Results for 'Criticism of Mathematical Natural Philosophy'

938 found
Order:
  1. Spinoza and the Philosophy of Science: Mathematics, Motion, and Being.Eric Schliesser - 1986, 2002
    This chapter argues that the standard conception of Spinoza as a fellow-travelling mechanical philosopher and proto-scientific naturalist is misleading. It argues, first, that Spinoza’s account of the proper method for the study of nature presented in the Theological-Political Treatise (TTP) points away from the one commonly associated with the mechanical philosophy. Moreover, throughout his works Spinoza’s views on the very possibility of knowledge of nature are decidedly sceptical (as specified below). Third, in the seventeenth-century debates over proper methods in (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  2. Analytic Metaphysics versus Naturalized Metaphysics: The Relevance of Applied Ontology.Baptiste Le Bihan & Adrien Barton - 2021 - Erkenntnis 86 (1):21-37.
    The relevance of analytic metaphysics has come under criticism: Ladyman & Ross, for instance, have suggested do discontinue the field. French & McKenzie have argued in defense of analytic metaphysics that it develops tools that could turn out to be useful for philosophy of physics. In this article, we show first that this heuristic defense of metaphysics can be extended to the scientific field of applied ontology, which uses constructs from analytic metaphysics. Second, we elaborate on a parallel (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  3. Hobbes on Natural Philosophy as "True Physics" and Mixed Mathematics.Marcus P. Adams - 2016 - Studies in History and Philosophy of Science Part A 56 (C):43-51.
    I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Aristotle’s Criticism of Pre-Socratic Natural Philosophy.Abduljaleel Alwali - 2006 - Amman, Jordan: Dar Al-Warraq.
    Aristotle (384-322 B.C), a well know Greek philosopher, physician, scientist and politician. A variety of identifying researches have been written on him. It is therefore a considerable pride for the researcher to write something about him when even mentioning his name and his father's name is a point of prestige in the Greek Language. His name means the preferable sublimity whereas Nicomachus (his father's name) means the definable negotiator. His father's and mother's origin belongs to Asclepiade, the favorite origin in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. ’s Gravesande on the Application of Mathematics in Physics and Philosophy.Jip Van Besouw - 2017 - Noctua 4 (1-2):17-55.
    Willem Jacob ’s Gravesande is widely remembered as a leading advocate of Isaac Newton’s work. In the first half of the eighteenth century, ’s Gravesande was arguably Europe’s most important proponent of what would become known as Newtonian physics. ’s Gravesande himself minimally described this discipline, which he called «physica», as studying empirical regularities mathematically while avoiding hypotheses. Commentators have as yet not progressed much beyond this view of ’s Gravesande’s physics. Therefore, much of its precise nature, its methodology, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Philosophy of Mathematics.Alexander Paseau (ed.) - 2016 - New York: Routledge.
    Mathematics is everywhere and yet its objects are nowhere. There may be five apples on the table but the number five itself is not to be found in, on, beside or anywhere near the apples. So if not in space and time, where are numbers and other mathematical objects such as perfect circles and functions? And how do we humans discover facts about them, be it Pythagoras’ Theorem or Fermat’s Last Theorem? The metaphysical question of what numbers are and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Hume's Natural Philosophy and Philosophy of Physical Science.Matias Slavov - 2020 - London: Bloomsbury Academic.
    This book contextualizes David Hume's philosophy of physical science, exploring both Hume's background in the history of early modern natural philosophy and its subsequent impact on the scientific tradition.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8.  45
    How is a relational formal ontology relational? An introduction to the semiotic logic of agency in physics, mathematics and natural philosophy.Timothy M. Rogers - manuscript
    A speculative exploration of the distinction between a relational formal ontology and a classical formal ontology for modelling phenomena in nature that exhibit relationally-mediated wholism, such as phenomena from quantum physics and biosemiotics. Whereas a classical formal ontology is based on mathematical objects and classes, a relational formal ontology is based on mathematical signs and categories. A relational formal ontology involves nodal networks (systems of constrained iterative processes) that are dynamically sustained through signalling. The nodal networks are hierarchically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Axiomatic Natural Philosophy and the Emergence of Biology as a Science.Hein van den Berg & Boris Demarest - 2020 - Journal of the History of Biology 53 (3):379-422.
