Results for 'Cantor's theorem'

957 found
Order:
  1. Russell, His Paradoxes, and Cantor's Theorem: Part I.Kevin C. Klement - 2010 - Philosophy Compass 5 (1):16-28.
    In these articles, I describe Cantor’s power-class theorem, as well as a number of logical and philosophical paradoxes that stem from it, many of which were discovered or considered (implicitly or explicitly) in Bertrand Russell’s work. These include Russell’s paradox of the class of all classes not members of themselves, as well as others involving properties, propositions, descriptive senses, class-intensions, and equivalence classes of coextensional properties. Part I focuses on Cantor’s theorem, its proof, how it can be used (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  2. Composition as Identity and Plural Cantor's Theorem.Einar Duenger Bohn - 2016 - Logic and Logical Philosophy 25 (3).
    I argue that Composition as Identity blocks the plural version of Cantor's Theorem, and that therefore the plural version of Cantor's Theorem can no longer be uncritically appealed to. As an example, I show how this result blocks a recent argument by Hawthorne and Uzquiano.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Russell, His Paradoxes, and Cantor's Theorem: Part II.Kevin C. Klement - 2010 - Philosophy Compass 5 (1):29-41.
    Sequel to Part I. In these articles, I describe Cantor’s power-class theorem, as well as a number of logical and philosophical paradoxes that stem from it, many of which were discovered or considered (implicitly or explicitly) in Bertrand Russell’s work. These include Russell’s paradox of the class of all classes not members of themselves, as well as others involving properties, propositions, descriptive senses, class-intensions and equivalence classes of coextensional properties. Part II addresses Russell’s own various attempts to solve these (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  4. Frege's Basic Law V and Cantor's Theorem.Manuel Bremer - manuscript
    The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). These (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Georg Cantor’s Ordinals, Absolute Infinity & Transparent Proof of the Well-Ordering Theorem.Hermann G. W. Burchard - 2019 - Philosophy Study 9 (8).
    Georg Cantor's absolute infinity, the paradoxical Burali-Forti class Ω of all ordinals, is a monstrous non-entity for which being called a "class" is an undeserved dignity. This must be the ultimate vexation for mathematical philosophers who hold on to some residual sense of realism in set theory. By careful use of Ω, we can rescue Georg Cantor's 1899 "proof" sketch of the Well-Ordering Theorem––being generous, considering his declining health. We take the contrapositive of Cantor's suggestion and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Cantor’s Proof in the Full Definable Universe.Laureano Luna & William Taylor - 2010 - Australasian Journal of Logic 9:10-25.
    Cantor’s proof that the powerset of the set of all natural numbers is uncountable yields a version of Richard’s paradox when restricted to the full definable universe, that is, to the universe containing all objects that can be defined not just in one formal language but by means of the full expressive power of natural language: this universe seems to be countable on one account and uncountable on another. We argue that the claim that definitional contexts impose restrictions on the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7. Wittgenstein Didn’t Agree with Gödel - A.P. Bird - Cantor’s Paradise.A. P. Bird - 2021 - Cantor's Paradise (00):00.
    In 1956, a few writings of Wittgenstein that he didn't publish in his lifetime were revealed to the public. These writings were gathered in the book Remarks on the Foundations of Mathematics (1956). There, we can see that Wittgenstein had some discontentment with the way philosophers, logicians, and mathematicians were thinking about paradoxes, and he even registered a few polemic reasons to not accept Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  8. Size and Function.Bruno Whittle - 2018 - Erkenntnis 83 (4):853-873.
    Are there different sizes of infinity? That is, are there infinite sets of different sizes? This is one of the most natural questions that one can ask about the infinite. But it is of course generally taken to be settled by mathematical results, such as Cantor’s theorem, to the effect that there are infinite sets without bijections between them. These results settle the question, given an almost universally accepted principle relating size to the existence of functions. The principle is: (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  9. Wittgenstein And Labyrinth Of ‘Actual Infinity’: The Critique Of Transfinite Set Theory.Valérie Lynn Therrien - 2012 - Ithaque 10:43-65.
    In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the concept (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Some results on ordered structures in toposes.Luís Sbardellini & Marcelo Coniglio - 2006 - Reports on Mathematical Logic:181-198.
    A topos version of Cantor’s back and forth theorem is established and used to prove that the ordered structure of the rational numbers (Q, <) is homogeneous in any topos with natural numbers object. The notion of effective homogeneity is introduced, and it is shown that (Q, <) is a minimal effectively homogeneous structure, that is, it can be embedded in every other effectively homogeneous ordered structure.
    Download  
     
