Results for 'Mathematical explanation'

1000+ found
Order:
  1. The Narrow Ontic Counterfactual Account of Distinctively Mathematical Explanation.Mark Povich - 2019 - British Journal for the Philosophy of Science:axz008.
    An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductive-mathematical account, because it is modelled on the deductive-nomological account, is unlikely to satisfy these desiderata. I provide a counterfactual (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  32
    Using Corpus Linguistics to Investigate Mathematical Explanation.Juan Pablo Mejía Ramos, Lara Alcock, Kristen Lew, Paolo Rago, Chris Sangwin & Matthew Inglis - 2019 - In Eugen Fischer & Mark Curtis (eds.), Methodological Advances in Experimental Philosophy. London: Bloomsbury Academic. pp. 239–263.
    In this chapter we use methods of corpus linguistics to investigate the ways in which mathematicians describe their work as explanatory in their research papers. We analyse use of the words explain/explanation (and various related words and expressions) in a large corpus of texts containing research papers in mathematics and in physical sciences, comparing this with their use in corpora of general, day-to-day English. We find that although mathematicians do use this family of words, such use is considerably less (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  82
    Proof, Explanation, and Justification in Mathematical Practice.Moti Mizrahi - forthcoming - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie:1-18.
    In this paper, I propose that applying the methods of data science to “the problem of whether mathematical explanations occur within mathematics itself” (Mancosu 2018) might be a fruitful way to shed new light on the problem. By carefully selecting indicator words for explanation and justification, and then systematically searching for these indicators in databases of scholarly works in mathematics, we can get an idea of how mathematicians use these terms in mathematical practice and with what frequency. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Mathematical Modelling and Contrastive Explanation.Adam Morton - 1990 - Canadian Journal of Philosophy 20 (Supplement):251-270.
    Mathematical models provide explanations of limited power of specific aspects of phenomena. One way of articulating their limits here, without denying their essential powers, is in terms of contrastive explanation.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Mathematical Explanation: A Contextual Approach.Sven Delarivière, Joachim Frans & Bart Van Kerkhove - 2017 - Journal of Indian Council of Philosophical Research 34 (2):309-329.
    PurposeIn this article, we aim to present and defend a contextual approach to mathematical explanation.MethodTo do this, we introduce an epistemic reading of mathematical explanation.ResultsThe epistemic reading not only clarifies the link between mathematical explanation and mathematical understanding, but also allows us to explicate some contextual factors governing explanation. We then show how several accounts of mathematical explanation can be read in this approach.ConclusionThe contextual approach defended here clears up the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Inference to the Best Explanation and Mathematical Realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  9. The Directionality of Distinctively Mathematical Explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  10. Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D'Alessandro - 2020 - Synthese:1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11).
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  56
    Modality and constitution in distinctively mathematical explanations.Mark Povich - 2020 - European Journal for Philosophy of Science 10 (3):1-10.
    Lange argues that some natural phenomena can be explained by appeal to mathematical, rather than natural, facts. In these “distinctively mathematical” explanations, the core explanatory facts are either modally stronger than facts about ordinary causal law or understood to be constitutive of the physical task or arrangement at issue. Craver and Povich argue that Lange’s account of DME fails to exclude certain “reversals”. Lange has replied that his account can avoid these directionality charges. Specifically, Lange argues that in (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  13. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  14. Heuristics, Descriptions, and the Scope of Mechanistic Explanation.Carlos Zednik - 2015 - In P. Braillard & C. Malaterre (eds.), Explanation in Biology. An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences. Dordrecht: Springer. pp. 295-318.
    The philosophical conception of mechanistic explanation is grounded on a limited number of canonical examples. These examples provide an overly narrow view of contemporary scientific practice, because they do not reflect the extent to which the heuristic strategies and descriptive practices that contribute to mechanistic explanation have evolved beyond the well-known methods of decomposition, localization, and pictorial representation. Recent examples from evolutionary robotics and network approaches to biology and neuroscience demonstrate the increasingly important role played by computer simulations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  15. Complements, Not Competitors: Causal and Mathematical Explanations.Holly Andersen - 2017 - British Journal for the Philosophy of Science:axw023.
    A finer-grained delineation of a given explanandum reveals a nexus of closely related causal and non- causal explanations, complementing one another in ways that yield further explanatory traction on the phenomenon in question. By taking a narrower construal of what counts as a causal explanation, a new class of distinctively mathematical explanations pops into focus; Lange’s characterization of distinctively mathematical explanations can be extended to cover these. This new class of distinctively mathematical explanations is illustrated with (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  16. Introduction: Scientific Explanation Beyond Causation.Alexander Reutlinger & Juha Saatsi - 2017 - In Alexander Reutlinger & Juha Saatsi (eds.), Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations. Oxford: Oxford University Press.