    Ernst Mayr argued that the emergence of biology as a special science in the early nineteenth century was possible due to the demise of the mathematical model of science and its insistence on demonstrative knowledge. More recently, John Zammito has claimed that the rise of biology as a special science was due to a distinctive experimental, anti-metaphysical, anti-mathematical, and anti-rationalist strand of thought coming from outside of Germany. In this paper we argue that this narrative neglects the important (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  10. Aristotelianism in the Philosophy of Mathematics.James Franklin - 2011 - Studia Neoaristotelica 8 (1):3-15.
    Modern philosophy of mathematics has been dominated by Platonism and nominalism, to the neglect of the Aristotelian realist option. Aristotelianism holds that mathematics studies certain real properties of the world – mathematics is neither about a disembodied world of “abstract objects”, as Platonism holds, nor it is merely a language of science, as nominalism holds. Aristotle’s theory that mathematics is the “science of quantity” is a good account of at least elementary mathematics: the ratio of two heights, for example, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  11. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Cassirer's Psychology of Relations: From the Psychology of Mathematics and Natural Science to the Psychology of Culture.Samantha Matherne - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    In spite of Ernst Cassirer’s criticisms of psychologism throughout Substance and Function, in the final chapter he issues a demand for a “psychology of relations” that can do justice to the subjective dimensions of mathematics and natural science. Although these remarks remain somewhat promissory, the fact that this is how Cassirer chooses to conclude Substance and Function recommends it as a topic worthy of serious consideration. In this paper, I argue that in order to work out the details of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Criticism from within nature.Italo Testa - 2007 - Philosophy and Social Criticism 33 (4):473-497.
    I tackle the definition of the relation between first and second nature while examining some problems with McDowell's conception. This, in the first place, will bring out the need to extend the notion of second nature to the social dimension, understanding it not just as `inner' second nature — individual mind — but also as `outer' second nature — objective spirit. In the second place the dialectical connection between these two notions of second nature will point the way to a (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  14. Berkeley's natural philosophy and philosophy of science.Lisa Downing - 2005 - In Kenneth Winkler (ed.), The Cambridge Companion to Berkeley. New York: Cambridge University Press. pp. 230--265.
    Although George Berkeley himself made no major scientific discoveries, nor formulated any novel theories, he was nonetheless actively concerned with the rapidly evolving science of the early eighteenth century. Berkeley's works display his keen interest in natural philosophy and mathematics from his earliest writings (Arithmetica, 1707) to his latest (Siris, 1744). Moreover, much of his philosophy is fundamentally shaped by his engagement with the science of his time. In Berkeley's best-known philosophical works, the Principles and Dialogues, he (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  15. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Practising Philosophy of Mathematics with Children.Elisa Bezençon - 2020 - Philosophy of Mathematics Education Journal 36.
    This article examines the possibility of philosophizing about mathematics with children. It aims at outlining the nature of the practice of philosophy of mathematics with children in a mainly theoretical and exploratory way. First, an attempt at a definition is proposed. Second, I suggest some reasons that might motivate such a practice. My thesis is that one can identify an intrinsic as well as two extrinsic goals of philosophizing about mathematics with children. The intrinsic goal is related to a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Natural Philosophy, Deduction, and Geometry in the Hobbes-Boyle Debate.Marcus P. Adams - 2017 - Hobbes Studies 30 (1):83-107.
    This paper examines Hobbes’s criticisms of Robert Boyle’s air-pump experiments in light of Hobbes’s account in _De Corpore_ and _De Homine_ of the relationship of natural philosophy to geometry. I argue that Hobbes’s criticisms rely upon his understanding of what counts as “true physics.” Instead of seeing Hobbes as defending natural philosophy as “a causal enterprise … [that] as such, secured total and irrevocable assent,” 1 I argue that, in his disagreement with Boyle, Hobbes relied upon (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. The Autonomy of Psychology.Tim Crane - 1999 - In Robert Andrew Wilson & Frank C. Keil (eds.), MIT Encyclopedia of the Cognitive Sciences. Cambridge, USA: MIT Press.
