Results for 'Infinity Computer'

934 found
Order:
  1. Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer.Yaroslav Sergeyev - 2013 - Applied Mathematics and Computation 219 (22):10668–10681.
    There exists a huge number of numerical methods that iteratively construct approximations to the solution y(x) of an ordinary differential equation (ODE) y′(x) = f(x,y) starting from an initial value y_0=y(x_0) and using a finite approximation step h that influences the accuracy of the obtained approximation. In this paper, a new framework for solving ODEs is presented for a new kind of a computer – the Infinity Computer (it has been patented and its working prototype exists). The (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Higher order numerical differentiation on the Infinity Computer.Yaroslav Sergeyev - 2011 - Optimization Letters 5 (4):575-585.
    There exist many applications where it is necessary to approximate numerically derivatives of a function which is given by a computer procedure. In particular, all the fields of optimization have a special interest in such a kind of information. In this paper, a new way to do this is presented for a new kind of a computer - the Infinity Computer - able to work numerically with finite, infinite, and infinitesimal number. It is proved that the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  3. Numerical methods for solving initial value problems on the Infinity Computer.Yaroslav Sergeyev, Marat Mukhametzhanov, Francesca Mazzia, Felice Iavernaro & Pierluigi Amodio - 2016 - International Journal of Unconventional Computing 12 (1):3-23.
    New algorithms for the numerical solution of Ordinary Differential Equations (ODEs) with initial condition are proposed. They are designed for work on a new kind of a supercomputer – the Infinity Computer, – that is able to deal numerically with finite, infinite and infinitesimal numbers. Due to this fact, the Infinity Computer allows one to calculate the exact derivatives of functions using infinitesimal values of the stepsize. As a consequence, the new methods described in this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Interpretation of percolation in terms of infinity computations.Yaroslav Sergeyev, Dmitri Iudin & Masaschi Hayakawa - 2012 - Applied Mathematics and Computation 218 (16):8099-8111.
    In this paper, a number of traditional models related to the percolation theory has been considered by means of new computational methodology that does not use Cantor’s ideas and describes infinite and infinitesimal numbers in accordance with the principle ‘The part is less than the whole’. It gives a possibility to work with finite, infinite, and infinitesimal quantities numerically by using a new kind of a compute - the Infinity Computer – introduced recently in [18]. The new approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. Computation of higher order Lie derivatives on the Infinity Computer.Felice Iavernaro, Francesca Mazzia, Marat Mukhametzhanov & Yaroslav Sergeyev - 2021 - Journal of Computational and Applied Mathematics 383:113135.
    In this paper, we deal with the computation of Lie derivatives, which are required, for example, in some numerical methods for the solution of differential equations. One common way for computing them is to use symbolic computation. Computer algebra software, however, might fail if the function is complicated, and cannot be even performed if an explicit formulation of the function is not available, but we have only an algorithm for its computation. An alternative way to address the problem is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems.Yaroslav Sergeyev - 2017 - EMS Surveys in Mathematical Sciences 4 (2):219–320.
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7. Numerical infinities applied for studying Riemann series theorem and Ramanujan summation.Yaroslav Sergeyev - 2018 - In AIP Conference Proceedings 1978. AIP. pp. 020004.
    A computational methodology called Grossone Infinity Computing introduced with the intention to allow one to work with infinities and infinitesimals numerically has been applied recently to a number of problems in numerical mathematics (optimization, numerical differentiation, numerical algorithms for solving ODEs, etc.). The possibility to use a specially developed computational device called the Infinity Computer (patented in USA and EU) for working with infinite and infinitesimal numbers numerically gives an additional advantage to this approach in comparison with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Lagrange Lecture: Methodology of numerical computations with infinities and infinitesimals.Yaroslav Sergeyev - 2010 - Rendiconti Del Seminario Matematico dell'Università E Del Politecnico di Torino 68 (2):95–113.
    A recently developed computational methodology for executing numerical calculations with infinities and infinitesimals is described in this paper. The approach developed has a pronounced applied character and is based on the principle “The part is less than the whole” introduced by the ancient Greeks. This principle is applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). The point of view on infinities and infinitesimals (and in general, on Mathematics) presented in this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Numerical computations and mathematical modelling with infinite and infinitesimal numbers.Yaroslav Sergeyev - 2009 - Journal of Applied Mathematics and Computing 29:177-195.