    This is an introduction to the volume "Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations", edited by A. Reutlinger and J. Saatsi (OUP, forthcoming in 2017). -/- Explanations are very important to us in many contexts: in science, mathematics, philosophy, and also in everyday and juridical contexts. But what is an explanation? In the philosophical study of explanation, there is long-standing, influential tradition that links explanation intimately to causation: we often explain by providing accurate information about (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Teaching and Learning Guide For: Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11).
    This is a teaching and learning guide to accompany "Explanation in Mathematics: Proofs and Practice".
    Download  
     
    Export citation  
     
    Bookmark  
  18. Multi-Level Selection and the Explanatory Value of Mathematical Decompositions.Christopher Clarke - 2016 - British Journal for the Philosophy of Science 67 (4):1025-1055.
    Do multi-level selection explanations of the evolution of social traits deepen the understanding provided by single-level explanations? Central to the former is a mathematical theorem, the multi-level Price decomposition. I build a framework through which to understand the explanatory role of such non-empirical decompositions in scientific practice. Applying this general framework to the present case places two tasks on the agenda. The first task is to distinguish the various ways of suppressing within-collective variation in fitness, and moreover to evaluate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19.  86
    Can We Have Mathematical Understanding of Physical Phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. On the ‘Indispensable Explanatory Role’ of Mathematics.Juha Saatsi - 2016 - Mind 125 (500):1045-1070.
    The literature on the indispensability argument for mathematical realism often refers to the ‘indispensable explanatory role’ of mathematics. I argue that we should examine the notion of explanatory indispensability from the point of view of specific conceptions of scientific explanation. The reason is that explanatory indispensability in and of itself turns out to be insufficient for justifying the ontological conclusions at stake. To show this I introduce a distinction between different kinds of explanatory roles—some ‘thick’ and ontologically committing, (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  21. Explaining the Behaviour of Random Ecological Networks: The Stability of the Microbiome as a Case of Integrative Pluralism.Roger Deulofeu, Javier Suárez & Alberto Pérez-Cervera - forthcoming - Synthese:1-23.
    Explaining the behaviour of ecosystems is one of the key challenges for the biological sciences. Since 2000, new-mechanicism has been the main model to account for the nature of scientific explanation in biology. The universality of the new-mechanist view in biology has been however put into question due to the existence of explanations that account for some biological phenomena in terms of their mathematical properties (mathematical explanations). Supporters of mathematical explanation have argued that the (...) of the behaviour of ecosystems is usually provided in terms of their mathematical properties, and not in mechanistic terms. They have intensively studied the explanation of the properties of ecosystems that behave following the rules of a non-random network. However, no attention has been devoted to the study of the nature of the explanation in those that form a random network. In this paper, we cover that gap by analysing the explanation of the stability behaviour of the microbiome recently elaborated by Coyte and colleagues, to determine whether it fits with the model of explanation suggested by the new-mechanist or by the defenders of mathematical explanation. Our analysis of this case study supports three theses: (1) that the explanation is not given solely in terms of mechanisms, as the new-mechanists understand the concept; (2) that the mathematical properties that describe the system play an essential explanatory role, but they do not exhaust the explanation; (3) that a non-previously identified appeal to the type of interactions that the entities in the network can exhibit, as well as their abundance, is also necessary for Coyte and colleagues’ account to be fully explanatory. From the combination of these three theses we argue for the necessity of an integrative pluralist view of the nature of behaviour explanation when this is given by appealing to the existence of a random network. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Explanatory Abstractions.Lina Jansson & Juha Saatsi - 2019 - British Journal for the Philosophy of Science 70 (3):817–844.
    A number of philosophers have recently suggested that some abstract, plausibly non-causal and/or mathematical, explanations explain in a way that is radically dif- ferent from the way causal explanation explain. Namely, while causal explanations explain by providing information about causal dependence, allegedly some abstract explanations explain in a way tied to the independence of the explanandum from the microdetails, or causal laws, for example. We oppose this recent trend to regard abstractions as explanatory in some sui generis way, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  23. Viewing-as Explanations and Ontic Dependence.William D’Alessandro - 2020 - Philosophical Studies 177 (3):769-792.
