Results for 'Mathematical explanation'

964 found
Order:
  1. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  2. Are mathematical explanations causal explanations in disguise?A. Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2024 - Philosophy of Science 91 (4):887-905.
    There is a major debate as to whether there are non-causal mathematical explanations of physical facts that show how the facts under question arise from a degree of mathematical necessity considered stronger than that of contingent causal laws. We focus on Marc Lange’s account of distinctively mathematical explanations to argue that purported mathematical explanations are essentially causal explanations in disguise and are no different from ordinary applications of mathematics. This is because these explanations work not by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. The directionality of distinctively mathematical explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  6. Platonic Relations and Mathematical Explanations.Robert Knowles - 2021 - Philosophical Quarterly 71 (3):623-644.
    Some scientific explanations appear to turn on pure mathematical claims. The enhanced indispensability argument appeals to these ‘mathematical explanations’ in support of mathematical platonism. I argue that the success of this argument rests on the claim that mathematical explanations locate pure mathematical facts on which their physical explananda depend, and that any account of mathematical explanation that supports this claim fails to provide an adequate understanding of mathematical explanation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7. Mathematical Explanation: A Contextual Approach.Sven Delarivière, Joachim Frans & Bart Van Kerkhove - 2017 - Journal of Indian Council of Philosophical Research 34 (2):309-329.
    PurposeIn this article, we aim to present and defend a contextual approach to mathematical explanation.MethodTo do this, we introduce an epistemic reading of mathematical explanation.ResultsThe epistemic reading not only clarifies the link between mathematical explanation and mathematical understanding, but also allows us to explicate some contextual factors governing explanation. We then show how several accounts of mathematical explanation can be read in this approach.ConclusionThe contextual approach defended here clears up the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  8. Mathematical Explanation: A Pythagorean Proposal.Sam Baron - 2024 - British Journal for the Philosophy of Science 75 (3):663-685.
    Mathematics appears to play an explanatory role in science. This, in turn, is thought to pave a way toward mathematical Platonism. A central challenge for mathematical Platonists, however, is to provide an account of how mathematical explanations work. I propose a property-based account: physical systems possess mathematical properties, which either guarantee the presence of other mathematical properties and, by extension, the physical states that possess them; or rule out other mathematical properties, and their associated (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Explanatory Information in Mathematical Explanations of Physical Phenomena.Manuel Barrantes - 2020 - Australasian Journal of Philosophy 98 (3):590-603.
    In this paper I defend an intermediate position between the ‘bare mathematical results’ view and the ‘transmission’ view of mathematical explanations of physical phenomena (MEPPs). I argue that, in MEPPs, it is not enough to deduce the explanandum from the generalizations cited in the explanans. Rather, we must add information regarding why those generalizations obtain. However, I also argue that it is not necessary to provide explanatory proofs of the mathematical theorems that represent those generalizations. I illustrate (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  10. Platonism and Intra-mathematical Explanation.Sam Baron - forthcoming - Philosophical Quarterly.
    I introduce an argument for Platonism based on intra-mathematical explanation: the explanation of one mathematical fact by another. The argument is important for two reasons. First, if the argument succeeds then it provides a basis for Platonism that does not proceed via standard indispensability considerations. Second, if the argument fails it can only do so for one of three reasons: either because there are no intra-mathematical explanations, or because not all explanations are backed by dependence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. (1 other version)Not so distinctively mathematical explanations: topology and dynamical systems.Aditya Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2022 - Synthese 200 (3):1-40.
    So-called ‘distinctively mathematical explanations’ (DMEs) are said to explain physical phenomena, not in terms of contingent causal laws, but rather in terms of mathematical necessities that constrain the physical system in question. Lange argues that the existence of four or more equilibrium positions of any double pendulum has a DME. Here we refute both Lange’s claim itself and a strengthened and extended version of the claim that would pertain to any n-tuple pendulum system on the ground that such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. A Scheme Foiled: A Critique of Baron's Account of Extra-mathematical Explanation.Mark Povich - 2023 - Mind 132 (526):479–492.
    Extra-mathematical explanations explain natural phenomena primarily by appeal to mathematical facts. Philosophers disagree about whether there are extra-mathematical explanations, the correct account of them if they exist, and their implications (e.g., for the philosophy of scientific explanation and for the metaphysics of mathematics) (Baker 2005, 2009; Bangu 2008; Colyvan 1998; Craver and Povich 2017; Lange 2013, 2016, 2018; Mancosu 2008; Povich 2019, 2020; Steiner 1978). In this discussion note, I present three desiderata for any account of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. The Narrow Ontic Counterfactual Account of Distinctively Mathematical Explanation.Mark Povich - 2021 - British Journal for the Philosophy of Science 72 (2):511-543.
