Results for 'Philosophy of mathematics'

959 found
Order:
  1. An Aristotelian Realist Philosophy of Mathematics: Mathematics as the science of quantity and structure.James Franklin - 2014 - London and New York: Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  2. (1 other version)Assessing the “Empirical Philosophy of Mathematics”.Markus Pantsar - 2015 - Discipline Filosofiche:111-130.
    Abstract In the new millennium there have been important empirical developments in the philosophy of mathematics. One of these is the so-called “Empirical Philosophy of Mathematics”(EPM) of Buldt, Löwe, Müller and Müller-Hill, which aims to complement the methodology of the philosophy of mathematics with empirical work. Among other things, this includes surveys of mathematicians, which EPM believes to give philosophically important results. In this paper I take a critical look at the sociological part of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Philosophy of Mathematics.Alexander Paseau (ed.) - 2016 - New York: Routledge.
    Mathematics is everywhere and yet its objects are nowhere. There may be five apples on the table but the number five itself is not to be found in, on, beside or anywhere near the apples. So if not in space and time, where are numbers and other mathematical objects such as perfect circles and functions? And how do we humans discover facts about them, be it Pythagoras’ Theorem or Fermat’s Last Theorem? The metaphysical question of what numbers are and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Practising Philosophy of Mathematics with Children.Elisa Bezençon - 2020 - Philosophy of Mathematics Education Journal 36.
    This article examines the possibility of philosophizing about mathematics with children. It aims at outlining the nature of the practice of philosophy of mathematics with children in a mainly theoretical and exploratory way. First, an attempt at a definition is proposed. Second, I suggest some reasons that might motivate such a practice. My thesis is that one can identify an intrinsic as well as two extrinsic goals of philosophizing about mathematics with children. The intrinsic goal is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Poincaré’s Philosophy of Mathematics.A. P. Bird - 2021 - Cantor's Paradise (00):00.
    It is undeniable Poincaré was a very famous and influential scientist. So, possibly because of it, it was relatively easy for him to participate in the heated discussions of the foundations of mathematics in the early 20th century. We can say it was “easy” because he didn't get involved in this subject by writing great treatises, or entire books about his own philosophy of mathematics (as other authors from the same period did). Poincaré contributed to the (...) of mathematics by writing short essays and letters. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Aristotelianism in the Philosophy of Mathematics.James Franklin - 2011 - Studia Neoaristotelica 8 (1):3-15.
    Modern philosophy of mathematics has been dominated by Platonism and nominalism, to the neglect of the Aristotelian realist option. Aristotelianism holds that mathematics studies certain real properties of the world – mathematics is neither about a disembodied world of “abstract objects”, as Platonism holds, nor it is merely a language of science, as nominalism holds. Aristotle’s theory that mathematics is the “science of quantity” is a good account of at least elementary mathematics: the ratio (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  8. Redrawing Kant's Philosophy of Mathematics.Joshua M. Hall - 2013 - South African Journal of Philosophy 32 (3):235-247.
    This essay offers a strategic reinterpretation of Kant’s philosophy of mathematics in Critique of Pure Reason via a broad, empirically based reconception of Kant’s conception of drawing. It begins with a general overview of Kant’s philosophy of mathematics, observing how he differentiates mathematics in the Critique from both the dynamical and the philosophical. Second, it examines how a recent wave of critical analyses of Kant’s constructivism takes up these issues, largely inspired by Hintikka’s unorthodox conception (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Some Remarks on Wittgenstein’s Philosophy of Mathematics.Richard Startup - 2020 - Open Journal of Philosophy 10 (1):45-65.
    Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Reconstruction in Philosophy of Mathematics.Davide Rizza - 2018 - Dewey Studies 2 (2):31-53.
    Throughout his work, John Dewey seeks to emancipate philosophical reflection from the influence of the classical tradition he traces back to Plato and Aristotle. For Dewey, this tradition rests upon a conception of knowledge based on the separation between theory and practice, which is incompatible with the structure of scientific inquiry. Philosophical work can make progress only if it is freed from its traditional heritage, i.e. only if it undergoes reconstruction. In this study I show that implicit appeals to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. The Paradigm Shift in the 19th-century Polish Philosophy of Mathematics.Paweł Polak - 2022 - Studia Historiae Scientiarum 21:217-235.
    The Polish philosophy of mathematics in the 19th century had its origins in the Romantic period under the influence of the then-predominant idealist philosophies. The decline of Romantic philosophy precipitated changes in general philosophy, but what is less well known is how it triggered changes in the philosophy of mathematics. In this paper, we discuss how the Polish philosophy of mathematics evolved from the metaphysical approach that had been formed during the Romantic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. The philosophy of mathematics and the independent 'other'.Penelope Rush - unknown
    Download  
     
