Modern philosophy of mathematics has been dominated by Platonism and nominalism, to the neglect of the Aristotelian realist option. Aristotelianism holds that mathematics studies certain real properties of the world – mathematics is neither about a disembodied world of “abstract objects”, as Platonism holds, nor it is merely a language of science, as nominalism holds. Aristotle’s theory that mathematics is the “science of quantity” is a good account of at least elementary mathematics: the ratio (...) of two heights, for example, is a perceivable and measurable real relation between properties of physical things, a relation that can be shared by the ratio of two weights or two time intervals. Ratios are an example of continuous quantity; discrete quantities, such as whole numbers, are also realised as relations between a heap and a unit-making universal. For example, the relation between foliage and being-a-leaf is the number of leaves on a tree,a relation that may equal the relation between a heap of shoes and being-a-shoe. Modern higher mathematics, however, deals with some real properties that are not naturally seen as quantity, so that the “science of quantity” theory of mathematics needs supplementation. Symmetry, topology and similar structural properties are studied by mathematics, but are about pattern, structure or arrangement rather than quantity. (shrink)
Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. For Nietzsche, (...) math is an artistic and moral activity that has an essential role to play in the joyful wisdom. (shrink)
This essay offers a strategic reinterpretation of Kant’s philosophy of mathematics in Critique of Pure Reason via a broad, empirically based reconception of Kant’s conception of drawing. It begins with a general overview of Kant’s philosophy of mathematics, observing how he differentiates mathematics in the Critique from both the dynamical and the philosophical. Second, it examines how a recent wave of critical analyses of Kant’s constructivism takes up these issues, largely inspired by Hintikka’s unorthodox conception (...) of Kantian intuition. Third, it offers further analyses of three Kantian concepts vitally linked to that of drawing. It concludes with an etymologically based exploration of the seven clusters of meanings of the word drawing to gesture toward new possibilities for interpreting a Kantian philosophy of mathematics. (shrink)
This article examines the possibility of philosophizing about mathematics with children. It aims at outlining the nature of the practice of philosophy of mathematics with children in a mainly theoretical and exploratory way. First, an attempt at a definition is proposed. Second, I suggest some reasons that might motivate such a practice. My thesis is that one can identify an intrinsic as well as two extrinsic goals of philosophizing about mathematics with children. The intrinsic goal is (...) related to a presumed inherent importance of presenting children with some philosophical questions about mathematics. The extrinsic goals consist of first the positive effects such a practice can have on mathematical learning and abilities and second the fostering of children's understanding of philosophical method of inquiry and thinking and therefore of their philosophical thinking competences. Third, some examples found in the literature of previously developed ways of practising philosophy of mathematics with children are presented. This article aims at giving a general outlining picture of the issues surrounding the practice of philosophy of mathematics with children and should therefore be read as an encouragement to further development and studies. (shrink)
Throughout his work, John Dewey seeks to emancipate philosophical reflection from the influence of the classical tradition he traces back to Plato and Aristotle. For Dewey, this tradition rests upon a conception of knowledge based on the separation between theory and practice, which is incompatible with the structure of scientific inquiry. Philosophical work can make progress only if it is freed from its traditional heritage, i.e. only if it undergoes reconstruction. In this study I show that implicit appeals to the (...) classical tradition shape prominent debates in philosophy of mathematics, and I initiate a project of reconstruction within this field. (shrink)
This chapter argues that the standard conception of Spinoza as a fellow-travelling mechanical philosopher and proto-scientific naturalist is misleading. It argues, first, that Spinoza’s account of the proper method for the study of nature presented in the Theological-Political Treatise (TTP) points away from the one commonly associated with the mechanical philosophy. Moreover, throughout his works Spinoza’s views on the very possibility of knowledge of nature are decidedly sceptical (as specified below). Third, in the seventeenth-century debates over proper methods in (...) the sciences, Spinoza sided with those that criticized the aspirations of those (the physico-mathematicians, Galileo, Huygens, Wallis, Wren, etc) who thought the application of mathematics to nature was the way to make progress. In particular, he offers grounds for doubting their confidence in the significance of measurement as well as their piece-meal methodology (see section 2). Along the way, this chapter offers a new interpretation of common notions in the context of treating Spinoza’s account of motion (see section 3). (shrink)
Abstract In the new millennium there have been important empirical developments in the philosophy of mathematics. One of these is the so-called “Empirical Philosophy of Mathematics”(EPM) of Buldt, Löwe, Müller and Müller-Hill, which aims to complement the methodology of the philosophy of mathematics with empirical work. Among other things, this includes surveys of mathematicians, which EPM believes to give philosophically important results. In this paper I take a critical look at the sociological part of (...) EPM as a case study of ... (shrink)
Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation (...) or theorem and its proof. An attempt is made to meet directly some of Wittgenstein’s critical comments on the mathematical treatment of infinity and irrational numbers. (shrink)
