Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some mathematicians already there, ready to (...) meet them, who have explicitly invoked virtues in discussing what is necessary for a mathematician to succeed. In both ethics and epistemology, virtue theory tends to emphasize character virtues, the acquired excellences of people. But people are not the only sort of thing whose excellences may be identified as virtues. Theoretical virtues have attracted attention in the philosophy of science as components of an account of theory choice. Within the philosophy of mathematics, and mathematics itself, attention to virtues has emerged from a variety of disparate sources. Theoretical virtues have been put forward both to analyse the practice of proof and to justify axioms; intellectual virtues have found multiple applications in the epistemology of mathematics; and ethical virtues have been offered as a basis for understanding the social utility of mathematicalpractice. Indeed, some authors have advocated virtue epistemology as the correct epistemology for mathematics (and perhaps even as the basis for progress in the metaphysics of mathematics). This topical collection brings together several of the researchers who have begun to study mathematical practices from a virtue perspective with the intention of consolidating and encouraging this trend. (shrink)
Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...) for the behavior of complex applied mathematical models and statistical algorithms. Mathematics has therefore become (among other things) an experimental science (though that has not diminished the importance of proof in the traditional style). We examine how the evaluation of evidence for conjectures works in mathematicalpractice. We explain the (objective) Bayesian view of probability, which gives a theoretical framework for unifying evidence evaluation in science and law as well as in mathematics. Numerical evidence in mathematics is related to the problem of induction; the occurrence of straightforward inductive reasoning in the purely logical material of pure mathematics casts light on the nature of induction as well as of mathematical reasoning. (shrink)
In this paper, I propose that applying the methods of data science to “the problem of whether mathematical explanations occur within mathematics itself” (Mancosu 2018) might be a fruitful way to shed new light on the problem. By carefully selecting indicator words for explanation and justification, and then systematically searching for these indicators in databases of scholarly works in mathematics, we can get an idea of how mathematicians use these terms in mathematicalpractice and with what frequency. (...) The results of this empirical study suggest that mathematical explanations do occur in research articles published in mathematics journals, as indicated by the occurrence of explanation indicators. When compared with the use of justification indicators, however, the data suggest that justifications occur much more frequently than explanations in scholarly mathematicalpractice. The results also suggest that justificatory proofs occur much more frequently than explanatory proofs, thus suggesting that proof may be playing a larger justificatory role than an explanatory role in scholarly mathematicalpractice. (shrink)
We examine the influence of word choices on mathematicalpractice, i.e. in developing definitions, theorems, and proofs. As a case study, we consider Euclid’s and Euler’s word choices in their influential developments of geometry and, in particular, their use of the term ‘polyhedron’. Then, jumping to the twentieth century, we look at word choices surrounding the use of the term ‘polyhedron’ in the work of Coxeter and of Grünbaum. We also consider a recent and explicit conflict of approach (...) between Grünbaum and Shephard on the one hand and that of Hilton and Pedersen on the other, elucidating that the conflict was engendered by disagreement over the proper conceptualization, and so also the appropriate word choices, in the study of polyhedra. (shrink)
Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematicalpractice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if (...) so, how do they relate to the sorts of explanation encountered in philosophy of science and metaphysics? (shrink)
Douglas Walton’s multitudinous contributions to the study of argumentation seldom, if ever, directly engage with argumentation in mathematics. Nonetheless, several of the innovations with which he is most closely associated lend themselves to improving our understanding of mathematical arguments. I concentrate on two such innovations: dialogue types (§1) and argumentation schemes (§2). I argue that both devices are much more applicable to mathematical reasoning than may be commonly supposed.
