Transcendental God for Every Possible World.Assem Hamdy - manuscript
    Chains of causes appear when the existence of God is discussed. It is claimed by some that these chains must be finite and terminated by God. But these chains seem endless through our knowledge search. This endlessness for the physical reasons for any world event expresses the greatness and complexity of God’s creation and so the transcendence of God. So, only we can put our hands on physical reasons in an endless forage for knowledge. Yet, the endlessness of the physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. The axiom of infinity.Bertrand Russell - 1903 - Hibbert Journal 2:809-812.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. Eliminating the ordinals from proofs. An analysis of transfinite recursion.Edoardo Rivello - 2014 - In Proceedings of the Conference "Philosophy, Mathematics, Linguistics. Aspects of Interaction", St. Petersburg, April 21-25, 2014. pp. 174-184.
    Transfinite ordinal numbers enter mathematical practice mainly via the method of definition by transfinite recursion. Outside of axiomatic set theory, there is a significant mathematical tradition in works recasting proofs by transfinite recursion in other terms, mostly with the intention of eliminating the ordinals from the proofs. Leaving aside the different motivations which lead each specific case, we investigate the mathematics of this action of proof transforming and we address the problem of formalising the philosophical notion of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. The axiom of infinity: A new presupposition of thought.Cassius Jackson Keyser - 1903 - Hibbert Journal 2:532-552.
    Download  
     
    Export citation  
     
    Bookmark  
  37. The Axiom of Infinity.Cassius Jackson Keyser - 1904 - Hibbert Journal 3:380-383.
    Download  
     
    Export citation  
     
    Bookmark  
  38. The Problem of Piecemeal Induction.Conor Mayo-Wilson - 2011 - Philosophy of Science 78 (5):864-874.
    It is common to assume that the problem of induction arises only because of small sample sizes or unreliable data. In this paper, I argue that the piecemeal collection of data can also lead to underdetermination of theories by evidence, even if arbitrarily large amounts of completely reliable experimental and observational data are collected. Specifically, I focus on the construction of causal theories from the results of many studies (perhaps hundreds), including randomized controlled trials and observational studies, where the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  39. Ortega y Gasset on Georg Cantor’s Theory of Transfinite Numbers.Lior Rabi - 2016 - Kairos (15):46-70.
    Ortega y Gasset is known for his philosophy of life and his effort to propose an alternative to both realism and idealism. The goal of this article is to focus on an unfamiliar aspect of his thought. The focus will be given to Ortega’s interpretation of the advancements in modern mathematics in general and Cantor’s theory of transfinite numbers in particular. The main argument is that Ortega acknowledged the historical importance of the Cantor’s Set Theory, analyzed it and articulated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Russell’s method of analysis and the axioms of mathematics.Lydia Patton - 2017 - In Sandra Lapointe & Christopher Pincock (eds.), Innovations in the History of Analytical Philosophy. London, United Kingdom: Palgrave-Macmillan. pp. 105-126.
    In the early 1900s, Russell began to recognize that he, and many other mathematicians, had been using assertions like the Axiom of Choice implicitly, and without explicitly proving them. In working with the Axioms of Choice, Infinity, and Reducibility, and his and Whitehead’s Multiplicative Axiom, Russell came to take the position that some axioms are necessary to recovering certain results of mathematics, but may not be proven to be true absolutely. The essay traces historical roots of, and motivations (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. Non-Archimedean Preferences Over Countable Lotteries.Jeffrey Sanford Russell - 2020 - Journal of Mathematical Economics 88 (May 2020):180-186.
    We prove a representation theorem for preference relations over countably infinite lotteries that satisfy a generalized form of the Independence axiom, without assuming Continuity. The representing space consists of lexicographically ordered transfinite sequences of bounded real numbers. This result is generalized to preference orders on abstract superconvex spaces.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  42. Can redescriptions of outcomes salvage the axioms of decision theory?Jean Baccelli & Philippe Mongin - 2021 - Philosophical Studies 179 (5):1621-1648.
    The basic axioms or formal conditions of decision theory, especially the ordering condition put on preferences and the axioms underlying the expected utility formula, are subject to a number of counter-examples, some of which can be endowed with normative value and thus fall within the ambit of a philosophical reflection on practical rationality. Against such counter-examples, a defensive strategy has been developed which consists in redescribing the outcomes of the available options in such a way that the threatened axioms or (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Hume’s Principle, Bad Company, and the Axiom of Choice.Sam Roberts & Stewart Shapiro - 2023 - Review of Symbolic Logic 16 (4):1158-1176.
    One prominent criticism of the abstractionist program is the so-called Bad Company objection. The complaint is that abstraction principles cannot in general be a legitimate way to introduce mathematical theories, since some of them are inconsistent. The most notorious example, of course, is Frege’s Basic Law V. A common response to the objection suggests that an abstraction principle can be used to legitimately introduce a mathematical theory precisely when it is stable: when it can be made true on all sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. (2 other versions)Societies differ in how they handle the same facts: an axiom of social anthropology?Terence Rajivan Edward - manuscript
    This paper challenges Marilyn Strathern’s claim that it is, or was, an axiom of social anthropology that societies differ in how they handle the same facts. I present a set of foundational commitments for conducting social anthropology which leave the truth of the proposition as an empirical question of the discipline.
    Download  
     
    Export citation  
     
    Bookmark  
  45. Regula Socratis: The Rediscovery of Ancient Induction in Early Modern England.John P. McCaskey - 2006 - Dissertation, Stanford University
    A revisionist account of how philosophical induction was conceived in the ancient world and how that conception was transmitted, altered, and then rediscovered. I show how philosophers of late antiquity and then the medieval period came step-by-step to seriously misunderstand Aristotle’s view of induction and how that mistake was reversed by humanists in the Renaissance and then especially by Francis Bacon. I show, naturally enough then, that in early modern science, Baconians were Aristotelians and Aristotelians were Baconians.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. Human Induction in Machine Learning: A Survey of the Nexus.Petr Spelda & Vit Stritecky - 2021 - ACM Computing Surveys 54 (3):1-18.
    As our epistemic ambitions grow, the common and scientific endeavours are becoming increasingly dependent on Machine Learning (ML). The field rests on a single experimental paradigm, which consists of splitting the available data into a training and testing set and using the latter to measure how well the trained ML model generalises to unseen samples. If the model reaches acceptable accuracy, an a posteriori contract comes into effect between humans and the model, supposedly allowing its deployment to target environments. Yet (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  38
    Russell's-Paradox-Intercepting Corollary to the Axiom of Extensionality.Morteza Shahram - manuscript
    Object x being a member of itself or not and x being a member of R or not constitute two vastly different concepts. This paper attempts to locate the reflection of such an utter difference within the formal structure of the axiom of extensionality. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  49. Logically possible machines.Eric Steinhart - 2002 - Minds and Machines 12 (2):259-280.
    I use modal logic and transfinite set-theory to define metaphysical foundations for a general theory of computation. A possible universe is a certain kind of situation; a situation is a set of facts. An algorithm is a certain kind of inductively defined property. A machine is a series of situations that instantiates an algorithm in a certain way. There are finite as well as transfinite algorithms and machines of any degree of complexity (e.g., Turing and super-Turing machines and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  50. Wittgenstein And Labyrinth Of ‘Actual Infinity’: The Critique Of Transfinite Set Theory.Valérie Lynn Therrien - 2012 - Ithaque 10:43-65.
    In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the concept (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 944