    According to a widespread view in metaphysics and philosophy of science, all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewing-as explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper defends this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  24.  74
    The Enhanced Indispensability Argument, the Circularity Problem, and the Interpretability Strategy.Jan Heylen & Lars Arthur Tump - forthcoming - Synthese:1-13.
    Within the context of the Quine–Putnam indispensability argument, one discussion about the status of mathematics is concerned with the ‘Enhanced Indispensability Argument’, which makes explicit in what way mathematics is supposed to be indispensable in science, namely explanatory. If there are genuine mathematical explanations of empirical phenomena, an argument for mathematical platonism could be extracted by using inference to the best explanation. The best explanation of the primeness of the life cycles of Periodical Cicadas is genuinely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. How Can Necessary Facts Call for Explanation?Dan Baras - forthcoming - Synthese:1-18.
    While there has been much discussion about what makes some mathematical proofs more explanatory than others, and what are mathematical coincidences, in this article I explore the distinct phenomenon of mathematical facts that call for explanation. The existence of mathematical facts that call for explanation stands in tension with virtually all existing accounts of “calling for explanation”, which imply that necessary facts cannot call for explanation. In this paper I explore what theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  27. Equilibrium Explanation as Structural Non-Mechanistic Explanation: The Case Long-Term Bacterial Persistence in Human Hosts.Javier Suárez & Roger Deulofeu - 2019 - Teorema: International Journal of Philosophy 3 (38):95-120.
    Philippe Huneman has recently questioned the widespread application of mechanistic models of scientific explanation based on the existence of structural explanations, i.e. explanations that account for the phenomenon to be explained in virtue of the mathematical properties of the system where the phenomenon obtains, rather than in terms of the mechanisms that causally produce the phenomenon. Structural explanations are very diverse, including cases like explanations in terms of bowtie structures, in terms of the topological properties of the system, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - forthcoming - Erkenntnis:1-19.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. A Dilemma for Mathematical Constructivism.Samuel Kahn - 2020 - Axiomathes:01-10.
    In this paper I argue that constructivism in mathematics faces a dilemma. In particular, I maintain that constructivism is unable to explain (i) the application of mathematics to nature and (ii) the intersubjectivity of mathematics unless (iii) it is conjoined with two theses that reduce it to a form of mathematical Platonism. The paper is divided into five sections. In the first section of the paper, I explain the difference between mathematical constructivism and mathematical Platonism and I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Because Without Cause: Non-Causal Explanations in Science and Mathematics.Mark Povich & Carl F. Craver - 2018 - Philosophical Review 127 (3):422-426.
    Lange’s collection of expanded, mostly previously published essays, packed with numerous, beautiful examples of putatively non-causal explanations from biology, physics, and mathematics, challenges the increasingly ossified causal consensus about scientific explanation, and, in so doing, launches a new field of philosophic investigation. However, those who embraced causal monism about explanation have done so because appeal to causal factors sorts good from bad scientific explanations and because the explanatory force of good explanations seems to derive from revealing the relevant (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Models and Explanation.Alisa Bokulich - 2017 - In Lorenzo Magnani & Tommaso Wayne Bertolotti (eds.), Springer Handbook of Model-Based Science. Springer. pp. 103-118.
    Detailed examinations of scientific practice have revealed that the use of idealized models in the sciences is pervasive. These models play a central role in not only the investigation and prediction of phenomena, but in their received scientific explanations as well. This has led philosophers of science to begin revising the traditional philosophical accounts of scientific explanation in order to make sense of this practice. These new model-based accounts of scientific explanation, however, raise a number of key questions: (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  32. Universality Caused: The Case of Renormalization Group Explanation.Emily Sullivan - 2019 - European Journal for Philosophy of Science 9 (3):36.
    Recently, many have argued that there are certain kinds of abstract mathematical explanations that are noncausal. In particular, the irrelevancy approach suggests that abstracting away irrelevant causal details can leave us with a noncausal explanation. In this paper, I argue that the common example of Renormalization Group explanations of universality used to motivate the irrelevancy approach deserves more critical attention. I argue that the reasons given by those who hold up RG as noncausal do not stand up to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  61
    Importance and Explanatory Relevance: The Case of Mathematical Explanations.Gabriel Târziu - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):393-412.
    A way to argue that something plays an explanatory role in science is by linking explanatory relevance with importance in the context of an explanation. The idea is deceptively simple: a part of an explanation is an explanatorily relevant part of that explanation if removing it affects the explanation either by destroying it or by diminishing its explanatory power, i.e. an important part is an explanatorily relevant part. This can be very useful in many ontological debates. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. The Aristotelian Explanation of the Halo.Monte Ransome Johnson - 2009 - Apeiron 42 (4):325-357.