    Export citation  
     
    Bookmark  
  14. Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  15. Mathematics and metaphysics: The history of the Polish philosophy of mathematics from the Romantic era.Paweł Jan Polak - 2021 - Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce) 71:45-74.
    The Polish philosophy of mathematics in the 19th century is not a well-researched topic. For this period, only five philosophers are usually mentioned, namely Jan Śniadecki, Józef Maria Hoene-Wroński, Henryk Struve, Samuel Dickstein, and Edward Stamm. This limited and incomplete perspective does not allow us to develop a well-balanced picture of the Polish philosophy of mathematics and gauge its influence on 19th- and 20th-century Polish philosophy in general. To somewhat complete our picture of the history (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Lakatos' Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science - Introduction to the Special Issue on Lakatos’ Undone Work.Sophie Nagler, Hannah Pillin & Deniz Sarikaya - 2022 - Kriterion - Journal of Philosophy 36:1-10.
    We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Øystein Linnebo, Philosophy of mathematics, Princeton University Press, 2017, pp. 216, € 29.00, ISBN 978-0691161402. [REVIEW]Filippo Mancini - 2019 - Universa. Recensioni di Filosofia 8.
    La matematica viene generalmente considerata uno degli ambiti più affidabili dell’intera impresa scientifica. Il suo successo e la sua solidità sono testimoniati, ad esempio, dall’uso imprescindibile che ne fanno le scienze empiriche e dall’accordo pressoché unanime con cui la comunità dei matematici delibera sulla validità di un nuovo risultato. Tuttavia, dal punto di vista filosofico la matematica rappresenta un puzzle tanto intrigante quanto intricato. Philosophy of Mathematics di Ø. Linnebo si propone di presentare e discutere le concezioni filosofiche (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Anti-Realism and Anti-Revisionism in Wittgenstein’s Philosophy of Mathematics.Anderson Nakano - 2020 - Grazer Philosophische Studien 97 (3):451-474.
    Since the publication of the Remarks on the Foundations of Mathematics, Wittgenstein’s interpreters have endeavored to reconcile his general constructivist/anti-realist attitude towards mathematics with his confessed anti-revisionary philosophy. In this article, the author revisits the issue and presents a solution. The basic idea consists in exploring the fact that the so-called “non-constructive results” could be interpreted so that they do not appear non-constructive at all. The author substantiates this solution by showing how the translation of mathematical results, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. On Jain Anekantavada and Pluralism in Philosophy of Mathematics.Landon D. C. Elkind - 2019 - International School for Jain Studies-Transactions 2 (3):13-20.
    I claim that a relatively new position in philosophy of mathematics, pluralism, overlaps in striking ways with the much older Jain doctrine of anekantavada and the associated doctrines of nyayavada and syadvada. I first outline the pluralist position, following this with a sketch of the Jain doctrine of anekantavada. I then note the srrong points of overlaps and the morals of this comparison of pluralism and anekantavada.
    Download  
     
    Export citation  
     
    Bookmark  
  20. NEOPLATONIC STRUCTURALISM IN PHILOSOPHY OF MATHEMATICS.Inna Savynska - 2019 - The Days of Science of the Faculty of Philosophy – 2019 1:52-53.
    What is the ontological status of mathematical structures? Michael Resnic, Stewart Shapiro and Gianluigi Oliveri, are contemporaries of American philosophers on mathematics, they give Platonic answers on this question.
    Download  
     