    Export citation  
     
    Bookmark  
  11. Numerical infinities applied for studying Riemann series theorem and Ramanujan summation.Yaroslav Sergeyev - 2018 - In AIP Conference Proceedings 1978. AIP. pp. 020004.
    A computational methodology called Grossone Infinity Computing introduced with the intention to allow one to work with infinities and infinitesimals numerically has been applied recently to a number of problems in numerical mathematics (optimization, numerical differentiation, numerical algorithms for solving ODEs, etc.). The possibility to use a specially developed computational device called the Infinity Computer (patented in USA and EU) for working with infinite and infinitesimal numbers numerically gives an additional advantage to this approach in comparison with traditional methodologies studying (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the limits of computation, theism and the universe as computer-the ultimate Turing Theorem.Michael Starks - 2017 - Philosophy, Human Nature and the Collapse of Civilization Michael Starks 3rd Ed. (2017).
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. David Wolpert on impossibility, incompleteness, the liar paradox, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory.Michael Starks - manuscript
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. (1 other version)Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 294-299.
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Identification of antinomies by complementary analysis.Andrzej Burkiet - manuscript
    It has been noticed that self-referential, ambiguous definitional formulas are accompanied by complementary self-referential antinomy formulas, which gives rise to contradictions. This made it possible to re-examine ancient antinomies and Cantor’s Diagonal Argument (CDA), as well as the method of nested intervals, which is the basis for evaluating the existence of uncountable sets. Using Georg Cantor’s remark that every real number can be represented as an infinite digital expansion (usually decimal or binary), a simplified system for verifying the definitions of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Does Frege have too many thoughts? A Cantorian problem revisited.Kevin C. Klement - 2005 - Analysis 65 (1):45–49.
    This paper continues a thread in Analysis begun by Adam Rieger and Nicholas Denyer. Rieger argued that Frege’s theory of thoughts violates Cantor’s theorem by postulating as many thoughts as concepts. Denyer countered that Rieger’s construction could not show that the thoughts generated are always distinct for distinct concepts. By focusing on universally quantified thoughts, rather than thoughts that attribute a concept to an individual, I give a different construction that avoids Denyer’s problem. I also note that this problem (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  18. Minimal Sartre: Diagonalization and Pure Reflection.John Bova - 2012 - Open Philosophy 1:360-379.
    These remarks take up the reflexive problematics of Being and Nothingness and related texts from a metalogical perspective. A mutually illuminating translation is posited between, on the one hand, Sartre’s theory of pure reflection, the linchpin of the works of Sartre’s early period and the site of their greatest difficulties, and, on the other hand, the quasi-formalism of diagonalization, the engine of the classical theorems of Cantor, Gödel, Tarski, Turing, etc. Surprisingly, the dialectic of mathematical logic from its inception through (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Countabilism and Maximality Principles.Neil Barton & Sy-David Friedman - manuscript
    It is standard in set theory to assume that Cantor's Theorem establishes that the continuum is an uncountable set. A challenge for this position comes from the observation that through forcing one can collapse any cardinal to the countable and that the continuum can be made arbitrarily large. In this paper, we present a different take on the relationship between Cantor's Theorem and extensions of universes, arguing that they can be seen as showing that every set (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Notes on the Model Theory of DeMorgan Logics.Thomas Macaulay Ferguson - 2012 - Notre Dame Journal of Formal Logic 53 (1):113-132.
    We here make preliminary investigations into the model theory of DeMorgan logics. We demonstrate that Łoś's Theorem holds with respect to these logics and make some remarks about standard model-theoretic properties in such contexts. More concretely, as a case study we examine the fate of Cantor's Theorem that the classical theory of dense linear orderings without endpoints is $\aleph_{0}$-categorical, and we show that the taking of ultraproducts commutes with respect to previously established methods of constructing nonclassical structures, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  21. Diagonal arguments and fixed points.Saeed Salehi - 2017 - Bulletin of the Iranian Mathematical Society 43 (5):1073-1088.