There are different narratives on mathematics as part of our world, some of which are more appropriate than others. Such narratives might be of the form ‘Mathematics is useful’, ‘Mathematics is beautiful’, or ‘Mathematicians aim at theorem-credit’. These narratives play a crucial role in mathematics education and in society as they are influencing people’s willingness to engage with the subject or the way they interpret mathematical results in relation to real-world questions; the latter yielding important normative considerations. Our strategy (...) is to frame current narratives of mathematics from a virtue-theoretic perspective. We identify the practice of mathematizing, put forward by Freudenthal’s ‘Realistic mathematics education’, as virtuous and use it to evaluate different narratives. We show that this can help to render the narratives more adequately, and to provide implications for societal organization. (shrink)
I prove that invoking the univalence axiom is equivalent to arguing 'without loss of generality' (WLOG) within Propositional Univalent Foundations (PropUF), the fragment of Univalent Foundations (UF) in which all homotopy types are mere propositions. As a consequence, I argue that practicing mathematicians, in accepting WLOG as a valid form of argument, implicitly accept the univalence axiom and that UF rightly serves as a Foundation for MathematicalPractice. By contrast, ZFC is inconsistent with WLOG as it is applied, (...) and therefore cannot serve as a foundation for practice. (shrink)
We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, which gave rise to this special issue. Lastly, (...) we provide a summary of the contributions to this issue. (shrink)
Scopo di questo agile ma denso volume è approfondire “The part played by the mathematical construction in the context of a full investigation of Kant’s theory of sensibility, that to say the Transcendental Aesthetic”. Si tratta della ripresentazione della tesi di dottorato della Shabel, da cui la stessa ha riportato ampi squarci per un articolo award-winning 1998 dal titolo ”Kant on the Symbolic Construction of Mathematical Concepts” (Studies in the History and the Philosophy of Science). Non si tratta (...) di un saggio di circostanza, bensì del risultato di un'attenta e approfondita ricerca sul ruolo della costruzione di concetti, come praticata e intesa in matematica al tempo di Kant e che sicuramente influenzò la stesura dell’Estetica Trascendentale. (shrink)
This paper focuses on the distinction between methods which are mathematically "clever", and those which are simply crude, typically repetitive and computer intensive, approaches for "crunching" out answers to problems. Examples of the latter include simulated probability distributions and resampling methods in statistics, and iterative methods for solving equations or optimisation problems. Most of these methods require software support, but this is easily provided by a PC. The paper argues that the crunchier methods often have substantial advantages from the perspectives (...) of user-friendliness, reliability (in the sense that misuse is less likely), educational efficiency and realism. This means that they offer very considerable potential for simplifying the mathematical syllabus underlying many areas of applied mathematics such as management science and statistics: crunchier methods can provide the same, or greater, technical power, flexibility and insight, while requiring only a fraction of the mathematical conceptual background needed by their cleverer brethren. (shrink)
Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematicalpractice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic (...) systems and that much of mathematics could be expressed in a single language. The new framework was the product of an interdisciplinary coalition whose ideas resemble those later adopted by the Vienna Circle and logical empiricists. (shrink)
Models are indispensable tools of scientific inquiry, and one of their main uses is to improve our understanding of the phenomena they represent. How do models accomplish this? And what does this tell us about the nature of understanding? While much recent work has aimed at answering these questions, philosophers' focus has been squarely on models in empirical science. I aim to show that pure mathematics also deserves a seat at the table. I begin by presenting two cases: Cramér’s random (...) model of the prime numbers and the function field model of the integers. These cases show that mathematicians, like empirical scientists, rely on unrealistic models to gain understanding of complex phenomena. They also have important implications for some much-discussed theses about scientific understanding. First, modeling practices in mathematics confirm that one can gain understanding without obtaining an explanation. Second, these cases undermine the popular thesis that unrealistic models confer understanding by imparting counterfactual knowledge. (shrink)
The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematicalpractice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, (...) which are essential to creative mathematics. The components of the joke are explicated by argumentation schemes devised for application to topic-neutral reasoning. These in turn are classified under seven headings: retroduction, citation, intuition, meta-argument, closure, generalization, and definition. Finally, the wider significance of this account for the cognitive science of mathematics is discussed. (shrink)
The objective of this article is twofold. First, a methodological issue is addressed. It is pointed out that even if philosophers of mathematics have been recently more and more concerned with the practice of mathematics, there is still a need for a sharp deﬁnition of what the targets of a philosophy of mathematicalpractice should be. Three possible objects of inquiry are put forward: (1) the collective dimension of the practice of mathematics; (2) the cognitives capacities (...) requested to the practitioners; and (3) the speciﬁc forms of representation and notation shared and selected by the practitioners. Moreover, it is claimed that a broadening of the notion of ‘permissible action’ as introduced by Larvor (2012) with respect to mathematical arguments, allows for a consideration of all these three elements simultaneously. Second, a case from topology – the proof of Alexander’s theorem – is presented to illustrate a concrete analysis of a mathematicalpractice and to exemplify the proposed method. It is discussed that the attention to the three elements of the practice identiﬁed above brings to the emergence of philosophically relevant features in the practice of topology: the need for a revision in the deﬁnition of criteria of validity, the interest in tracking the operations that are performed on the notation, and the constant and fruitful back-and-forth from one representation to another in dealing with mathematical content. Finally, some suggestions for further research are given in the conclusions. (shrink)
Review of Dowek, Gilles, Computation, Proof, Machine, Cambridge University Press, Cambridge, 2015. Translation of Les Métamorphoses du calcul, Le Pommier, Paris, 2007. Translation from the French by Pierre Guillot and Marion Roman.