    Export citation  
     
    Bookmark  
  21. Du Châtelet’s Philosophy of Mathematics.Aaron Wells - forthcoming - In Fatema Amijee (ed.), The Bloomsbury Handbook of Du Châtelet. Bloomsbury.
    I begin by outlining Du Châtelet’s ontology of mathematical objects: she is an idealist, and mathematical objects are fictions dependent on acts of abstraction. Next, I consider how this idealism can be reconciled with her endorsement of necessary truths in mathematics, which are grounded in essences that we do not create. Finally, I discuss how mathematics and physics relate within Du Châtelet’s idealism. Because the primary objects of physics are partly grounded in the same kinds of acts as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22.  61
    Mario Bunge's Philosophy of Mathematics: An Appraisal.Marquis Jean-Pierre - 2012 - Science & Education 21:1567-1594.
    In this paper, I present and discuss critically the main elements of Mario Bunge’s philosophy of mathematics. In particular, I explore how mathematical knowledge is accounted for in Bunge’s systemic emergent materialism.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Pancasila's Critique of Paul Ernest's Philosophy of Mathematics Education.Syahrullah Asyari, Hamzah Upu, Muhammad Darwis M., Baso Intang Sappaile & Ikhbariaty Kautsar Qadry - 2024 - Global Journal of Arts Humanities and Social Sciences 4 (2):122-134.
    Indonesia has recently faced problems in various aspects of life. The results of a social media survey in Indonesia in early 2021 that the biggest threat to the Pancasila ideology is communism and other western ideologies. Communism has a dark history in the life of the Indonesian people. It shows the problem of thinking and philosophical views of the Indonesian people. This research is textbook research that aims to analyze philosophy books, namely mathematics education philosophy textbooks written (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Problems with the recent ontological debate in the philosophy of mathematics.Gabriel Târziu -
    What is the role of mathematics in scientific explanations? Does it/can it play an explanatory part? This question is at the core of the recent ontological debate in the philosophy of mathematics. My aim in this paper is to argue that the two main approaches to this problem found in recent literature (i.e. the top-down and the bottom-up approaches) are both deeply problematic. This has an important implication for the dispute over the existence of mathematical entities: to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Nietzsche’s Philosophy of Mathematics.Eric Steinhart - 1999 - International Studies in Philosophy 31 (3):19-27.
    Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. For Nietzsche, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. Tales of wonder: Ian Hacking: Why is there philosophy of mathematics at all? Cambridge University Press, 2014, 304pp, $80 HB.Brendan Larvor - 2015 - Metascience 24 (3):471-478.
    Why is there Philosophy of Mathematics at all? Ian Hacking. in Metascience (2015).
    Download  
     
    Export citation  
     
    Bookmark  
  27. Semi-Platonist Aristotelianism: Review of James Franklin, An Aristotelian Realist Philosophy of Mathematics: Mathematics as the Science of Quantity and Structure[REVIEW]Catherine Legg - 2015 - Australasian Journal of Philosophy 93 (4):837-837.
    This rich book differs from much contemporary philosophy of mathematics in the author’s witty, down to earth style, and his extensive experience as a working mathematician. It accords with the field in focusing on whether mathematical entities are real. Franklin holds that recent discussion of this has oscillated between various forms of Platonism, and various forms of nominalism. He denies nominalism by holding that universals exist and denies Platonism by holding that they are concrete, not abstract - looking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Dummett and Wittgenstein's Philosophy of Mathematics.Carlo Penco - 1994 - In Brian F. McGuinness & Gianluigi Oliveri (eds.), The Philosophy of Michael Dummett. Dordrecht, Netherland: Kluwer Academic Publishers. pp. 113--136.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  29. Math by Pure Thinking: R First and the Divergence of Measures in Hegel's Philosophy of Mathematics.Ralph M. Kaufmann & Christopher Yeomans - 2017 - European Journal of Philosophy 25 (4):985-1020.
    We attribute three major insights to Hegel: first, an understanding of the real numbers as the paradigmatic kind of number ; second, a recognition that a quantitative relation has three elements, which is embedded in his conception of measure; and third, a recognition of the phenomenon of divergence of measures such as in second-order or continuous phase transitions in which correlation length diverges. For ease of exposition, we will refer to these three insights as the R First Theory, Tripartite Relations, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Three Essays on Later Wittgenstein's Philosophy of Mathematics: Reality, Determination, and Infinity.Philip Bold - 2022 - Dissertation, University of North Carolina, Chapel Hill
    This dissertation provides a careful reading of the later Wittgenstein’s philosophy of mathematics centered around three major themes: reality, determination, and infinity. The reading offered gives pride of place to Wittgenstein’s therapeutic conception of philosophy. This conception views questions often taken as fundamental in the philosophy of mathematics with suspicion and attempts to diagnose the confusions which lead to them. In the first essay, I explain Wittgenstein’s approach to perennial issues regarding the alleged reality to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Philosophy and Mathematics at the Turn of the 18th Century: New Perspectives – Philosophie et mathématiques au tournant du XVIIIe siècle: perspectives nouvelles.Andrea Strazzoni & Marco Storni (eds.) - 2017 - Parma: E-theca OnLineOpenAccess Edizioni.
    The essays gathered in this issue of the journal Noctua focus on the various relationships that were established between philosophy and mathematics from Galileo and Descartes to Kant, passing by Newton.
    Download  
     