    ‎A universal schema for diagonalization was popularized by N. S‎. ‎Yanofsky (2003)‎, ‎based on a pioneering work of F.W‎. ‎Lawvere (1969)‎, ‎in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function‎. ‎It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema‎. ‎Here‎, ‎we fit more theorems in the universal‎ ‎schema of diagonalization‎, ‎such as Euclid's proof for the infinitude of the primes and new proofs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Wide Sets, ZFCU, and the Iterative Conception.Christopher Menzel - 2014 - Journal of Philosophy 111 (2):57-83.
    The iterative conception of set is typically considered to provide the intuitive underpinnings for ZFCU (ZFC+Urelements). It is an easy theorem of ZFCU that all sets have a definite cardinality. But the iterative conception seems to be entirely consistent with the existence of “wide” sets, sets (of, in particular, urelements) that are larger than any cardinal. This paper diagnoses the source of the apparent disconnect here and proposes modifications of the Replacement and Powerset axioms so as to allow for (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  23. Wolpert, Chaitin et Wittgenstein sur l’impossibilité, l’incomplétude, le paradoxe menteur, le théisme, les limites du calcul, un principe d’incertitude mécanique non quantique et l’univers comme ordinateur, le théorème ultime dans Turing Machine Theory (révisé 2019).Michael Richard Starks - 2020 - In Bienvenue en Enfer sur Terre : Bébés, Changement climatique, Bitcoin, Cartels, Chine, Démocratie, Diversité, Dysgénique, Égalité, Pirates informatiques, Droits de l'homme, Islam, Libéralisme, Prospérité, Le Web, Chaos, Famine, Maladie, Violence, Intellige. Las Vegas, NV USA: Reality Press. pp. 185-189.
    J’ai lu de nombreuses discussions récentes sur les limites du calcul et de l’univers en tant qu’ordinateur, dans l’espoir de trouver quelques commentaires sur le travail étonnant du physicien polymathe et théoricien de la décision David Wolpert, mais n’ont pas trouvé une seule citation et je présente donc ce résumé très bref. Wolpert s’est avéré quelques théoricaux d’impossibilité ou d’incomplétude renversants (1992 à 2008-voir arxiv dot org) sur les limites de l’inférence (computation) qui sont si généraux qu’ils sont indépendants de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Gödel Incompleteness and Turing Completeness.Ramón Casares - manuscript
    Following Post program, we will propose a linguistic and empirical interpretation of Gödel’s incompleteness theorem and related ones on unsolvability by Church and Turing. All these theorems use the diagonal argument by Cantor in order to find limitations in finitary systems, as human language, which can make “infinite use of finite means”. The linguistic version of the incompleteness theorem says that every Turing complete language is Gödel incomplete. We conclude that the incompleteness and unsolvability theorems find limitations in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Bell’s Theorem, Quantum Probabilities, and Superdeterminism.Eddy Keming Chen - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  26. Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Making Sense of Bell’s Theorem and Quantum Nonlocality.Stephen Boughn - 2017 - Foundations of Physics 47 (5):640-657.
    Bell’s theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell’s theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system. Einstein was repulsed by such “spooky action at a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  28. Bell's Theorem Begs the Question.Joy Christian - manuscript
    I demonstrate that Bell's theorem is based on circular reasoning and thus a fundamentally flawed argument. It unjustifiably assumes the additivity of expectation values for dispersion-free states of contextual hidden variable theories for non-commuting observables involved in Bell-test experiments, which is tautologous to assuming the bounds of ±2 on the Bell-CHSH sum of expectation values. Its premises thus assume in a different guise the bounds of ±2 it sets out to prove. Once this oversight is ameliorated from Bell's argument (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Cantor's Illusion.Hudson Richard L. - manuscript
    This analysis shows Cantor's diagonal definition in his 1891 paper was not compatible with his horizontal enumeration of the infinite set M. The diagonal sequence was a counterfeit which he used to produce an apparent exclusion of a single sequence to prove the cardinality of M is greater than the cardinality of the set of integers N.
    Download  
     