Walter Dubislav (1895–1937) was a leading member of the Berlin Group for scientific philosophy. This “sister group” of the more famous Vienna Circle emerged around Hans Reichenbach’s seminars at the University of Berlin in 1927 and 1928. Dubislav was to collaborate with Reichenbach, an association that eventuated in their conjointly conducting university colloquia. Dubislav produced original work in philosophy of mathematics, logic, and science, consequently following David Hilbert’s axiomatic method. This brought him to defend formalism in these (...) disciplines as well as to explore the problems of substantiating (Begründung) human knowledge. Dubislav also developed elements of general philosophy of science. Sadly, the political changes in Germany in 1933 proved ruinous to Dubislav. He published scarcely anything after Hitler came to power and in 1937 committed suicide under tragic circumstances. The intent here is to pass in review Dubislav’s philosophy of logic, mathematics, and science and so to shed light on some seminal yet hitherto largely neglected currents in the history of philosophy of science. (shrink)
In this paper, I present and discuss critically the main elements of Mario Bunge’s philosophy of mathematics. In particular, I explore how mathematical knowledge is accounted for in Bunge’s systemic emergent materialism.To Mario, with gratitude.
Imre Lakatos' views on the philosophy of mathematics are important and they have often been underappreciated. The most obvious lacuna in this respect is the lack of detailed discussion and analysis of his 1976a paper and its implications for the methodology of mathematics, particularly its implications with respect to argumentation and the matter of how truths are established in mathematics. The most important themes that run through his work on the philosophy of mathematics and (...) which culminate in the 1976a paper are (1) the (quasi-)empirical character of mathematics and (2) the rejection of axiomatic deductivism as the basis of mathematical knowledge. In this paper Lakatos' later views on the quasi-empirical nature of mathematical theories and methodology are examined and specific attention is paid to what this view implies about the nature of mathematical argumentation and its relation to the empirical sciences. (shrink)
In this review, as well as discussing the pedagogical of this text book, I also discuss Linnebo's approach to the Caesar problem and the use of metaphysical notions to explicate mathematics.
I claim that a relatively new position in philosophy of mathematics, pluralism, overlaps in striking ways with the much older Jain doctrine of anekantavada and the associated doctrines of nyayavada and syadvada. I first outline the pluralist position, following this with a sketch of the Jain doctrine of anekantavada. I then note the srrong points of overlaps and the morals of this comparison of pluralism and anekantavada.
We attribute three major insights to Hegel: first, an understanding of the real numbers as the paradigmatic kind of number ; second, a recognition that a quantitative relation has three elements, which is embedded in his conception of measure; and third, a recognition of the phenomenon of divergence of measures such as in second-order or continuous phase transitions in which correlation length diverges. For ease of exposition, we will refer to these three insights as the R First Theory, Tripartite Relations, (...) and Divergence of Measures. Given the constraints of space, we emphasize the first and the third in this paper. (shrink)
In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, (...) D—the challenge to justify our D-beliefs—with the reliability challenge for D-realism—the challenge to explain the reliability of our D-beliefs. Harman’s contrast is relevant to the first, but not, evidently, to the second. One upshot of the discussion is that genealogical debunking arguments are fallacious. Another is that indispensability considerations cannot answer the Benacerraf–Field challenge for mathematical realism. (shrink)
The article evaluates the Domain Postulate of the Classical Model of Science and the related Aristotelian prohibition rule on kind-crossing as interpretative tools in the history of the development of mathematics into a general science of quantities. Special reference is made to Proclus’ commentary to Euclid’s first book of Elements , to the sixteenth century translations of Euclid’s work into Latin and to the works of Stevin, Wallis, Viète and Descartes. The prohibition rule on kind-crossing formulated by Aristotle in (...) Posterior analytics is used to distinguish between conceptions that share the same name but are substantively different: for example the search for a broader genus including all mathematical objects; the search for a common character of different species of mathematical objects; and the effort to treat magnitudes as numbers. (shrink)
We propose a way to explain the diversification of branches of mathematics, distinguishing the different approaches by which mathematical objects can be studied. In our philosophy of mathematics, there is a base object, which is the abstract multiplicity that comes from our empirical experience. However, due to our human condition, the analysis of such multiplicity is covered by other empirical cognitive attitudes (approaches), diversifying the ways in which it can be conceived, and consequently giving rise to different (...) mathematical disciplines. This diversity of approaches is founded on the manifold categories that we find in physical reality. We also propose, grounded on this idea, the use of Aristotelian categories as a first model for this division, generating from it a classification of mathematical branches. Finally we make a history review to show that there is consistency between our classification, and the historical appearance of the different branches of mathematics. (shrink)
The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have (...) not yet been used or were neglected in past discussions. (shrink)
Book Review for Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, La Salle, IL: Open Court, 2002. Edited by David Malament. This volume includes thirteen original essays by Howard Stein, spanning a range of topics that Stein has written about with characteristic passion and insight. This review focuses on the essays devoted to history and philosophy of physics.
Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...) of themes in recent philosophy of mathematics (concerning a priority and fictionalism, for example) in revealing new light. (shrink)
The objective of this article is to take into account the functioning of representational cognitive tools, and in particular of notations and visualizations in mathematics. In order to explain their functioning, formulas in algebra and logic and diagrams in topology will be presented as case studies and the notion of manipulative imagination as proposed in previous work will be discussed. To better characterize the analysis, the notions of material anchor and representational affordance will be introduced.
Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics (...) are considered and rejected. Constructive empiricism cannot be realist about abstract objects; it must reject even the realism advocated by otherwise ontologically restrained and epistemologically empiricist indispensability theorists. Indispensability arguments rely on the kind of inference to the best explanation the rejection of which is definitive of constructive empiricism. On the other hand, formalist and logicist anti-realist positions are also shown to be untenable. It is argued that a constructive empiricist philosophy of mathematics must be fictionalist. Borrowing and developing elements from both Philip Kitcher's constructive naturalism and Kendall Walton's theory of fiction, the account of mathematics advanced treats mathematics as a collection of stories told about an ideal agent and mathematical objects as fictions. The account explains what true portions of mathematics are about and why mathematics is useful, even while it is a story about an ideal agent operating in an ideal world; it connects theory and practice in mathematics with human experience of the phenomenal world. At the same time, the make-believe and game-playing aspects of the theory show how we can make sense of mathematics as fiction, as stories, without either undermining that explanation or being forced to accept abstract mathematical objects into our ontology. All of this occurs within the framework that constructive empiricism itself provides the epistemological limitations it mandates, the semantic view of theories, and an emphasis on the pragmatic dimension of our theories, our explanations, and of our relation to the language we use. (shrink)
According to Steiner (1998), in contemporary physics new important discoveries are often obtained by means of strategies which rely on purely formal mathematical considerations. In such discoveries, mathematics seems to have a peculiar and controversial role, which apparently cannot be accounted for by means of standard methodological criteria. M. Gell-Mann and Y. Ne׳eman׳s prediction of the Ω− particle is usually considered a typical example of application of this kind of strategy. According to Bangu (2008), this prediction is apparently based (...) on the employment of a highly controversial principle—what he calls the “reification principle”. Bangu himself takes this principle to be methodologically unjustifiable, but still indispensable to make the prediction logically sound. In the present paper I will offer a new reconstruction of the reasoning that led to this prediction. By means of this reconstruction, I will show that we do not need to postulate any “reificatory” role of mathematics in contemporary physics and I will contextually clarify the representative and heuristic role of mathematics in science. (shrink)
For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could (...)mathematics be knowledge about? (2) How do we distinguish significant from insignificant mathematics? This is a fundamental philosophical problem concerning the nature of mathematics. But it is also a practical problem concerning mathematics itself. In the absence of the solution to the problem, there is the danger that genuinely significant mathematics will be lost among the unchecked growth of a mass of insignificant mathematics. This second problem cannot, it would seem, be solved granted knowledge-inquiry. For, in order to solve the problem, mathematics needs to be related to values, but this is, it seems, prohibited by knowledge-inquiry because it could only lead to the subversion of mathematical rigour. Both problems are solved, however, when mathematics is viewed from the perspective of wisdom-inquiry. (1) Mathematics is not a branch of knowledge. It is a body of systematized, unified and inter-connected problem-solving methods, a body of problematic possibilities. (2) A piece of mathematics is significant if (a) it links up to the interconnected body of existing mathematics, ideally in such a way that some problems difficult to solve in other branches become much easier to solve when translated into the piece of mathematics in question; (b) it has fruitful applications for (other) worthwhile human endeavours. If ever the revolution from knowledge to wisdom occurs, I would hope wisdom mathematics would flourish, the nature of mathematics would become much more transparent, more pupils and students would come to appreciate the fascination of mathematics, and it would be easier to discern what is genuinely significant in mathematics (something that baffled even Einstein). As a result of clarifying what should count as significant, the pursuit of wisdom mathematics might even lead to the development of significant new mathematics. (shrink)