    Export citation  
     
    Bookmark  
  32. Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has the potential to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Lakatos’ Quasi-empiricism in the Philosophy of Mathematics.Michael J. Shaffer - 2015 - Polish Journal of Philosophy 9 (2):71-80.
    Imre Lakatos' views on the philosophy of mathematics are important and they have often been underappreciated. The most obvious lacuna in this respect is the lack of detailed discussion and analysis of his 1976a paper and its implications for the methodology of mathematics, particularly its implications with respect to argumentation and the matter of how truths are established in mathematics. The most important themes that run through his work on the philosophy of mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Natorp's mathematical philosophy of science.Thomas Mormann - 2022 - Studia Kantiana 20 (2):65 - 82.
    This paper deals with Natorp’s version of the Marburg mathematical philosophy of science characterized by the following three features: The core of Natorp’s mathematical philosophy of science is contained in his “knowledge equation” that may be considered as a mathematical model of the “transcendental method” conceived by Natorp as the essence of the Marburg Neo-Kantianism. For Natorp, the object of knowledge was an infinite task. This can be elucidated in two different ways: Carnap, in the Aufbau, contended that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Spinoza and the Philosophy of Science: Mathematics, Motion, and Being.Eric Schliesser - 1986, 2002
    This chapter argues that the standard conception of Spinoza as a fellow-travelling mechanical philosopher and proto-scientific naturalist is misleading. It argues, first, that Spinoza’s account of the proper method for the study of nature presented in the Theological-Political Treatise (TTP) points away from the one commonly associated with the mechanical philosophy. Moreover, throughout his works Spinoza’s views on the very possibility of knowledge of nature are decidedly sceptical (as specified below). Third, in the seventeenth-century debates over proper methods in (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  36. Review of O. Linnebo Philosophy of Mathematics[REVIEW]Fraser MacBride - 2018 - Notre Dame Philosophical Reviews.
    In this review, as well as discussing the pedagogical of this text book, I also discuss Linnebo's approach to the Caesar problem and the use of metaphysical notions to explicate mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  37. Stewart Shapiro’s Philosophy of Mathematics[REVIEW]Harold Hodes - 2002 - Philosophy and Phenomenological Research 65 (2):467–475.
    Two slogans define structuralism: contemporary mathematics studies structures; mathematical objects are places in those structures. Shapiro’s version of structuralism posits abstract objects of three sorts. A system is “a collection of objects with certain relations” between these objects. “An extended family is a system of people with blood and marital relationships.” A baseball defense, e.g., the Yankee’s defense in the first game of the 1999 World Series, is a also a system, “a collection of people with on-field spatial and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. The Beyträge at 200: Bolzano's quiet revolution in the philosophy of mathematics.Jan Sebestik & Paul Rusnock - 2013 - Journal for the History of Analytical Philosophy 1 (8).
    This paper surveys Bolzano's Beyträge zu einer begründeteren Darstellung der Mathematik (Contributions to a better-grounded presentation of mathematics) on the 200th anniversary of its publication. The first and only published issue presents a definition of mathematics, a classification of its subdisciplines, and an essay on mathematical method, or logic. Though underdeveloped in some areas (including,somewhat surprisingly, in logic), it is nonetheless a radically innovative work, where Bolzano presents a remarkably modern account of axiomatics and the epistemology of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  39. Virtue theory of mathematical practices: an introduction.Andrew Aberdein, Colin Jakob Rittberg & Fenner Stanley Tanswell - 2021 - Synthese 199 (3-4):10167-10180.
    Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  40. Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Walter Dubislav’s Philosophy of Science and Mathematics.Nikolay Milkov - 2016 - Hopos: The Journal of the International Society for the History of Philosophy of Science 6 (1):96-116.
    Walter Dubislav (1895–1937) was a leading member of the Berlin Group for scientific philosophy. This “sister group” of the more famous Vienna Circle emerged around Hans Reichenbach’s seminars at the University of Berlin in 1927 and 1928. Dubislav was to collaborate with Reichenbach, an association that eventuated in their conjointly conducting university colloquia. Dubislav produced original work in philosophy of mathematics, logic, and science, consequently following David Hilbert’s axiomatic method. This brought him to defend formalism in these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Explanatory Indispensability Arguments in Metaethics and Philosophy of Mathematics.Debbie Roberts - 2016 - In Uri D. Leibowitz & Neil Sinclair (eds.), Explanation in Ethics and Mathematics: Debunking and Dispensability. Oxford, England: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  43. An Aristotelian Realist Philosophy of Mathematics by James Franklin. [REVIEW]Alex Koo - 2016 - Mathematical Intelligencer 38:81-84.
    Download  
     