    For an Aristotelian observer, the halo is a puzzling phenomenon since it is apparently sublunary, and yet perfectly circular. This paper studies Aristotle's explanation of the halo in Meteorology III 2-3 as an optical illusion, as opposed to a substantial thing (like a cloud), as was thought by his predecessors and even many successors. Aristotle's explanation follows the method of explanation of the Posterior Analytics for "subordinate" or "mixed" mathematical-physical sciences. The accompanying diagram described by Aristotle (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Mathematical Representation: Playing a Role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36.  43
    Function-Theoretic Explanation and the Search for Neural Mechanisms.Frances Egan - 2017 - In Explanation and Integration in Mind and Brain Science 145-163. Oxford, UK: pp. 145-163.
    A common kind of explanation in cognitive neuroscience might be called functiontheoretic: with some target cognitive capacity in view, the theorist hypothesizes that the system computes a well-defined function (in the mathematical sense) and explains how computing this function constitutes (in the system’s normal environment) the exercise of the cognitive capacity. Recently, proponents of the so-called ‘new mechanist’ approach in philosophy of science have argued that a model of a cognitive capacity is explanatory only to the extent that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37.  56
    Reconstruction in Philosophy of Mathematics.Davide Rizza - 2018 - Dewey Studies 2 (2):31-53.
    Throughout his work, John Dewey seeks to emancipate philosophical reflection from the influence of the classical tradition he traces back to Plato and Aristotle. For Dewey, this tradition rests upon a conception of knowledge based on the separation between theory and practice, which is incompatible with the structure of scientific inquiry. Philosophical work can make progress only if it is freed from its traditional heritage, i.e. only if it undergoes reconstruction. In this study I show that implicit appeals to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Justification and Explanation in Mathematics and Morality.Justin Clarke-Doane - 2015 - Oxford Studies in Metaethics 10.
    In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  39. Towards a Theory of Singular Thought About Abstract Mathematical Objects.James E. Davies - 2019 - Synthese 196 (10):4113-4136.
    This essay uses a mental files theory of singular thought—a theory saying that singular thought about and reference to a particular object requires possession of a mental store of information taken to be about that object—to explain how we could have such thoughts about abstract mathematical objects. After showing why we should want an explanation of this I argue that none of three main contemporary mental files theories of singular thought—acquaintance theory, semantic instrumentalism, and semantic cognitivism—can give it. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Diagrams as Locality Aids for Explanation and Model Construction in Cell Biology.Nicholaos Jones & Olaf Wolkenhauer - 2012 - Biology and Philosophy 27 (5):705-721.
    Using as case studies two early diagrams that represent mechanisms of the cell division cycle, we aim to extend prior philosophical analyses of the roles of diagrams in scientific reasoning, and specifically their role in biological reasoning. The diagrams we discuss are, in practice, integral and indispensible elements of reasoning from experimental data about the cell division cycle to mathematical models of the cycle’s molecular mechanisms. In accordance with prior analyses, the diagrams provide functional explanations of the cell cycle (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  41. Retrieving the Mathematical Mission of the Continuum Concept From the Transfinitely Reductionist Debris of Cantor’s Paradise. Extended Abstract.Edward G. Belaga - forthcoming - International Journal of Pure and Applied Mathematics.
    What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from the (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  42. Argument and Explanation in Mathematics.Michel Dufour - 2013 - In Dima Mohammed and Marcin Lewiński (ed.), Virtues of Argumentation. Proceedings of the 10th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 22-26 May 2013. pp. pp. 1-14..
    Are there arguments in mathematics? Are there explanations in mathematics? Are there any connections between argument, proof and explanation? Highly controversial answers and arguments are reviewed. The main point is that in the case of a mathematical proof, the pragmatic criterion used to make a distinction between argument and explanation is likely to be insufficient for you may grant the conclusion of a proof but keep on thinking that the proof is not explanatory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. ¿ES LA MATEMÁTICA LA NOMOGONÍA DE LA CONCIENCIA? REFLEXIONES ACERCA DEL ORIGEN DE LA CONCIENCIA Y EL PLATONISMO MATEMÁTICO DE ROGER PENROSE / Is Mathematics the “nomogony” of Consciousness? Reflections on the origin of consciousness and mathematical Platonism of Roger Penrose.Miguel Acosta - 2016 - Naturaleza y Libertad. Revista de Estudios Interdisciplinares 7:15-39.