The role of mathematics in the development of Gilles Deleuze's (1925-95) philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic is demonstrated in this paper by differentiating Deleuze's interpretation of the problem of the infinitesimal in Difference and Repetition from that which G. W. F Hegel (1770-1831) presents in the Science of Logic . Each deploys the operation of integration as conceived at different stages in the development of the infinitesimal (...) calculus in his treatment of the problem of the infinitesimal. Against the role that Hegel assigns to integration as the inverse transformation of differentiation in the development of his dialectical logic, Deleuze strategically redeploys Leibniz's account of integration as a method of summation in the form of a series in the development of his philosophy of difference. By demonstrating the relation between the differential point of view of the Leibnizian infinitesimal calculus and the differential calculus of contemporary mathematics, I argue that Deleuze effectively bypasses the methods of the differential calculus which Hegel uses to support the development of the dialectical logic, and by doing so, sets up the critical perspective from which to construct an alternative logic of relations characteristic of a philosophy of difference. The mode of operation of this logic is then demonstrated by drawing upon the mathematical philosophy of Albert Lautman (1908-44), which plays a significant role in Deleuze's project of constructing a philosophy of difference. Indeed, the logic of relations that Deleuze constructs is dialectical in the Lautmanian sense. (shrink)
Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e., the hidden logical order of things and its relations determined by natural (...) laws. Therefore mathematics is viewed not only as an appropriate tool to investigate human language and genetic code structures through computer sciencebased formal language theory but is itself a depiction of material reality. This confusion between language as a scientific tool to describe observations/experiences within cognitive constructed models and formal language as a direct depiction of material reality occurs not only in current approaches but was the central focus of the philosophy of science debate in the twentieth century, with rather unexpected results. This article recalls these results and their implications for more recent mathematical approaches that also attempt to explain the evolution of human language. (shrink)
This article will consider imagination in mathematics from a historical point of view, noting the key moments in its conception during the ancient, modern and contemporary eras.
When mathematicians think of the philosophy of mathematics, they probably think of endless debates about what numbers are and whether they exist. Since plenty of mathematical progress continues to be made without taking a stance on either of these questions, mathematicians feel confident they can work without much regard for philosophical reflections. In his sharp–toned, sprawling book, David Corfield acknowledges the irrelevance of much contemporary philosophy of mathematics to current mathematical practice, and proposes reforming the subject (...) accordingly. (shrink)
Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the (...) ‘why’). My argument shows that Hobbesian natural philosophy relies upon suppositions that bodies plausibly behave according to these borrowed causal principles from geometry, acknowledging that bodies in the world may not actually behave this way. First, I consider Hobbes's relation to Aristotelian mixed mathematics and to Isaac Barrow's broadening of mixed mathematics in Mathematical Lectures (1683). I show that for Hobbes maker's knowledge from geometry provides the ‘why’ in mixed-mathematical explanations. Next, I examine two explanations from De corpore Part IV: (1) the explanation of sense in De corpore 25.1-2; and (2) the explanation of the swelling of parts of the body when they become warm in De corpore 27.3. In both explanations, I show Hobbes borrowing and citing geometrical principles and mixing these principles with appeals to experience. (shrink)
This is not a mathematics book, but a book about mathematics, which addresses both student and teacher, with a goal as practical as possible, namely to initiate and smooth the way toward the student’s full understanding of the mathematics taught in school. The customary procedural-formal approach to teaching mathematics has resulted in students’ distorted vision of mathematics as a merely formal, instrumental, and computational discipline. Without the conceptual base of mathematics, students develop over time (...) a “mathematical anxiety” and abandon any effort to understand mathematics, which becomes their “traditional enemy” in school. This work materializes the results of the inter- and trans-disciplinary research aimed toward the understanding of mathematics, which concluded that the fields with the potential to contribute to mathematics education in this respect, by unifying the procedural and conceptual approaches, are epistemology and philosophy of mathematics and science, as well as fundamentals and history of mathematics. These results argue that students’ fear of