    Export citation  
     
    Bookmark  
  44. Deleuze and the Mathematical Philosophy of Albert Lautman.Simon B. Duffy - 2009 - In Jon Roffe & Graham Jones (eds.), Deleuze’s Philosophical Lineage. Edinburgh University Press.
    In the chapter of Difference and Repetition entitled ‘Ideas and the synthesis of difference,’ Deleuze mobilizes mathematics to develop a ‘calculus of problems’ that is based on the mathematical philosophy of Albert Lautman. Deleuze explicates this process by referring to the operation of certain conceptual couples in the field of contemporary mathematics: most notably the continuous and the discontinuous, the infinite and the finite, and the global and the local. The two mathematical theories that Deleuze draws upon (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. THE PHILOSOPHY OF KURT GODEL - ALEXIS KARPOUZOS.Alexis Karpouzos - 2024 - The Harvard Review of Philosophy 8 (14):12.
    Gödel's Philosophical Legacy Kurt Gödel's contributions to philosophy extend beyond his incompleteness theorems. He engaged deeply with the work of other philosophers, including Immanuel Kant and Edmund Husserl, and explored topics such as the nature of time, the structure of the universe, and the relationship between mathematics and reality. Gödel's philosophical writings, though less well-known than his mathematical work, offer rich insights into his views on the nature of existence, the limits of human knowledge, and the interplay between (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Mathematical Forms and Forms of Mathematics: Leaving the Shores of Extensional Mathematics.Jean-Pierre Marquis - 2013 - Synthese 190 (12):2141-2164.
    In this paper, I introduce the idea that some important parts of contemporary pure mathematics are moving away from what I call the extensional point of view. More specifically, these fields are based on criteria of identity that are not extensional. After presenting a few cases, I concentrate on homotopy theory where the situation is particularly clear. Moreover, homotopy types are arguably fundamental entities of geometry, thus of a large portion of mathematics, and potentially to all mathematics, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  47. Plato’s Philosophy of Cognition by Mathematical Modelling.Roman S. Kljujkov & Sergey F. Kljujkov - 2014 - Dialogue and Universalism 24 (3):110-115.
    By the end of his life Plato had rearranged the theory of ideas into his teaching about ideal numbers, but no written records have been left. The Ideal mathematics of Plato is present in all his dialogues. It can be clearly grasped in relation to the effective use of mathematical modelling. Many problems of mathematical modelling were laid in the foundation of the method by cutting the three-level idealism of Plato to the single-level “ideism” of Aristotle. For a long (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  69
    The Philosophy of the Concept and the Specificity of Mathematics.Matt Hare - 2022 - In Peter Osborne (ed.), Afterlives: transcendentals, universals, others. London: CRMEP Books. pp. 101-129.
    Download  
     
    Export citation  
     
    Bookmark  
  49. The fundamental cognitive approaches of mathematics.Salvador Daniel Escobedo Casillas - manuscript
    We propose a way to explain the diversification of branches of mathematics, distinguishing the different approaches by which mathematical objects can be studied. In our philosophy of mathematics, there is a base object, which is the abstract multiplicity that comes from our empirical experience. However, due to our human condition, the analysis of such multiplicity is covered by other empirical cognitive attitudes (approaches), diversifying the ways in which it can be conceived, and consequently giving rise to different (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The Ontogenesis of Mathematical Objects.Barry Smith - 1975 - Journal of the British Society for Phenomenology 6 (2):91-101.
    Mathematical objects are divided into (1) those which are autonomous, i.e., not dependent for their existence upon mathematicians’ conscious acts, and (2) intentional objects, which are so dependent. Platonist philosophy of mathematics argues that all objects belong to group (1), Brouwer’s intuitionism argues that all belong to group (2). Here we attempt to develop a dualist ontology of mathematics (implicit in the work of, e.g., Hilbert), exploiting the theories of Meinong, Husserl and Ingarden on the relations between (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 959