In this paper, I study how mathematicians are presented in western popular culture. I identify five stereotypes that I test on the best-known modern movies and television shows containing a significant amount of mathematics or important mathematician characters: (1) Mathematics is highly valued as an intellectual pursuit. (2) Little attention is given to the mathematical content. (3) Mathematicalpractice is portrayed in an unrealistic way. (4) Mathematicians are asocial and unable to enjoy normal life. (5) Higher mathematics (...) is ... (shrink)
Let mathematical justification be the kind of justification obtained when a mathematician provides a proof of a theorem. Are Gettier cases possible for this kind of justification? At first sight we might think not: The standard for mathematical justification is proof and, since proof is bound at the hip with truth, there is no possibility of having an epistemically lucky justification of a true mathematical proposition. In this paper, I argue that Gettier cases are possible (and indeed (...) actual) in mathematical reasoning. By analysing these cases, I suggest that the Gettier phenomenon indicates some upshots for actual mathematicalpractice. (shrink)
The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead (...) explains the attributes them to the mathematicalpractice of representing numbers using more concrete tokens, such as sets, strokes and so on. (shrink)
The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...)mathematical practices and their foundations. Yet, the collapse of Euclidean certitudes, of over 2300 years, and the crisis in the mathematical analysis of the 19th century, led to the exclusion of “geometric judgments” from the foundations of Mathematics. After the success and the limits of the logico-formal analysis, it is necessary to broaden our foundational tools and re-examine the interactions with natural sciences. In particular, the way the geometric and algebraic approaches organize knowledge is analyzed as a cross-disciplinary and cross-cultural issue and will be examined in Mathematical Physics and Biology. We finally discuss how the current notions of mathematical (phase) “space” should be revisited for the purposes of life sciences. (shrink)
Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance (...) for a taxonomy of diagrams in the context of a practice-based philosophy of mathematics, privileging examples from contemporary mathematics. In doing so, I move away from vague, ordinary notions. I define mathematical diagrams as forming notational systems and as being geometric/topological representations or two-dimensional representations. I also examine the relationship between mathematical diagrams and spatiotemporal intuition. By proposing an explication of diagrams, I explain certain controversies in the existing literature. Moreover, I shed light on why mathematical diagrams are so effective in certain instances, and, at other times, dangerously misleading. (shrink)
According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematicalpractice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too (...) high. I then propose a fallibilist account of mathematical justification. I show that the main function of mathematical justification is to guarantee that the mathematical community can correct the errors that inevitably arise from our fallible practices. (shrink)
Monsters lurk within mathematical as well as literary haunts. I propose to trace some pathways between these two monstrous habitats. I start from Jeffrey Jerome Cohen’s influential account of monster culture and explore how well mathematical monsters fit each of his seven theses. The mathematical monsters I discuss are drawn primarily from three distinct but overlapping domains. Firstly, late nineteenth-century mathematicians made numerous unsettling discoveries that threatened their understanding of their own discipline and challenged their intuitions. The (...) great French mathematician Henri Poincaré characterised these anomalies as ‘monsters’, a name that stuck. Secondly, the twentieth-century philosopher Imre Lakatos composed a seminal work on the nature of mathematical proof, in which monsters play a conspicuous role. Lakatos coined such terms as ‘monster-barring’ and ‘monster-adjusting’ to describe strategies for dealing with entities whose properties seem to falsify a conjecture. Thirdly, and most recently, mathematicians dubbed the largest of the sporadic groups ‘the Monster’, because of its vast size and uncanny properties, and because its existence was suspected long before it could be confirmed. (shrink)
In this paper, we look at Bourbaki’s work as a case study for the notion of mathematical style. We argue that indeed Bourbaki exemplifies a mathematical style, namely the structuralist style.