    Traditional computers work with finite numbers. Situations where the usage of infinite or infinitesimal quantities is required are studied mainly theoretically. In this paper, a recently introduced computational methodology (that is not related to the non-standard analysis) is used to work with finite, infinite, and infinitesimal numbers numerically. This can be done on a new kind of a computer – the Infinity Computer – able to work with all these types of numbers. The new computational tools both (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Independence of the Grossone-Based Infinity Methodology from Non-standard Analysis and Comments upon Logical Fallacies in Some Texts Asserting the Opposite.Yaroslav D. Sergeyev - 2019 - Foundations of Science 24 (1):153-170.
    This paper considers non-standard analysis and a recently introduced computational methodology based on the notion of ①. The latter approach was developed with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework and in all the situations requiring these notions. Non-standard analysis is a classical purely symbolic technique that works with ultrafilters, external and internal sets, standard and non-standard numbers, etc. In its turn, the ①-based methodology does not use any of these (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. The Olympic medals ranks, lexicographic ordering and numerical infinities.Yaroslav Sergeyev - 2015 - The Mathematical Intelligencer 37 (2):4-8.
    Several ways used to rank countries with respect to medals won during Olympic Games are discussed. In particular, it is shown that the unofficial rank used by the Olympic Committee is the only rank that does not allow one to use a numerical counter for ranking – this rank uses the lexicographic ordering to rank countries: one gold medal is more precious than any number of silver medals and one silver medal is more precious than any number of bronze medals. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Some paradoxes of infinity revisited.Yaroslav Sergeyev - 2022 - Mediterranian Journal of Mathematics 19:143.
    In this article, some classical paradoxes of infinity such as Galileo’s paradox, Hilbert’s paradox of the Grand Hotel, Thomson’s lamp paradox, and the rectangle paradox of Torricelli are considered. In addition, three paradoxes regarding divergent series and a new paradox dealing with multiplication of elements of an infinite set are also described. It is shown that the surprising counting system of an Amazonian tribe, Pirah ̃a, working with only three numerals (one, two, many) can help us to change our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. The Completeness: From Henkin's Proposition to Quantum Computer.Vasil Penchev - 2018 - Логико-Философские Штудии 16 (1-2):134-135.
    The paper addresses Leon Hen.kin's proposition as a " lighthouse", which can elucidate a vast territory of knowledge uniformly: logic, set theory, information theory, and quantum mechanics: Two strategies to infinity are equally relevant for it is as universal and t hus complete as open and thus incomplete. Henkin's, Godel's, Robert Jeroslow's, and Hartley Rogers' proposition are reformulated so that both completeness and incompleteness to be unified and thus reduced as a joint property of infinity and of all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Towards a Theory of Computation similar to some other scientific theories.Antonino Drago - manuscript
    At first sight the Theory of Computation i) relies on a kind of mathematics based on the notion of potential infinity; ii) its theoretical organization is irreducible to an axiomatic one; rather it is organized in order to solve a problem: “What is a computation?”; iii) it makes essential use of doubly negated propositions of non-classical logic, in particular in the word expressions of the Church-Turing’s thesis; iv) its arguments include ad absurdum proofs. Under such aspects, it is like (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. A new applied approach for executing computations with infinite and infinitesimal quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.
    A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique framework. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  17. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. UN SEMPLICE MODO PER TRATTARE LE GRANDEZZE INFINITE ED INFINITESIME.Yaroslav Sergeyev - 2015 - la Matematica Nella Società E Nella Cultura: Rivista Dell’Unione Matematica Italiana, Serie I 8:111-147.
    A new computational methodology allowing one to work in a new way with infinities and infinitesimals is presented in this paper. The new approach, among other things, gives the possibility to calculate the number of elements of certain infinite sets, avoids indeterminate forms and various kinds of divergences. This methodology has been used by the author as a starting point in developing a new kind of computer – the Infinity Computer – able to execute computations and to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19. Comparison of a Nonlinear Magnetic Levitation Train Parameters using Mixed H 2/H infinity and Model Reference Controllers.Mustefa Jibril, Mesay Tadesse & Nurye Hassen - 2021 - ACE Journal of Computer Science and Engineering 1 (2):17-22.