    Psychology has been considered to have an autonomy from the other sciences (especially physical science) in at least two ways: in its subject-matter and in its methods. To say that the subject-matter of psychology is autonomous is to say that psychology deals with entities—properties, relations, states—which are not dealt with or not wholly explicable in terms of physical (or any other) science. Contrasted with this is the idea that psychology employs a characteristic method of explanation, which is not shared by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. “In Nature as in Geometry”: Du Châtelet and the Post-Newtonian Debate on the Physical Significance of Mathematical Objects.Aaron Wells - 2023 - In Wolfgang Lefèvre (ed.), Between Leibniz, Newton, and Kant: Philosophy and Science in the Eighteenth Century. Springer. pp. 69-98.
    Du Châtelet holds that mathematical representations play an explanatory role in natural science. Moreover, she writes that things proceed in nature as they do in geometry. How should we square these assertions with Du Châtelet’s idealism about mathematical objects, on which they are ‘fictions’ dependent on acts of abstraction? The question is especially pressing because some of her important interlocutors (Wolff, Maupertuis, and Voltaire) denied that mathematics informs us about the properties of material things. After situating Du (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. CRITIQUE OF IMPURE REASON: Horizons of Possibility and Meaning.Steven James Bartlett - 2021 - Salem, USA: Studies in Theory and Behavior.
    PLEASE NOTE: This is the corrected 2nd eBook edition, 2021. ●●●●● _Critique of Impure Reason_ has now also been published in a printed edition. To reduce the otherwise high price of this scholarly, technical book of nearly 900 pages and make it more widely available beyond university libraries to individual readers, the non-profit publisher and the author have agreed to issue the printed edition at cost. ●●●●● The printed edition was released on September 1, 2021 and is now available through (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Lakatos’ Quasi-empiricism in the Philosophy of Mathematics.Michael J. Shaffer - 2015 - Polish Journal of Philosophy 9 (2):71-80.
    Imre Lakatos' views on the philosophy of mathematics are important and they have often been underappreciated. The most obvious lacuna in this respect is the lack of detailed discussion and analysis of his 1976a paper and its implications for the methodology of mathematics, particularly its implications with respect to argumentation and the matter of how truths are established in mathematics. The most important themes that run through his work on the philosophy of mathematics and which culminate in the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. What’s Left of Human Nature? A Post-Essentialist, Pluralist and Interactive Account of a Contested Concept.Maria E. Kronfeldner - 2018 - Cambridge, MA: MIT Press.
    Human nature has always been a foundational issue for philosophy. What does it mean to have a human nature? Is the concept the relic of a bygone age? What is the use of such a concept? What are the epistemic and ontological commitments people make when they use the concept? In What’s Left of Human Nature? Maria Kronfeldner offers a philosophical account of human nature that defends the concept against contemporary criticism. In particular, she takes on challenges related (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  24. Plato's Natural Philosophy and Metaphysics.Luc Brisson - 2018 - In Sean D. Kirkland & Eric Sanday (eds.), A Companion to Ancient Philosophy. Evanston, Illinois: Northwestern University Press. pp. 212–231.
    This chapter contains sections titled: Going Beyond Nature in Order to Explain it Technē, epistēmē and alēthēs doxa Mathematics, pure and applied Observation and Experimental Verification Bibliography.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Criticism of individualist and collectivist methodological approaches to social emergence.S. M. Reza Amiri Tehrani - 2023 - Expositions: Interdisciplinary Studies in the Humanities 15 (3):111-139.