Rigorous proof is supposed to guarantee that the premises invoked imply the conclusion reached, and the problem of rigor may be described as that of bringing together the perspectives of formal logic and mathematicalpractice on how this is to be achieved. This problem has recently raised a lot of discussion among philosophers of mathematics. We survey some possible solutions and argue that failure to understand its terms properly has led to misunderstandings in the literature.
This paper argues that new light may be shed on mathematical reasoning in its non-pathological forms by careful observation of its pathologies. The first section explores the application to mathematics of recent work on fallacy theory, specifically the concept of an ‘argumentation scheme’: a characteristic pattern under which many similar inferential steps may be subsumed. Fallacies may then be understood as argumentation schemes used inappropriately. The next section demonstrates how some specific mathematical fallacies may be characterized in terms (...) of argumentation schemes. The third section considers the phenomenon of correct answers which result from incorrect methods. This turns out to pose some deep questions concerning the nature of mathematical knowledge. In particular, it is argued that a satisfactory epistemology for mathematicalpractice must address the role of luck. (shrink)
Mathematics is often taken to play one of two roles in the empirical sciences: either it represents empirical phenomena or it explains these phenomena by imposing constraints on them. This article identifies a third and distinct role that has not been fully appreciated in the literature on applicability of mathematics and may be pervasive in scientific practice. I call this the “bridging” role of mathematics, according to which mathematics acts as a connecting scheme in our explanatory reasoning about why (...) and how two different descriptions of an empirical phenomenon relate to each other. I discuss two bridging roles appearing in biological and physical explanations. (shrink)
Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematicalpractice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematicalpractice from its ascetic perversion. (...) For Nietzsche, math is an artistic and moral activity that has an essential role to play in the joyful wisdom. (shrink)
For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could mathematics be knowledge (...) about? (2) How do we distinguish significant from insignificant mathematics? This is a fundamental philosophical problem concerning the nature of mathematics. But it is also a practical problem concerning mathematics itself. In the absence of the solution to the problem, there is the danger that genuinely significant mathematics will be lost among the unchecked growth of a mass of insignificant mathematics. This second problem cannot, it would seem, be solved granted knowledge-inquiry. For, in order to solve the problem, mathematics needs to be related to values, but this is, it seems, prohibited by knowledge-inquiry because it could only lead to the subversion of mathematical rigour. Both problems are solved, however, when mathematics is viewed from the perspective of wisdom-inquiry. (1) Mathematics is not a branch of knowledge. It is a body of systematized, unified and inter-connected problem-solving methods, a body of problematic possibilities. (2) A piece of mathematics is significant if (a) it links up to the interconnected body of existing mathematics, ideally in such a way that some problems difficult to solve in other branches become much easier to solve when translated into the piece of mathematics in question; (b) it has fruitful applications for (other) worthwhile human endeavours. If ever the revolution from knowledge to wisdom occurs, I would hope wisdom mathematics would flourish, the nature of mathematics would become much more transparent, more pupils and students would come to appreciate the fascination of mathematics, and it would be easier to discern what is genuinely significant in mathematics (something that baffled even Einstein). As a result of clarifying what should count as significant, the pursuit of wisdom mathematics might even lead to the development of significant new mathematics. (shrink)
As part of the development of an epistemology for mathematics, some Platonists have defended the view that we have intuition that certain mathematical principles hold, and intuition of the properties of some mathematical objects. In this paper, I discuss some difficulties that this view faces to accommodate some salient features of mathematicalpractice. I then offer an alternative, agnostic nominalist proposal in which, despite the role played by mathematical intuition, these difficulties do not emerge.