    To improve the riding performance and levitation stability of a high‐speed magnetic levitation (maglev) train, a control strategy based on mixed H 2/H4 with regional pole placement and model‐reference controllers are proposed. First, the nonlinear maglev train model is established, then the proposed system is designed to observe the movement of a suspension frame and a control strategy based on mixed H 2/H4 with regional pole placement and model‐reference control method are proposed. Test and analysis of the proposed system has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm.Marco Cococcioni, Massimo Pappalardo & Yaroslav Sergeyev - 2018 - Applied Mathematics and Computation 318:298-311.
    Numerous problems arising in engineering applications can have several objectives to be satisfied. An important class of problems of this kind is lexicographic multi-objective problems where the first objective is incomparably more important than the second one which, in its turn, is incomparably more important than the third one, etc. In this paper, Lexicographic Multi-Objective Linear Programming (LMOLP) problems are considered. To tackle them, traditional approaches either require solution of a series of linear programming problems or apply a scalarization of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area.Yaroslav Sergeyev - 2016 - Communications in Nonlinear Science and Numerical Simulation 31 (1-3):21–29.
    The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Numerical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer patented (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains.Yaroslav Sergeyev - 2009 - Nonlinear Analysis Series A 71 (12):e1688-e1707.
    The goal of this paper consists of developing a new (more physical and numerical in comparison with standard and non-standard analysis approaches) point of view on Calculus with functions assuming infinite and infinitesimal values. It uses recently introduced infinite and infinitesimal numbers being in accordance with the principle ‘The part is less than the whole’ observed in the physical world around us. These numbers have a strong practical advantage with respect to traditional approaches: they are representable at a new kind (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  23. Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers.Yaroslav Sergeyev - 2007 - Chaos, Solitons and Fractals 33 (1):50-75.
    The paper considers a new type of objects – blinking fractals – that are not covered by traditional theories studying dynamics of self-similarity processes. It is shown that the new approach allows one to give various quantitative characteristics of the newly introduced and traditional fractals using infinite and infinitesimal numbers proposed recently. In this connection, the problem of the mathematical modelling of continuity is discussed in detail. A strong advantage of the introduced computational paradigm consists of its well-marked numerical character (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  24. Infinitely Complex Machines.Eric Steinhart - 2007 - In Intelligent Computing Everywhere. Springer. pp. 25-43.
    Infinite machines (IMs) can do supertasks. A supertask is an infinite series of operations done in some finite time. Whether or not our universe contains any IMs, they are worthy of study as upper bounds on finite machines. We introduce IMs and describe some of their physical and psychological aspects. An accelerating Turing machine (an ATM) is a Turing machine that performs every next operation twice as fast. It can carry out infinitely many operations in finite time. Many ATMs can (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. On the plurality of gods.Eric Steinhart - 2013 - Religious Studies 49 (3):289-312.
    Ordinal polytheism is motivated by the cosmological and design arguments. It is also motivated by Leibnizian–Lewisian modal realism. Just as there are many universes, so there are many gods. Gods are necessary concrete grounds of universes. The god-universe relation is one-to-one. Ordinal polytheism argues for a hierarchy of ranks of ever more perfect gods, one rank for every ordinal number. Since there are no maximally perfect gods, ordinal polytheism avoids many of the familiar problems of monotheism. It links theology with (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26. The Language of Human-Machine Communication. Technology and Language.Daria Bylieva - 2020 - Technology and Language 1 (1):16-21.
    This essay for the inaugural issue of Technology and Language discusses the problem of finding an optimal form of human-machine communication. In the ongoing search for an alien mind, humanity seems to find it not in the infinities of space, but in its own environment. Changes in the language of human-machine interaction made it understandable not only to trained specialists but to every household. In the course of time, home appliances and devices have developed their language abilities even more and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Prospectus to a Homotopic Metatheory of Language.Eric Schmid - forthcoming - Chicago: Edition Erich Schmid.