    ABSTRACT The individual-community relationship has always been one of the most fundamental topics of social sciences. In sociology, this is known as the micro-macro relationship while in economics it refers to the processes, through which, individual actions lead to macroeconomic phenomena. Based on philosophical discourse and systems theory, many sociologists even use the term "emergence" in their understanding of micro-macro relationship, which refers to collective phenomena that are created by the cooperation of individuals, but cannot be reduced to individual actions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Naturalización de la Metafísica Modal.Carlos Romero - 2021 - Dissertation, National Autonomous University of Mexico
    ⦿ In my dissertation I introduce, motivate and take the first steps in the implementation of, the project of naturalising modal metaphysics: the transformation of the field into a chapter of the philosophy of science rather than speculative, autonomous metaphysics. -/- ⦿ In the introduction, I explain the concept of naturalisation that I apply throughout the dissertation, which I argue to be an improvement on Ladyman and Ross' proposal for naturalised metaphysics. I also object to Williamson's proposal that modal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. The Ontological Status of Cartesian Natures.Lawrence Nolan - 1997 - Pacific Philosophical Quarterly 78 (2):169–194.
    In the Fifth Meditation, Descartes makes a remarkable claim about the ontological status of geometrical figures. He asserts that an object such as a triangle has a 'true and immutable nature' that does not depend on the mind, yet has being even if there are no triangles existing in the world. This statement has led many commentators to assume that Descartes is a Platonist regarding essences and in the philosophy of mathematics. One problem with this seemingly natural reading (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  28. The "Unreasonable" Effectiveness of Mathematics: The Foundational Approach of the Theoretic Alternatives.Catalin Barboianu - 2015 - Revista de Filosofie 62 (1):58-71.
    The attempts of theoretically solving the famous puzzle-dictum of physicist Eugene Wigner regarding the “unreasonable” effectiveness of mathematics as a problem of analytical philosophy, started at the end of the 19th century, are yet far from coming out with an acceptable theoretical solution. The theories developed for explaining the empirical “miracle” of applied mathematics vary in nature, foundation and solution, from denying the existence of a genuine problem to structural theories with an advanced level of mathematical formalism. Despite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. The Aquinas's criticism of the cosmological models of the 13th century : a step in the developement of scientific skepticism - Revista Española de Filosofía Medieval.Ana Maria C. Minecan - 2016 - Revista Española de Filosofía Medieval 23:217-228.
    This article analyzes the treatment of natural philosophy in the work of Thomas Aquinas from the point of view of assimilation of the Aristotelian physical corpus. It focuses primarily on the Aquinas’s defense of the conception of the fallibility of the natural reason, the provisional and revisable character of all physical theories, the necessity of intercultural dialogue to discover the truths about nature, and Aquinas’s role in the development of the skeptical attitude in scientific research of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. What is Mathematics: School Guide to Conceptual Understanding of Mathematics.Catalin Barboianu - 2021 - Targu Jiu: PhilScience Press.
    This is not a mathematics book, but a book about mathematics, which addresses both student and teacher, with a goal as practical as possible, namely to initiate and smooth the way toward the student’s full understanding of the mathematics taught in school. The customary procedural-formal approach to teaching mathematics has resulted in students’ distorted vision of mathematics as a merely formal, instrumental, and computational discipline. Without the conceptual base of mathematics, students develop over time a “mathematical anxiety” and abandon (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Essays concerning Hume's Natural Philosophy.Matias Slavov - 2016 - Dissertation, University of Jyväskylä
    The subject of this essay-based dissertation is Hume’s natural philosophy. The dissertation consists of four separate essays and an introduction. These essays do not only treat Hume’s views on the topic of natural philosophy, but his views are placed into a broader context of history of philosophy and science, physics in particular. The introductory section outlines the historical context, shows how the individual essays are connected, expounds what kind of research methodology has been used, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    [EDIT: This book will be published open access. Production is taking longer than expected but I will post the link to the whole book, hopefully by October.] One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. The Euclidean Mousetrap.Jason M. Costanzo - 2008 - Idealistic Studies 38 (3):209-220.