A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section (...) I. Many modifications of Turing machines cum quantum ones are researched in Section II for the Halting problem and completeness, and the model of two independent Turing machines seems to generalize them. Then, that pair can be postulated as the formal definition of reality therefore being complete unlike any of them standalone, remaining incomplete without its complementary counterpart. Representation is formal defined as a one-to-one mapping between the two Turing machines, and the set of all those mappings can be considered as “language” therefore including metaphors as mappings different than representation. Section III investigates that formal relation of “reality”, “representation”, and “language” modeled by (at least two) Turing machines. The independence of (two) Turing machines is interpreted by means of game theory and especially of the Nash equilibrium in Section IV. Choice and information as the quantity of choices are involved. That approach seems to be equivalent to that based on set theory and the concept of actual infinity in mathematics and allowing of practical implementations. (shrink)
2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and (...) they are today in more demand than ever, due to the realization that inconsistency and vagueness in knowledge bases and information processes are not only inevitable and acceptable, but also perhaps welcome. The main modern applications of (any) logic are to be found in the digital computer, and we thus require the practical knowledge how to computerize—which also means automate—decisions (i.e. reasoning) in many-valued logics. This, in turn, necessitates a mathematical foundation for these logics. This book provides both these mathematical foundation and practical knowledge in a rigorous, yet accessible, text, while at the same time situating these logics in the context of the satisfiability problem (SAT) and automated deduction. The main text is complemented with a large selection of exercises, a plus for the reader wishing to not only learn about, but also do something with, many-valued logics. (shrink)
Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered and rejected. Constructive (...) empiricism cannot be realist about abstract objects; it must reject even the realism advocated by otherwise ontologically restrained and epistemologically empiricist indispensability theorists. Indispensability arguments rely on the kind of inference to the best explanation the rejection of which is definitive of constructive empiricism. On the other hand, formalist and logicist anti-realist positions are also shown to be untenable. It is argued that a constructive empiricist philosophy of mathematics must be fictionalist. Borrowing and developing elements from both Philip Kitcher's constructive naturalism and Kendall Walton's theory of fiction, the account of mathematics advanced treats mathematics as a collection of stories told about an ideal agent and mathematical objects as fictions. The account explains what true portions of mathematics are about and why mathematics is useful, even while it is a story about an ideal agent operating in an ideal world; it connects theory and practice in mathematics with human experience of the phenomenal world. At the same time, the make-believe and game-playing aspects of the theory show how we can make sense of mathematics as fiction, as stories, without either undermining that explanation or being forced to accept abstract mathematical objects into our ontology. All of this occurs within the framework that constructive empiricism itself provides the epistemological limitations it mandates, the semantic view of theories, and an emphasis on the pragmatic dimension of our theories, our explanations, and of our relation to the language we use. (shrink)
In this chapter we use methods of corpus linguistics to investigate the ways in which mathematicians describe their work as explanatory in their research papers. We analyse use of the words explain/explanation (and various related words and expressions) in a large corpus of texts containing research papers in mathematics and in physical sciences, comparing this with their use in corpora of general, day-to-day English. We find that although mathematicians do use this family of words, such use is considerably less prevalent (...) in mathematics papers than in physics papers or in general English. Furthermore, we find that the proportion with which mathematicians use expressions related to ‘explaining why’ and ‘explaining how’ is significantly different to the equivalent proportion in physics and in general English. We discuss possible accounts for these differences. (shrink)
This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise (...) algorithmic computation and to offer foundations for scientific computing. -/- The dissertation consists of three parts. In the first part, we examine what notion of 'algorithmic computation' underlies each approach and how it is respectively formalised. It is argued that the very existence of the two rival frameworks indicates that 'algorithm' is not one unique concept in mathematics, but it is used in more than one way. We test this hypothesis for consistency with mathematicalpractice as well as with key foundational works that aim to define the term. As a result, new connections between certain subfields of mathematics and computer science are drawn, and a distinction between 'algorithms' and 'effective procedures' is proposed. -/- In the second part, we focus on the second goal of the two rival approaches to real computation; namely, to provide foundations for scientific