mathematics can be annulled through a conceptual approach, and a student with a good conceptual understanding will be a better problem solver. The author has identified those zones and concepts from the above disciplines that can be adapted and processed for familiarizing the student with this type of knowledge, which should accompany the traditional content of school mathematics. The work was organized so as to create for the reader a unificatory image of the complex nature of mathematics, as well as a conceptual perspective ultimately necessary to the holistic understanding of school mathematics. The author talks about mathematics to convince readers that to understand mathematics means first to understand it as a whole, but also as part of a whole. The nature of mathematics, its primary concepts (like numbers and sets), its structures, language, methods, roles, and applicability, are all presented in their essential content, and the explanation of non-mathematical concepts is done in an accessible language and with many relevant examples. (shrink)
The attempts of theoretically solving the famous puzzle-dictum of physicist Eugene Wigner regarding the “unreasonable” effectiveness of mathematics as a problem of analytical philosophy, started at the end of the 19th century, are yet far from coming out with an acceptable theoretical solution. The theories developed for explaining the empirical “miracle” of applied mathematics vary in nature, foundation and solution, from denying the existence of a genuine problem to structural theories with an advanced level of mathematical formalism. (...) Despite this variation, methodologically fundamental questions like “Which is the adequate theoretical framework for solving Wigner’s conjecture?” and “Can the logico-mathematical formalism solve it and is it entitled to do it?” did not receive answers yet. The problem of the applicability of mathematics in the physical reality has been treated unitarily in some sense, with respect to the semantic-conceptual use of the constitutive terms, within both the structural and non-structural theories. This unity (of consistency) applied to both the referred objects and concepts per se and the aims of the investigations. For being able to make an objective study of the possible alternatives of the existent theories, a foundational approach of them is needed, including through semantic-conceptual distinctions which to weaken the unity of consistency. (shrink)
Scholars have long been interested in the relation between Leibniz, the metaphysician-theologian, and Leibniz, the logician-mathematician. In this collection, we consider the important roles that rhetoric and the "art of thinking" have played in the development of mathematical ideas. By placing Leibniz in this rhetorical tradition, the present essay shows the extent to which he was a rhetorical thinker, and thereby answers the question about the relation between his work as a logician-mathematician and his other work. It becomes clear that (...)mathematics and logic are a part of his rhetorical methodology, because they constitute one set of tools that he used to excavate the truth. Mathematical and logical insights are thus all part of his "art of thinking," employed in the service of philosophy. (shrink)
Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...) they relate to the sorts of explanation encountered in philosophy of science and metaphysics? (shrink)
The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last (...) hundred years. This article explains the distinction and why it has proved to be one of the great organizing themes of mathematics. (shrink)
Epstein and Carnielli's fine textbook on logic and computability is now in its second edition. The readers of this journal might be particularly interested in the timeline `Computability and Undecidability' added in this edition, and the included wall-poster of the same title. The text itself, however, has some aspects which are worth commenting on.
At the beginning of the present century, a series of paradoxes were discovered within mathematics which suggested a fundamental unclarity in traditional mathematical methods. These methods rested on the assumption of a realm of mathematical idealities existing independently of our thinking activity, and in order to arrive at a firmly grounded mathematics different attempts were made to formulate a conception of mathematical objects as purely human constructions. It was, however, realised that such formulations necessarily result in a (...) class='Hi'>mathematics which lacks the richness and power of the old ‘platonistic’ methods, and the latter are still defended, in various modified forms, as embodying truths about self-existent mathematical entities. Thus there is an idealism-realism dispute in the philosophy of mathematics in some respects parallel to the controversy over the existence of the experiential world to the settlement of which lngarden devoted his life. The present paper is an attempt to apply Ingarden’s methods to the sphere of mathematical existence. This exercise will reveal new modes of being applicable to non-real objects, and we shall put forward arguments to suggest that these modes of being have an importance outside mathematics, especially in the areas of value theory and the ontology of art. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.