    In his doctoral dissertation On the Principle of Sufficient Reason, Arthur Schopenhauer there outlines a critique of Euclidean geometry on the basis of the changing nature of mathematics, and hence of demonstration, as a result of Kantian idealism. According to Schopenhauer, Euclid treats geometry synthetically, proceeding from the simple to the complex, from the known to the unknown, “synthesizing” later proofs on the basis of earlier ones. Such a method, although proving the case logically, nevertheless fails to attain the raison (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Categories, sets and the nature of mathematical entities.Jean-Pierre Marquis - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 181--192.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  35. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  36. On the Concept of Independent Nature.J. Michael Scoville - 2023 - Environmental Philosophy 20 (2):237-265.
    Multiple concepts of nature are at play in environmental theory and practice. One that has gripped several theorists is the idea of nature as referring to that which is independent of humans and human activity. This concept has been subject to forceful criticism, notably in the recent work of Steven Vogel. After clarifying problematic and promising ways of charac­terizing independent nature, I engage Vogel’s critique. While the critique is compelling in certain respects, I argue that it fails to appreciate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. The Nature of the Structures of Applied Mathematics and the Metatheoretical Justification for the Mathematical Modeling.Catalin Barboianu - 2015 - Romanian Journal of Analytic Philosophy 9 (2):1-32.
    The classical (set-theoretic) concept of structure has become essential for every contemporary account of a scientific theory, but also for the metatheoretical accounts dealing with the adequacy of such theories and their methods. In the latter category of accounts, and in particular, the structural metamodels designed for the applicability of mathematics have struggled over the last decade to justify the use of mathematical models in sciences beyond their 'indispensability' in terms of either method or concepts/entities. In this paper, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Representation and Sensation—A Defence of Deleuze’s Philosophy of Painting.Henry Somers-Hall - 2016 - Journal of Aesthetics and Phenomenology 3 (1):55-65.
    Deleuze’s philosophy of painting can be seen to pose certain challenges to a phenomenological approach to philosophy. While a phenomenological response to Deleuze’s philosophy is clearly needed, I show in this article how an approach taken in a recent paper by Christian Lotz proves inadequate. Lotz argues that through Deleuze’s refusal to accept the place of representation in art, he is unable to distinguish art from decoration, or to give a coherent account of how the content of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Plato’s Metaphysical Development before Middle Period Dialogues.Mohammad Bagher Ghomi - manuscript
    Regarding the relation of Plato’s early and middle period dialogues, scholars have been divided to two opposing groups: unitarists and developmentalists. While developmentalists try to prove that there are some noticeable and even fundamental differences between Plato’s early and middle period dialogues, the unitarists assert that there is no essential difference in there. The main goal of this article is to suggest that some of Plato’s ontological as well as epistemological principles change, both radically and fundamentally, between the early and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Connectionist models of mind: scales and the limits of machine imitation.Pavel Baryshnikov - 2020 - Philosophical Problems of IT and Cyberspace 2 (19):42-58.
    This paper is devoted to some generalizations of explanatory potential of connectionist approaches to theoretical problems of the philosophy of mind. Are considered both strong, and weaknesses of neural network models. Connectionism has close methodological ties with modern neurosciences and neurophilosophy. And this fact strengthens its positions, in terms of empirical naturalistic approaches. However, at the same time this direction inherits weaknesses of computational approach, and in this case all system of anticomputational critical arguments becomes applicable to the connectionst (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Mathematics as Make-Believe: A Constructive Empiricist Account.Sarah Elizabeth Hoffman - 1999 - Dissertation, University of Alberta (Canada)
    Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Dewey, Second Nature, Social Criticism, and the Hegelian Heritage.Italo Testa - 2017 - European Journal of Pragmatism and American Philosophy 9 (1):1-23.
    Dewey’s notion of second nature is strictly connected with that of habit. I reconstruct the Hegelian heritage of this model and argue that habit qua second nature is understood by Dewey as a something which encompasses both the subjective and the objective dimension – individual dispositions and features of the objective natural and social environment.. Secondly, the notion of habit qua second nature is used by Dewey both in a descriptive and in a critical sense and is as such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Nature of Philosophy.Mudasir A. Tantray & Ateequllah Dar - 2016 - International Journal Of Humanities and Social Studies 2 (12):39-42.