computing. We examine both frameworks in detail, what idealisations they employ, and how they relate to floating-point arithmetic systems used in real computers. We explore limitations and advantages of both frameworks, and answer questions about which one is preferable for computational modelling and which one for addressing general computability issues. -/- In the third part, analog computing and its relation to analogue (physical) modelling in science are investigated. Based on some paradigmatic cases of the former, a certain view about the nature of computation is defended, and the indispensable role of representation in it is emphasized and accounted for. We also propose a novel account of the distinction between analog and digital computation and, based on it, we compare analog computational modelling to physical modelling. It is concluded that the two practices, despite their apparent similarities, are orthogonal. (shrink)
The connection between science and mathematics is often considered necessary and insoluble. Therefore, a relationship between mathematics and humanities or arts is deemed exceptional or sometimes unnatural. Nevertheless, on the basis of historical, ontological and epistemological researches it can be noted that it’s impossible to warrant the immediate identification between mathematics and sciences on a deeper level than the practical one. Given the instrumentality and then the unnecessity of this connection, the relationship between mathematics and not-scientific disciplines is undeniable, even (...) if the mathematics in the explicit formalisms which we know doesn’t appear in them. It’s possible to demonstrate this relationship not only with philosophical argumentations, but also whit empirical verifications, e.g. in the music and in particular in the music of J. S. Bach. Such an epistemological thought finally leads to the question on the possibility of knowledge in the art in comparison to the epistemological characteristics of the Galilean and Post-Galilean science. (shrink)
Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in (...) the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert’s program due to Simpson [1988], and predicativism in the extended form due to Feferman and Schütte. -/- Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Pi-1-1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Pi-1-1-CA0. (shrink)
Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer.
The aim of this article is to investigate speciﬁc aspects connected with visualization in the practice of a mathematical subﬁeld: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justiﬁcations can be based on sequences of pictures. Three theses will be defended. First, (...) the representations used in the practice are an integral part of the mathematical reasoning. As a matter of fact, they convey in a material form the relevant transitions and thus allow experts to draw inferential connections. Second, in low-dimensional topology experts exploit a particular type of manipulative imagination which is connected to intuition of two- and three-dimensional space and motor agency. This imagination allows recognizing the transformations which connect diﬀerent pictures in an argument. Third, the epistemic—and inferential—actions performed are permissible only within a speciﬁc practice: this form of reasoning is subject-matter dependent. Local criteria of validity are established to assure the soundness of representationally heterogeneous arguments in low-dimensional topology. (shrink)
The purpose of this work is to address the relation existing between ancient Greek practical geometry and ancient Greek pure geometry. In the first part of the work, we will consider practical and pure geometry and how pure geometry can be seen, in some respects, as arising from an idealization of practical geometry. From an analysis of relevant extant texts, we will make explicit the idealizations at play in pure geometry in relation to practical geometry, some of which are basically (...) explicit in definitions, like that of segments in Euclid’s Elements. Then, we will address how in pure geometry we, so to speak, “refer back” to practical geometry. This occurs in two ways. One, in the propositions of pure geometry. The other, when applying pure geometry. In this case, geometrical objects can represent practical figures like, e.g., a practical segment. (shrink)
A holobiont is a composite organism consisting of a host together with its microbiome, such as a coral with its zooxanthellae. To explain the often intimate integration between hosts and their microbiomes, some investigators contend that selection operates on holobionts as a unit and view the microbiome’s genes as extending the host’s nuclear genome to jointly comprise a hologenome. Because vertical transmission of microbiomes is uncommon, other investigators contend that holobiont selection cannot be effective because a holobiont’s microbiome is an (...) acquired condition rather than an inherited trait. This disagreement invites a simple mathematical model to see how holobiont selection might operate and to assess its plausibility as an evolutionary force. This paper presents two variants of such a model. In one variant, juvenile hosts obtain microbiomes from their parents (vertical transmission). In the other variant, microbiomes of juvenile hosts are assembled from source pools containing the combined microbiomes of all parents (horizontal transmission). According to both variants, holobiont selection indeed causes evolutionary change in holobiont traits. Therefore, holobiont selection is plausibly an effective evolutionary force with either mode of microbiome transmission. The modeling employs two distinct concepts of inheritance, depending on the mode of microbiome transmission: collective inheritance whereby juveniles inherit a sample of the collected genomes from all parents, as contrasted with lineal inheritance whereby juveniles inherit the genomes from only their own parents. A distinction between collective and lineal inheritance also features in theories of multilevel selection. (shrink)