    Al final de su libro “La conciencia inexplicada”, Juan Arana señala que la nomología, explicación según las leyes de la naturaleza, requiere de una nomogonía, una consideración del origen de las leyes. Es decir, que el orden que observamos en el mundo natural requiere una instancia previa que ponga ese orden específico. Sabemos que desde la revolución científica la mejor manera de explicar dicha nomología ha sido mediante las matemáticas. Sin embargo, en las últimas décadas se han presentado algunas propuestas (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  44. Moving, Moved and Will Be Moving: Zeno and Nāgārjuna on Motion From Mahāmudrā, Koan and Mathematical Physics Perspectives.Robert Alan Paul - 2017 - Comparative Philosophy 8 (2):65-89.
    Zeno’s Arrow and Nāgārjuna’s Fundamental Wisdom of the Middle Way Chapter 2 contain paradoxical, dialectic arguments thought to indicate that there is no valid explanation of motion, hence there is no physical or generic motion. There are, however, diverse interpretations of the latter text, and I argue they apply to Zeno’s Arrow as well. I also find that many of the interpretations are dependent on a mathematical analysis of material motion through space and time. However, with modern philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Absolute Decidability and Mathematical Modality.Hasen Khudairi - manuscript
    This paper aims to contribute to the analysis of the nature of mathematical modality, and to the applications of the latter to unrestricted quantification and absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of multi-dimensional intensional semantics ought to be applied to the mathematical setting. The framework permits of a (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  46.  91
    Some Recent Existential Appeals to Mathematical Experience.Michael J. Shaffer - 2006 - Principia: An International Journal of Epistemology 10 (2):143-170.
    Some recent work by philosophers of mathematics has been aimed at showing that our knowledge of the existence of at least some mathematical objects and/or sets can be epistemically grounded by appealing to perceptual experience. The sensory capacity that they refer to in doing so is the ability to perceive numbers, mathematical properties and/or sets. The chief defense of this view as it applies to the perception of sets is found in Penelope Maddy’s Realism in Mathematics, but a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Non-Naturalistic Moral Explanation.Samuel Baron, Mark Colyvan, Kristie Miller & Michael Rubin - forthcoming - Synthese.
    This paper focuses on a particular kind of non-naturalism: moral non-naturalism. Our primary aim is to argue that the moral non-naturalist places herself in an invidious position if she simply accepts that the non-natural moral facts that she posits are not explanatory. This has, hitherto, been the route that moral non-naturalists have taken. They have attempted to make their position more palatable by pointing out that there is reason to be suspicious of the explanatory criterion of ontological commitment. That is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Causal Modeling and the Efficacy of Action.Holly Andersen - forthcoming - In Michael Brent (ed.), Mental Action and the Conscious Mind. Routledge.
    This paper brings together Thompson's naive action explanation with interventionist modeling of causal structure to show how they work together to produce causal models that go beyond current modeling capabilities, when applied to specifically selected systems. By deploying well-justified assumptions about rationalization, we can strengthen existing causal modeling techniques' inferential power in cases where we take ourselves to be modeling causal systems that also involve actions. The internal connection between means and end exhibited in naive action explanation has (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  49. Optimal Representations and the Enhanced Indispensability Argument.Manuel Barrantes - 2019 - Synthese 196 (1):247-263.
    The Enhanced Indispensability Argument appeals to the existence of Mathematical Explanations of Physical Phenomena to justify mathematical Platonism, following the principle of Inference to the Best Explanation. In this paper, I examine one example of a MEPP—the explanation of the 13-year and 17-year life cycle of magicicadas—and argue that this case cannot be used defend the EIA. I then generalize my analysis of the cicada case to other MEPPs, and show that these explanations rely on what (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Conceptual Evaluation: Epistemic.Alejandro Pérez Carballo - 2020 - In Alexis Burgess, Herman Cappelen & David Plunkett (eds.), Conceptual Ethics and Conceptual Engineering. Oxford, UK: Oxford University Press. pp. 304-332.
    On a view implicitly endorsed by many, a concept is epistemically better than another if and because it does a better job at ‘carving at the joints', or if the property corresponding to it is ‘more natural' than the one corresponding to another. This chapter offers an argument against this seemingly plausible thought, starting from three key observations about the way we use and evaluate concepts from en epistemic perspective: that we look for concepts that play a role in explanations (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000