    Export citation  
     
    Bookmark  
  30. Arrow's theorem, ultrafilters, and reverse mathematics.Benedict Eastaugh - forthcoming - Review of Symbolic Logic.
    This paper initiates the reverse mathematics of social choice theory, studying Arrow's impossibility theorem and related results including Fishburn's possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in RCA0. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in RCA0. This approach yields a proof of Arrow's (...) in RCA0, and thus in PRA, since Arrow's theorem can be formalised as a Π01 sentence. Finally we show that Fishburn's possibility theorem for countable societies is equivalent to ACA0 over RCA0. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Arrow's theorem in judgment aggregation.Franz Dietrich & Christian List - 2007 - Social Choice and Welfare 29 (1):19-33.
    In response to recent work on the aggregation of individual judgments on logically connected propositions into collective judgments, it is often asked whether judgment aggregation is a special case of Arrowian preference aggregation. We argue for the converse claim. After proving two impossibility theorems on judgment aggregation (using "systematicity" and "independence" conditions, respectively), we construct an embedding of preference aggregation into judgment aggregation and prove Arrow’s theorem (stated for strict preferences) as a corollary of our second result. Although we (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  32.  73
    Comment on the GHZ variant of Bell's theorem without inequalities.Joy Christian - 2024 - Arxiv.
    I point out a sign mistake in the GHZ variant of Bell's theorem, invalidating the GHZ's claim that the premisses of the EPR argument are inconsistent for systems of more than two particles in entangled quantum states.
    Download  
     
    Export citation  
     
    Bookmark  
  33. Wittgenstein’s analysis on Cantor’s diagonal argument.Chaohui Zhuang - manuscript
    In Zettel, Wittgenstein considered a modified version of Cantor’s diagonal argument. According to Wittgenstein, Cantor’s number, different with other numbers, is defined based on a countable set. If Cantor’s number belongs to the countable set, the definition of Cantor’s number become incomplete. Therefore, Cantor’s number is not a number at all in this context. We can see some examples in the form of recursive functions. The definition "f(a)=f(a)" can not decide anything about the value of f(a). The definiton is incomplete. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. Arrow’s impossibility theorem and the national security state.S. M. Amadae - 2005 - Studies in History and Philosophy of Science Part A 36 (4):734-743.
    This paper critically engages Philip Mirowki's essay, "The scientific dimensions of social knowledge and their distant echoes in 20th-century American philosophy of science." It argues that although the cold war context of anti-democratic elitism best suited for making decisions about engaging in nuclear war may seem to be politically and ideologically motivated, in fact we need to carefully consider the arguments underlying the new rational choice based political philosophies of the post-WWII era typified by Arrow's impossibility theorem. A distrust (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. A Logic for Frege's Theorem.Richard Heck - 1999 - In Richard G. Heck (ed.), Frege’s Theorem: An Introduction. The Harvard Review of Philosophy.
    It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  37. Generalized Löb’s Theorem. Strong Reflection Principles and Large Cardinal Axioms.Jaykov Foukzon - 2013 - Advances in Pure Mathematics (3):368-373.
    In this article, a possible generalization of the Löb’s theorem is considered. Main result is: let κ be an inaccessible cardinal, then ¬Con( ZFC +∃κ) .
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  38. Why Arrow's Theorem Matters for Political Theory Even If Preference Cycles Never Occur.Sean Ingham - forthcoming - Public Choice.
    Riker (1982) famously argued that Arrow’s impossibility theorem undermined the logical foundations of “populism”, the view that in a democracy, laws and policies ought to express “the will of the people”. In response, his critics have questioned the use of Arrow’s theorem on the grounds that not all configurations of preferences are likely to occur in practice; the critics allege, in particular, that majority preference cycles, whose possibility the theorem exploits, rarely happen. In this essay, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Ortega y Gasset on Georg Cantor’s Theory of Transfinite Numbers.Lior Rabi - 2016 - Kairos (15):46-70.
    Ortega y Gasset is known for his philosophy of life and his effort to propose an alternative to both realism and idealism. The goal of this article is to focus on an unfamiliar aspect of his thought. The focus will be given to Ortega’s interpretation of the advancements in modern mathematics in general and Cantor’s theory of transfinite numbers in particular. The main argument is that Ortega acknowledged the historical importance of the Cantor’s Set Theory, analyzed it and articulated a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. The Philosophical Significance of Tennenbaum’s Theorem.T. Button & P. Smith - 2012 - Philosophia Mathematica 20 (1):114-121.
    Tennenbaum's Theorem yields an elegant characterisation of the standard model of arithmetic. Several authors have recently claimed that this result has important philosophical consequences: in particular, it offers us a way of responding to model-theoretic worries about how we manage to grasp the standard model. We disagree. If there ever was such a problem about how we come to grasp the standard model, then Tennenbaum's Theorem does not help. We show this by examining a parallel argument, from a (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  41. Self-reference and gödel's theorem: A Husserlian analysis. [REVIEW]Albert Johnstone - 2003 - Husserl Studies 19 (2):131-151.
    A Husserlian phenomenological approach to logic treats concepts in terms of their experiential meaning rather than in terms of reference, sets of individuals, and sentences. The present article applies such an approach in turn to the reasoning operative in various paradoxes: the simple Liar, the complex Liar paradoxes, the Grelling-type paradoxes, and Gödel’s Theorem. It finds that in each case a meaningless statement, one generated by circular definition, is treated as if were meaningful, and consequently as either true or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. On the Depth of Szemeredi's Theorem.Andrew Arana - 2015 - Philosophia Mathematica 23 (2):163-176.
    Many mathematicians have cited depth as an important value in their research. However, there is no single widely accepted account of mathematical depth. This article is an attempt to bridge this gap. The strategy is to begin with a discussion of Szemerédi's theorem, which says that each subset of the natural numbers that is sufficiently dense contains an arithmetical progression of arbitrary length. This theorem has been judged deep by many mathematicians, and so makes for a good case (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  43. Bell's theorem: A bridge between the measurement and the mind/body problems.Badis Ydri - manuscript
    In this essay a quantum-dualistic, perspectival and synchronistic interpretation of quantum mechanics is further developed in which the classical world-from-decoherence which is perceived (decoherence) and the perceived world-in-consciousness which is classical (collapse) are not necessarily identified. Thus, Quantum Reality or "{\it unus mundus}" is seen as both i) a physical non-perspectival causal Reality where the quantum-to-classical transition is operated by decoherence, and as ii) a quantum linear superposition of all classical psycho-physical perspectival Realities which are governed by synchronicity as well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. The Potential in Frege’s Theorem.Will Stafford - 2023 - Review of Symbolic Logic 16 (2):553-577.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47.  47
    Deflationism and Godel's theorem - a comment on Gauker.Panu Raatikainen - 2002 - Analysis 62 (1):85-87.
    In his recent article Christopher Gauker (2001) has presented a thoughtprovoking argument against deflationist theories of truth. More exactly, he attacks what he calls ‘T-schema deflationism’, that is, the claim that a theory of truth can simply take the form of certain instances of the T-schema.
    Download  
     