    An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductive-mathematical account, because it is modelled on the deductive-nomological account, is unlikely to satisfy these desiderata. I provide a counterfactual (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  14. Mathematics, explanation and reductionism: exposing the roots of the Egyptianism of European civilization.Arran Gare - 2005 - Cosmos and History 1 (1):54-89.
    We have reached the peculiar situation where the advance of mainstream science has required us to dismiss as unreal our own existence as free, creative agents, the very condition of there being science at all. Efforts to free science from this dead-end and to give a place to creative becoming in the world have been hampered by unexamined assumptions about what science should be, assumptions which presuppose that if creative becoming is explained, it will be explained away as an illusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. A Conventionalist Account of Distinctively Mathematical Explanation.Mark Povich - 2023 - Philosophical Problems in Science 74:171–223.
    Distinctively mathematical explanations (DMEs) explain natural phenomena primarily by appeal to mathematical facts. One important question is whether there can be an ontic account of DME. An ontic account of DME would treat the explananda and explanantia of DMEs as ontic structures and the explanatory relation between them as an ontic relation (e.g., Pincock 2015, Povich 2021). Here I present a conventionalist account of DME, defend it against objections, and argue that it should be considered ontic. Notably, if (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Modality and constitution in distinctively mathematical explanations.Mark Povich - 2020 - European Journal for Philosophy of Science 10 (3):1-10.
    Lange argues that some natural phenomena can be explained by appeal to mathematical, rather than natural, facts. In these “distinctively mathematical” explanations, the core explanatory facts are either modally stronger than facts about ordinary causal law or understood to be constitutive of the physical task or arrangement at issue. Craver and Povich argue that Lange’s account of DME fails to exclude certain “reversals”. Lange has replied that his account can avoid these directionality charges. Specifically, Lange argues that in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  17. (1 other version)Complements, not competitors: causal and mathematical explanations.Holly Andersen - 2017 - British Journal for the Philosophy of Science 69 (2):485-508.
    A finer-grained delineation of a given explanandum reveals a nexus of closely related causal and non- causal explanations, complementing one another in ways that yield further explanatory traction on the phenomenon in question. By taking a narrower construal of what counts as a causal explanation, a new class of distinctively mathematical explanations pops into focus; Lange’s characterization of distinctively mathematical explanations can be extended to cover these. This new class of distinctively mathematical explanations is illustrated with (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  18. Unification and mathematical explanation in science.Sam Baron - 2021 - Synthese 199 (3-4):7339-7363.
    Mathematics clearly plays an important role in scientific explanation. Debate continues, however, over the kind of role that mathematics plays. I argue that if pure mathematical explananda and physical explananda are unified under a common explanation within science, then we have good reason to believe that mathematics is explanatory in its own right. The argument motivates the search for a new kind of scientific case study, a case in which pure mathematical facts and physical facts are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Importance and Explanatory Relevance: The Case of Mathematical Explanations.Gabriel Târziu - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):393-412.
    A way to argue that something plays an explanatory role in science is by linking explanatory relevance with importance in the context of an explanation. The idea is deceptively simple: a part of an explanation is an explanatorily relevant part of that explanation if removing it affects the explanation either by destroying it or by diminishing its explanatory power, i.e. an important part is an explanatorily relevant part. This can be very useful in many ontological debates. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. (1 other version)Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  21. Using corpus linguistics to investigate mathematical explanation.Juan Pablo Mejía Ramos, Lara Alcock, Kristen Lew, Paolo Rago, Chris Sangwin & Matthew Inglis - 2019 - In Eugen Fischer & Mark Curtis (eds.), Methodological Advances in Experimental Philosophy. London: Bloomsbury Press. pp. 239–263.
    In this chapter we use methods of corpus linguistics to investigate the ways in which mathematicians describe their work as explanatory in their research papers. We analyse use of the words explain/explanation (and various related words and expressions) in a large corpus of texts containing research papers in mathematics and in physical sciences, comparing this with their use in corpora of general, day-to-day English. We find that although mathematicians do use this family of words, such use is considerably less (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  22. Mathematical and Non-causal Explanations: an Introduction.Daniel Kostić - 2019 - Perspectives on Science 1 (27):1-6.
    In the last couple of years, a few seemingly independent debates on scientific explanation have emerged, with several key questions that take different forms in different areas. For example, the questions what makes an explanation distinctly mathematical and are there any non-causal explanations in sciences (i.e., explanations that don’t cite causes in the explanans) sometimes take a form of the question of what makes mathematical models explanatory, especially whether highly idealized models in science can be explanatory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Proof, Explanation, and Justification in Mathematical Practice.Moti Mizrahi - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (4):551-568.