In attempt to provide an answer to the question of origin of deductive proofs, I argue that Aristotle’s philosophy of math is more accurate opposed to a Platonic philosophy of math, given the evidence of how mathematics began. Aristotle says that mathematical knowledge is a posteriori, known through induction; but once knowledge has become unqualified it can grow into deduction. Two pieces of recent scholarship on Greek mathematics propose new ways of thinking about how mathematics began in the Greek (...) culture. Both claimed there was a close relationship between the culture and mathematicians; mathematics was understood through imaginative processes, experiencing the proofs in tangible ways, and establishing a consistent unified form of argumentation. These pieces of evidence provide the context in which Aristotle worked and their contributions lend support to the argument that mathematical premises as inductively available is a better way of understanding the origins of deductive practices, opposed to the Platonic tradition. (shrink)
Throughout his work, John Dewey seeks to emancipate philosophical reflection from the influence of the classical tradition he traces back to Plato and Aristotle. For Dewey, this tradition rests upon a conception of knowledge based on the separation between theory and practice, which is incompatible with the structure of scientific inquiry. Philosophical work can make progress only if it is freed from its traditional heritage, i.e. only if it undergoes reconstruction. In this study I show that implicit appeals to (...) the classical tradition shape prominent debates in philosophy of mathematics, and I initiate a project of reconstruction within this field. (shrink)
I argue for the Wittgensteinian thesis that mathematical statements are expressions of norms, rather than descriptions of the world. An expression of a norm is a statement like a promise or a New Year's resolution, which says that someone is committed or entitled to a certain line of action. A expression of a norm is not a mere description of a regularity of human behavior, nor is it merely a descriptive statement which happens to entail a norms. The view (...) can be thought of as a sort of logicism for the logical expressivist---a person who believes that the purpose of logical language is to make explicit commitments and entitlements that are implicit in ordinary practice. The thesis that mathematical statements are expression of norms is a kind of logicism, not because it says that mathematics can be reduced to logic, but because it says that mathematical statements play the same role as logical statements. ;I contrast my position with two sets of views, an empiricist view, which says that mathematical knowledge is acquired and justified through experience, and a cluster of nativist and apriorist views, which say that mathematical knowledge is either hardwired into the human brain, or justified a priori, or both. To develop the empiricist view, I look at the work of Kitcher and Mill, arguing that although their ideas can withstand the criticisms brought against empiricism by Frege and others, they cannot reply to a version of the critique brought by Wittgenstein in the Remarks on the Foundations of Mathematics. To develop the nativist and apriorist views, I look at the work of contemporary developmental psychologists, like Gelman and Gallistel and Karen Wynn, as well as the work of philosophers who advocate the existence of a mathematical intuition, such as Kant, Husserl, and Parsons. After clarifying the definitions of "innate" and "a priori," I argue that the mechanisms proposed by the nativists cannot bring knowledge, and the existence of the mechanisms proposed by the apriorists is not supported by the arguments they give. (shrink)
One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established (...) to be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. -/- Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. -/- However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. -/- The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion. (shrink)
This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both these (...) structures are here perceived as formal translations of the fundamental twofold role of properties in Mechanics: they are at the same time quantities and transformations. The question becomes then to understand the precise articulation between these two roles. The analysis will show that Quantum Mechanics can be thought as distinguishing itself from Classical Mechanics by a compatibility condition between properties-as-quantities and properties-as-transformations. -/- Moreover, this dissertation shows the existence of a tension between a certain "abstract way" of conceiving mathematical structures, used in the practice of mathematical physics, and the necessary capacity to specify particular states or observables. It then becomes important to understand how, within the formalism, one can construct a labelling scheme. The “Chase for Individuation” is the analysis of different mathematical techniques which attempt to overcome this tension. In particular, we discuss how group theory furnishes a partial solution. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.