    Export citation  
     
    Bookmark  
  48. Fermat's Least Time Principle Violates Ptolemy's Theorem.Radhakrishnamurty Padyala - manuscript
    Fermat’s Least Time Principle has a long history. World’s foremost academies of the day championed by their most prestigious philosophers competed for the glory and prestige that went with the solution of the refraction problem of light. The controversy, known as Descartes - Fermat controversy was due to the contradictory views held by Descartes and Fermat regarding the relative speeds of light in different media. Descartes with his mechanical philosophy insisted that every natural phenomenon must be explained by mechanical principles. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Elementary canonical formulae: extending Sahlqvist’s theorem.Valentin Goranko & Dimiter Vakarelov - 2006 - Annals of Pure and Applied Logic 141 (1):180-217.
    We generalize and extend the class of Sahlqvist formulae in arbitrary polyadic modal languages, to the class of so called inductive formulae. To introduce them we use a representation of modal polyadic languages in a combinatorial style and thus, in particular, develop what we believe to be a better syntactic approach to elementary canonical formulae altogether. By generalizing the method of minimal valuations à la Sahlqvist–van Benthem and the topological approach of Sambin and Vaccaro we prove that all inductive formulae (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  50. Bayes's theorem[REVIEW]Massimo Pigliucci - 2005 - Quarterly Review of Biology 80 (1):93-95.
    About a British Academy collection of papers on Bayes' famous theorem.
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 957