    In this paper, I propose that applying the methods of data science to “the problem of whether mathematical explanations occur within mathematics itself” (Mancosu 2018) might be a fruitful way to shed new light on the problem. By carefully selecting indicator words for explanation and justification, and then systematically searching for these indicators in databases of scholarly works in mathematics, we can get an idea of how mathematicians use these terms in mathematical practice and with what frequency. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Inference to the best explanation and mathematical realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  25. A Noetic Account of Explanation in Mathematics.William D’Alessandro & Ellen Lehet - forthcoming - Philosophical Quarterly.
    We defend a noetic account of intramathematical explanation. On this view, a piece of mathematics is explanatory just in case it produces understanding of an appropriate type. We motivate the view by presenting some appealing features of noeticism. We then discuss and criticize the most prominent extant version of noeticism, due to Inglis and Mejía Ramos, which identifies explanatory understanding with the possession of well-organized cognitive schemas. Finally, we present a novel noetic account. On our view, explanatory understanding arises (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Mathematical Modelling and Contrastive Explanation.Adam Morton - 1990 - Canadian Journal of Philosophy 20 (Supplement):251-270.
    Mathematical models provide explanations of limited power of specific aspects of phenomena. One way of articulating their limits here, without denying their essential powers, is in terms of contrastive explanation.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  27. Why pure mathematical truths are metaphysically necessary: a set-theoretic explanation.Hannes Leitgeb - 2020 - Synthese 197 (7):3113-3120.
    Pure mathematical truths are commonly thought to be metaphysically necessary. Assuming the truth of pure mathematics as currently pursued, and presupposing that set theory serves as a foundation of pure mathematics, this article aims to provide a metaphysical explanation of why pure mathematics is metaphysically necessary.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  28. An Extra-Mathematical Program Explanation of Color Experience.Nicholas Danne - 2020 - International Studies in the Philosophy of Science 33 (3):153-173.
    In the debate over whether mathematical facts, properties, or entities explain physical events (in what philosophers call “extra-mathematical” explanations), Aidan Lyon’s (2012) affirmative answer stands out for its employment of the program explanation (PE) methodology of Frank Jackson and Philip Pettit (1990). Juha Saatsi (2012; 2016) objects, however, that Lyon’s examples from the indispensabilist literature are (i) unsuitable for PE, (ii) nominalizable into non-mathematical terms, and (iii) mysterious about the explanatory relation alleged to obtain between the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Mathematical Representation and Explanation: structuralism, the similarity account, and the hotchpotch picture.Ziren Yang - 2020 - Dissertation, University of Leeds
    This thesis starts with three challenges to the structuralist accounts of applied mathematics. Structuralism views applied mathematics as a matter of building mapping functions between mathematical and target-ended structures. The first challenge concerns how it is possible for a non-mathematical target to be represented mathematically when the mapping functions per se are mathematical objects. The second challenge arises out of inconsistent early calculus, which suggests that mathematical representation does not require rigorous mathematical structures. The third (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  31. (1 other version)Justification and Explanation in Mathematics and Morality.Justin Clarke-Doane - 2006 - Oxford Studies in Metaethics 10.
    In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  32. Because without Cause: Non-Causal Explanations in Science and Mathematics. [REVIEW]Mark Povich & Carl F. Craver - 2018 - Philosophical Review 127 (3):422-426.
    Lange’s collection of expanded, mostly previously published essays, packed with numerous, beautiful examples of putatively non-causal explanations from biology, physics, and mathematics, challenges the increasingly ossified causal consensus about scientific explanation, and, in so doing, launches a new field of philosophic investigation. However, those who embraced causal monism about explanation have done so because appeal to causal factors sorts good from bad scientific explanations and because the explanatory force of good explanations seems to derive from revealing the relevant (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  33. Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  35. Argument and explanation in mathematics.Michel Dufour - 2013 - In Dima Mohammed and Marcin Lewiński (ed.), Virtues of Argumentation. Proceedings of the 10th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 22-26 May 2013. pp. pp. 1-14..
    Are there arguments in mathematics? Are there explanations in mathematics? Are there any connections between argument, proof and explanation? Highly controversial answers and arguments are reviewed. The main point is that in the case of a mathematical proof, the pragmatic criterion used to make a distinction between argument and explanation is likely to be insufficient for you may grant the conclusion of a proof but keep on thinking that the proof is not explanatory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Can we have mathematical understanding of physical phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Viewing-as explanations and ontic dependence.William D’Alessandro - 2020 - Philosophical Studies 177 (3):769-792.
    According to a widespread view in metaphysics and philosophy of science, all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewing-as explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper defends this (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  38. Introduction: Scientific Explanation Beyond Causation.Alexander Reutlinger & Juha Saatsi - 2018 - In Alexander Reutlinger & Juha Saatsi (eds.), Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations. Oxford, United Kingdom: Oxford University Press.