    Due to the wide scope of (in particular linear) homotopy type theory (using quantum natural language processing), a metatheory can be applied not just to theorizing the metatheory of scientific progress, but ordinary language or any public language defined by sociality/social agents as the precondition for the realizability of (general) intelligence via an inferential network from which judgement can be made. How this metatheory of science generalizes to public language is through the recent advances of quantum natural language processing, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. OUT OF TIME - Predicting the Science of Future Centuries and Millennia.Rodney Bartlett - 2021 - Beau Bassin-Rose Hill, Mauritius: LAP (LAMBERT Academic Publishing).
    This book is my gift to Albert Einstein on the occasion of his 142nd birthday - and is also a gift to everybody in the world he helped to shape! -/- My book adopts the view that the universe is infinite and eternal - but scientifically created. This paradox of creating eternity depends on the advanced electronics developed by future humanity. Those humans will develop time travel, plus programs that use "imaginary" time and infinite numbers like pi. They'll also become (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. The Infinity from Nothing paradox and the Immovable Object meets the Irresistible Force.Nicholas Shackel - 2018 - European Journal for Philosophy of Science 8 (3):417-433.
    In this paper I present a novel supertask in a Newtonian universe that destroys and creates infinite masses and energies, showing thereby that we can have infinite indeterminism. Previous supertasks have managed only to destroy or create finite masses and energies, thereby giving cases of only finite indeterminism. In the Nothing from Infinity paradox we will see an infinitude of finite masses and an infinitude of energy disappear entirely, and do so despite the conservation of energy in all collisions. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  30.  75
    Infinity, Choice, and Hume's Principle.Stephen Mackereth - forthcoming - Journal of Philosophical Logic.
    It has long been known that in the context of axiomatic second-order logic (SOL), Hume's Principle (HP) is mutually interpretable with "the universe is Dedekind infinite" (DI). I offer a more fine-grained analysis of the logical strength of HP, measured by deductive implications rather than interpretability. The main result is that HP is not deductively conservative over SOL + DI. That is, SOL + HP proves additional theorems in the language of pure second-order logic that are not provable from SOL (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Absolute Infinity, Knowledge, and Divinity in the Thought of Cusanus and Cantor (ABSTRACT ONLY).Anne Newstead - 2024 - In Mirosław Szatkowski (ed.), Ontology of Divinity. De Gruyter. pp. 561-580.
    Renaissance philosopher, mathematician, and theologian Nicholas of Cusa (1401-1464) said that there is no proportion between the finite mind and the infinite. He is fond of saying reason cannot fully comprehend the infinite. That our best hope for attaining a vision and understanding of infinite things is by mathematics and by the use of contemplating symbols, which help us grasp "the absolute infinite". By the late 19th century, there is a decisive intervention in mathematics and its philosophy: the philosophical mathematician (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Aristotelian Infinity.John Bowin - 2007 - Oxford Studies in Ancient Philosophy 32:233-250.
    Bowin begins with an apparent paradox about Aristotelian infinity: Aristotle clearly says that infinity exists only potentially and not actually. However, Aristotle appears to say two different things about the nature of that potential existence. On the one hand, he seems to say that the potentiality is like that of a process that might occur but isn't right now. Aristotle uses the Olympics as an example: they might be occurring, but they aren't just now. On the other hand, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  34. INFINITY LIMITED.James Sirois - 2024 - Online: Self-Publishing.
    (1st draft for review) -/- WARNING: -/- Reading this book comes with certain dangers to be mindful of; Please consider the following suggestions to avoid them: -/- 1: Do not try to perceive infinity; Any kind of success here leads to psychosis. 2: Do not try to resolve the paradoxes; To understand the greater truth of this book, paradoxes must be accepted as true. 3: Do not read this book if your faith is unstable and having it challenged could (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Infinity and Metaphysics.Daniel Nolan - 2009 - In Robin Le Poidevin, Simons Peter, McGonigal Andrew & Ross P. Cameron (eds.), The Routledge Companion to Metaphysics. New York: Routledge. pp. 430-439.
    This introduction to the roles infinity plays in metaphysics includes discussion of the nature of infinity itself; infinite space and time, both in extent and in divisibility; infinite regresses; and a list of some other topics in metaphysics where infinity plays a significant role.