    The aim of this paper is to examine the nature, scope and importance of philosophy in the light of its relation to other disciplines. This work pays its focus on the various fundamental problems of philosophy, relating to Ethics, Metaphysics, Epistemology Logic, and its association with scientific realism. It will also highlight the various facets of these problems and the role of philosophers to point out the various issues relating to human issues. It is widely agreed that (...) as a multi-dimensional subject that shows affinity to others branches of philosophy like, Philosophy of Science, Humanities, Physics and Mathematics, but this paper also seeks, a philosophical nature towards the universal problems of nature. It evaluates the contribution and sacrifices of the great sages of philosophers to promote the clarity and progress in the field of philosophy. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44. Natorp's mathematical philosophy of science.Thomas Mormann - 2022 - Studia Kantiana 20 (2):65 - 82.
    This paper deals with Natorp’s version of the Marburg mathematical philosophy of science characterized by the following three features: The core of Natorp’s mathematical philosophy of science is contained in his “knowledge equation” that may be considered as a mathematical model of the “transcendental method” conceived by Natorp as the essence of the Marburg Neo-Kantianism. For Natorp, the object of knowledge was an infinite task. This can be elucidated in two different ways: Carnap, in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Review of: Garciadiego, A., "Emergence of...paradoxes...set theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature.Michael Epperson & Elias Zafiris - 2013 - Lanham: Lexington Books. Edited by Elias Zafiris.
    Foundations of Relational Realism presents an intuitive interpretation of quantum mechanics, based on a revised decoherent histories interpretation, structured within a category theoretic topological formalism. -/- If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably exceed the limits of intuitive (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  47. On the development of geometric cognition: Beyond nature vs. nurture.Markus Pantsar - 2022 - Philosophical Psychology 35 (4):595-616.
    How is knowledge of geometry developed and acquired? This central question in the philosophy of mathematics has received very different answers. Spelke and colleagues argue for a “core cognitivist”, nativist, view according to which geometric cognition is in an important way shaped by genetically determined abilities for shape recognition and orientation. Against the nativist position, Ferreirós and García-Pérez have argued for a “culturalist” account that takes geometric cognition to be fundamentally a culturally developed phenomenon. In this paper, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Philosophy Is Not a Science: Margaret Macdonald on the Nature of Philosophical Theories.Peter West - 2024 - Hopos: The Journal of the International Society for the History of Philosophy of Science 14 (2):527-553.
    Margaret Macdonald was at the institutional heart of analytic philosophy in Britain in the mid-twentieth century. However, her views on the nature of philosophical theories diverge quite considerably from those of many of her contemporaries. In this article, I focus on Macdonald’s provocative 1953 paper, “Linguistic Philosophy and Perception,” in which she argues that the value of philosophical theories is more akin to that of poetry or art than science or mathematics. I do so for two reasons. First, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. A Scheme Foiled: A Critique of Baron's Account of Extra-mathematical Explanation.Mark Povich - 2023 - Mind 132 (526):479–492.
    Extra-mathematical explanations explain natural phenomena primarily by appeal to mathematical facts. Philosophers disagree about whether there are extra-mathematical explanations, the correct account of them if they exist, and their implications (e.g., for the philosophy of scientific explanation and for the metaphysics of mathematics) (Baker 2005, 2009; Bangu 2008; Colyvan 1998; Craver and Povich 2017; Lange 2013, 2016, 2018; Mancosu 2008; Povich 2019, 2020; Steiner 1978). In this discussion note, I present three desiderata for any account (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. A theory of truth for a class of mathematical languages and an application.S. Heikkilä - manuscript
    In this paprer a class of so called mathematically acceptable (shortly MA) languages is introduced First-order formal languages containing natural numbers and numerals belong to that class. MA languages which are contained in a given fully interpreted MA language augmented by a monadic predicate are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of these languages. MTT makes them fully interpreted MA languages which posses their own truth predicates, yielding consequences to philosophy of (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 938