    This is an introduction to the volume "Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations", edited by A. Reutlinger and J. Saatsi (OUP, forthcoming in 2017). -/- Explanations are very important to us in many contexts: in science, mathematics, philosophy, and also in everyday and juridical contexts. But what is an explanation? In the philosophical study of explanation, there is long-standing, influential tradition that links explanation intimately to causation: we often explain by providing accurate information about (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  39. On the ‘Indispensable Explanatory Role’ of Mathematics.Juha Saatsi - 2016 - Mind 125 (500):1045-1070.
    The literature on the indispensability argument for mathematical realism often refers to the ‘indispensable explanatory role’ of mathematics. I argue that we should examine the notion of explanatory indispensability from the point of view of specific conceptions of scientific explanation. The reason is that explanatory indispensability in and of itself turns out to be insufficient for justifying the ontological conclusions at stake. To show this I introduce a distinction between different kinds of explanatory roles—some ‘thick’ and ontologically committing, (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  40. Why inference to the best explanation doesn’t secure empirical grounds for mathematical platonism.Kenneth Boyce - 2018 - Synthese 198 (1):1-13.
    Proponents of the explanatory indispensability argument for mathematical platonism maintain that claims about mathematical entities play an essential explanatory role in some of our best scientific explanations. They infer that the existence of mathematical entities is supported by way of inference to the best explanation from empirical phenomena and therefore that there are the same sort of empirical grounds for believing in mathematical entities as there are for believing in concrete unobservables such as quarks. I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  42. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  43. Unrealistic Models in Mathematics.William D'Alessandro - 2023 - Philosophers' Imprint 23 (#27).
    Models are indispensable tools of scientific inquiry, and one of their main uses is to improve our understanding of the phenomena they represent. How do models accomplish this? And what does this tell us about the nature of understanding? While much recent work has aimed at answering these questions, philosophers' focus has been squarely on models in empirical science. I aim to show that pure mathematics also deserves a seat at the table. I begin by presenting two cases: Cramér’s random (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Equilibrium explanation as structural non-mechanistic explanation: The case long-term bacterial persistence in human hosts.Javier Suárez & Roger Deulofeu - 2019 - Teorema: International Journal of Philosophy 3 (38):95-120.
    Philippe Huneman has recently questioned the widespread application of mechanistic models of scientific explanation based on the existence of structural explanations, i.e. explanations that account for the phenomenon to be explained in virtue of the mathematical properties of the system where the phenomenon obtains, rather than in terms of the mechanisms that causally produce the phenomenon. Structural explanations are very diverse, including cases like explanations in terms of bowtie structures, in terms of the topological properties of the system, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  45. Mathematical anti-realism and explanatory structure.Bruno Whittle - 2021 - Synthese 199 (3-4):6203-6217.
    Plausibly, mathematical claims are true, but the fundamental furniture of the world does not include mathematical objects. This can be made sense of by providing mathematical claims with paraphrases, which make clear how the truth of such claims does not require the fundamental existence of mathematical objects. This paper explores the consequences of this type of position for explanatory structure. There is an apparently straightforward relationship between this sort of structure, and the logical sort: i.e. logically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  47. Dissertation Abstract - Math Over Mechanism: Proposing the Rational-Relational Theory of Scientific Explanation in Light of Impinging Constraints of New Mechanism.Jenny Nielsen - forthcoming - In ProQuest.
    In this dissertation I achieve the following: (1) I present motivating criteria for a general comprehensive theory of scientific explanation. I review historical approaches to modeling explanation in light of these criteria. (2) I present New Mechanist Explanation ("NME") as the leading candidate for a contemporary, complete theory of scientific explanation. (3) I present constraints on the applicability of New Mechanism in modeling biology, chemistry, and physics. I argue for the unsuitability of NME as a candidate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Counter Countermathematical Explanations.Atoosa Kasirzadeh - 2021 - Erkenntnis 88 (6):2537-2560.
    Recently, there have been several attempts to generalize the counterfactual theory of causal explanations to mathematical explanations. The central idea of these attempts is to use conditionals whose antecedents express a mathematical impossibility. Such countermathematical conditionals are plugged into the explanatory scheme of the counterfactual theory and—so is the hope—capture mathematical explanations. Here, I dash the hope that countermathematical explanations simply parallel counterfactual explanations. In particular, I show that explanations based on countermathematicals are susceptible to three problems (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49. Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  50. Multi-Level Selection and the Explanatory Value of Mathematical Decompositions.Christopher Clarke - 2016 - British Journal for the Philosophy of Science 67 (4):1025-1055.
    Do multi-level selection explanations of the evolution of social traits deepen the understanding provided by single-level explanations? Central to the former is a mathematical theorem, the multi-level Price decomposition. I build a framework through which to understand the explanatory role of such non-empirical decompositions in scientific practice. Applying this general framework to the present case places two tasks on the agenda. The first task is to distinguish the various ways of suppressing within-collective variation in fitness, and moreover to evaluate (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 964