    Download  
     
    Export citation  
     
    Bookmark  
  36. Computer Simulations in Science and Engineering. Concept, Practices, Perspectives.Juan Manuel Durán - 2018 - Springer.
    This book addresses key conceptual issues relating to the modern scientific and engineering use of computer simulations. It analyses a broad set of questions, from the nature of computer simulations to their epistemological power, including the many scientific, social and ethics implications of using computer simulations. The book is written in an easily accessible narrative, one that weaves together philosophical questions and scientific technicalities. It will thus appeal equally to all academic scientists, engineers, and researchers in industry (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  37. The negative theology of absolute infinity: Cantor, mathematics, and humility.Rico Gutschmidt & Merlin Carl - 2024 - International Journal for Philosophy of Religion 95 (3):233-256.
    Cantor argued that absolute infinity is beyond mathematical comprehension. His arguments imply that the domain of mathematics cannot be grasped by mathematical means. We argue that this inability constitutes a foundational problem. For Cantor, however, the domain of mathematics does not belong to mathematics, but to theology. We thus discuss the theological significance of Cantor’s treatment of absolute infinity and show that it can be interpreted in terms of negative theology. Proceeding from this interpretation, we refer to the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. Computer simulation and the features of novel empirical data.Greg Lusk - 2016 - Studies in History and Philosophy of Science Part A 56:145-152.
    In an attempt to determine the epistemic status of computer simulation results, philosophers of science have recently explored the similarities and differences between computer simulations and experiments. One question that arises is whether and, if so, when, simulation results constitute novel empirical data. It is often supposed that computer simulation results could never be empirical or novel because simulations never interact with their targets, and cannot go beyond their programming. This paper argues against this position by examining (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  39. "Infinity, Knowledge, and Divinity in the Thought of Cusanus and Cantor" (Manuscript draft of first page of forthcoming book chapter ).Anne Newstead (ed.) - forthcoming - Berlin: De Gruyter.
    Renaissance philosopher, mathematician, and theologian Nicholas of Cusa (1401-1464) said that there is no proportion between the finite mind and the infinite. He is fond of saying reason cannot fully comprehend the infinite. That our best hope for attaining a vision and understanding of infinite things is by mathematics and by the use of contemplating symbols, which help us grasp "the absolute infinite". By the late 19th century, there is a decisive intervention in mathematics and its philosophy: the philosophical mathematician (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Computational Thought Experiments for a More Rigorous Philosophy and Science of the Mind.Iris Oved, Nikhil Krishnaswamy, James Pustejovsky & Joshua Hartshorne - 2024 - In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey & E. Hazeltine (eds.), Proceedings of the 46th Annual Conference of the Cognitive Science Society. CC BY. pp. 601-609.
    We offer philosophical motivations for a method we call Virtual World Cognitive Science (VW CogSci), in which researchers use virtual embodied agents that are embedded in virtual worlds to explore questions in the field of Cognitive Science. We focus on questions about mental and linguistic representation and the ways that such computational modeling can add rigor to philosophical thought experiments, as well as the terminology used in the scientific study of such representations. We find that this method forces researchers to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Computational Dynamics of Natural Information Morphology, Discretely Continuous.Gordana Dodig-Crnkovic - 2017 - Philosophies 2 (4):23.
    This paper presents a theoretical study of the binary oppositions underlying the mechanisms of natural computation understood as dynamical processes on natural information morphologies. Of special interest are the oppositions of discrete vs. continuous, structure vs. process, and differentiation vs. integration. The framework used is that of computing nature, where all natural processes at different levels of organisation are computations over informational structures. The interactions at different levels of granularity/organisation in nature, and the character of the phenomena that unfold through (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  42. Aristotle's Actual Infinities.Jacob Rosen - 2021 - Oxford Studies in Ancient Philosophy 59.
    Aristotle is said to have held that any kind of actual infinity is impossible. I argue that he was a finitist (or "potentialist") about _magnitude_, but not about _plurality_. He did not deny that there are, or can be, infinitely many things in actuality. If this is right, then it has implications for Aristotle's views about the metaphysics of parts and points.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  43.  88
    Deductive Computing over Knowledge Bases: Prolog and Datalog.Luis M. Augusto - 2024 - Journal of Knowledge Structures and Systems 5 (1):1-62.
    Knowledge representation (KR) is actually more than representation: It involves also inference, namely inference of “new” knowledge, i.e. new facts. Logic programming is a suitable KR medium, but more often than not discussions on this programming paradigm focus on aspects other than KR. In this paper, I elaborate on the general theory of logic programming and give the essentials of two of its main implementations, to wit, Prolog and Datalog, from the viewpoint of deductive computing over knowledge bases, which includes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. From Computer Metaphor to Computational Modeling: The Evolution of Computationalism.Marcin Miłkowski - 2018 - Minds and Machines 28 (3):515-541.
    In this paper, I argue that computationalism is a progressive research tradition. Its metaphysical assumptions are that nervous systems are computational, and that information processing is necessary for cognition to occur. First, the primary reasons why information processing should explain cognition are reviewed. Then I argue that early formulations of these reasons are outdated. However, by relying on the mechanistic account of physical computation, they can be recast in a compelling way. Next, I contrast two computational models of working memory (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  45. Computers Aren’t Syntax All the Way Down or Content All the Way Up.Cem Bozşahin - 2018 - Minds and Machines 28 (3):543-567.
    This paper argues that the idea of a computer is unique. Calculators and analog computers are not different ideas about computers, and nature does not compute by itself. Computers, once clearly defined in all their terms and mechanisms, rather than enumerated by behavioral examples, can be more than instrumental tools in science, and more than source of analogies and taxonomies in philosophy. They can help us understand semantic content and its relation to form. This can be achieved because they (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. Hohfeldian Infinities: Why Not to Worry.Visa A. J. Kurki - 2017 - Res Publica 23 (1):137-146.
    Hillel Steiner has recently attacked the notion of inalienable rights, basing some of his arguments on the Hohfeldian analysis to show that infinite arrays of legal positions would not be associated with any inalienable rights. This essay addresses the nature of the Hohfeldian infinity: the main argument is that what Steiner claims to be an infinite regress is actually a wholly unproblematic form of infinite recursion. First, the nature of the Hohfeldian recursion is demonstrated. It is shown that infinite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Infinity and the Sublime.Karin Verelst - 2013 - Journal of Interdisciplinary History of Ideas 2 (4):1-27.
    In their recent work, L. Graham and J.-M. Kantor discuss a remarkable connection between diverging conceptions of the mathematical infinite in Russia and France at the beginning of the twentieth century and the religious convictions of their respective authors. They expand much more on the Russian side of the cultural equation they propose; I do believe, however, that the French (or rather ‘West European’) side is more complex than it seems, and that digging deeper into it is worthwhile. In this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Benign Infinity.Matthias Steup - 2019 - In Rodrigo Borges, Branden Fitelson & Cherie Braden (eds.), Knowledge, Scepticism, and Defeat: Themes from Klein. Springer Verlag. pp. 235-57.
    According to infinitism, all justification comes from an infinite series of reasons. Peter Klein defends infinitism as the correct solution to the regress problem by rejecting two alternative solutions: foundationalism and coherentism. I focus on Klein's argument against foundationalism, which relies on the premise that there is no justification without meta-justification. This premise is incompatible with dogmatic foundationalism as defended by Michael Huemer and Time Pryor. It does not, however, conflict with non-dogmatic foundationalism. Whereas dogmatic foundationalism rejects the need for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Immortality, Infinity and the limitations of God.Alexey Prokofyev - manuscript
    I tried to describe Infinity as a major natural conundrum known to man. The booklet also contains answers to some eternal questions, such as the meaning of life, faith, etc. I am especially proud of my Morality section.
    Download  
     
    Export citation  
     
    Bookmark  
  50. Infinity and givenness: Kant on the intuitive origin of spatial representation.Daniel Smyth - 2014 - Canadian Journal of Philosophy 44 (5-6):551-579.
    I advance a novel interpretation of Kant's argument that our original representation of space must be intuitive, according to which the intuitive status of spatial representation is secured by its infinitary structure. I defend a conception of intuitive representation as what must be given to the mind in order to be thought at all. Discursive representation, as modelled on the specific division of a highest genus into species, cannot account for infinite complexity. Because we represent space as infinitely complex, the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
1 — 50 / 934