Results for 'Winding Numbers '

968 found
Order:
  1. Ibn Qayyim al-Jawziyya in the "Lands below the Wind: an ideological father of radicalism or a popular sufi master?Syamsuddin Arif - 2013 - In Birgit Krawietz, Georges Tamer & Alina Kokoschka (eds.), Islamic theology, philosophy and law: debating Ibn Taymiyya and Ibn Qayyim al-Jawziyya. Boston: De Gruyter. pp. 220-249.
    While it is true that the intellectual relationship established through multipurpose pilgrimage to the heartland of Islam has never lost its significance, the political implications of this connection seem to be overestimated. In this article I attempt to show that, although the number of writings by and on Ibn Qayyim al-Jawziyya in the Malay-Indonesian language is strikingly considerable, the nature and extent of their impact in the religious life and thought of people have yet to be seen. Hence, to construe (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. The existence of numbers (or: What is the status of arithmetic?).Andrew Boucher - manuscript
    I begin with a personal confession. Philosophical discussions of existence have always bored me. When they occur, my eyes glaze over and my attention falters. Basically ontological questions often seem best decided by banging on the table--rocks exist, fairies do not. Argument can appear long-winded and miss the point. Sometimes a quick distinction resolves any apparent difficulty. Does a falling tree in an earless forest make noise, ie does the noise exist? Well, if noise means that an ear must be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  60
    Journal article Open Formalizing Mechanical Analysis Using Sweeping Net Methods II: Written Without Complex Analysis and With Complex Analysis.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:13.
    Published with great thanksgiving for Yaohushua, the living One Yahowah, "Jesus Christ." -/- In previous work, Formalizing Mechanical Analysis Using Sweeping Net Methods I, sweeping net methods have been extended to complex analysis, relying on the argument of complex functions defined on the unit circle. In this paper, we reformulate these methods purely within a real-valued and geometric framework, avoiding the use of complex analysis. By redefining the sweeping net constructs and the associated theorems using real functions and geometric interpretations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Preservation, Commutativity and Modus Ponens: Two Recent Triviality Results.Jake Chandler - 2017 - Mind 126 (502):579-602.
    In a recent pair of publications, Richard Bradley has offered two novel no-go theorems involving the principle of Preservation for conditionals, which guarantees that one’s prior conditional beliefs will exhibit a certain degree of inertia in the face of a change in one’s non-conditional beliefs. We first note that Bradley’s original discussions of these results—in which he finds motivation for rejecting Preservation, first in a principle of Commutativity, then in a doxastic analogue of the rule of modus ponens —are problematic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. St. Augustine on text and reality (and a little Gadamerian spice).Cynthia R. Nielsen - 2009 - Heythrop Journal 50 (1):98-108.
    One way of viewing the organizing structure of the Confessions is to see it as an engagement with various texts at different phases of St. Augustine’s life. In the early books of the Confessions, Augustine describes the disordered state that made him unable to read any text (sacred or profane) properly. Yet following his conversion his entire orientation— not only to texts but also to reality as a whole—changes. This essay attempts to trace the winding paths that lead up (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Renewable Energy.Anne Schwenkenbecher & Martin Brueckner - 2022 - In Benjamin Hale & Andrew Light (eds.), The Routledge Companion to Environmental Ethics. Routledge. pp. 359-373.
    There exist overwhelming – and morally compelling – reasons for shifting to renewable energy (RE), because only that will enable us to timely mitigate dangerous global warming. In addition, several other morally weighty reasons speak in favor of the shift: considerable public health benefits, broader environmental benefits, the potential for sustainable and equitable economic development and equitable energy access, and, finally, long-term energy security. Furthermore, it appears that the transition to RE is economically, technologically, and politically feasible at this point (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Entropy in Physics using my Universal Formula.Angelito Malicse - manuscript
    -/- 1. Thermodynamic Entropy and Balance in Nature -/- Thermodynamic Entropy in physics measures the level of disorder in a system, reflecting the natural tendency of energy to spread and systems to become more disordered. -/- Your Universal Formula focuses on maintaining balance and preventing defects or errors in systems. -/- Integration: -/- Increasing thermodynamic entropy (e.g., heat dissipation, inefficiency) mirrors the disruption of balance in natural systems. -/- Preventing imbalance: To minimize entropy, systems must operate in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Kim Report: Compiles and Thought on the College and University Rankings.Kiyoung Kim (ed.) - 2021 - New York, USA: Kindle Direct Publishing.
    The aims of this book is clear and straightforward. It was motivated to convert an inhumane or insipid experience with the various sources of global ranking into the kind of humanly and cultural experience within our daily lifestyle. Their outlook from presentation is masked with the number purely and perhaps through a myriad of complicated data or ranking information. The concept or self-identification within the experience or exposure would be less substantial or hard to get palpable. My attempt to improve (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Wind Turbine Analysis Project.Neil Otte, Rahul Rai, Clare Paul & Barry Smith - 2018 - Final Project Report.
    The report describes an application of ontologies to the analysis of wind turbine manufacturing data. We show how applying ontologies to composite materials data may facilitate the discovery of optimum composite material designs that will deliver maximum wind turbine blade performance within environmental constraints.
    Download  
     
    Export citation  
     
    Bookmark  
  10. Prevailing Winds: Marx as Romantic Poet.Joshua M. Hall - 2013 - Philosophy and Literature 37 (2):343-359.
    Inspired by Charles Taylor’s locating of Herder and Rousseau’s “expressivism” in Marx’s understanding of the human as artist, I begin this essay by examining expressivism in Taylor, followed by its counterpart in M. H. Abrams’s work, namely the wind as metaphor in British Romantic poetry. I then further explore this expressivism/wind connection in Percy Bysshe Shelley’s “Ode to the West Wind” and Marx’s The German Ideology. Ultimately I conclude that these expressive winds lead to poetic gesture per se, and thereby, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Number Nativism.Sam Clarke - forthcoming - Philosophy and Phenomenological Research.
    Number Nativism is the view that humans innately represent precise natural numbers. Despite a long and venerable history, it is often considered hopelessly out of touch with the empirical record. I argue that this is a mistake. After clarifying Number Nativism and distancing it from related conjectures, I distinguish three arguments which have been seen to refute the view. I argue that, while popular, two of these arguments miss the mark, and fail to place pressure on Number Nativism. Meanwhile, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Design and Application of Wind Power Peak Control Technology.Songyi Zhu - 2014 - Journal of Power and Energy Engineering 2:23-28.
    Wind power control technology is an important part of intelligent control in wind farms. By the automatic calculation and implementation of control strategy, problems such as imprecise of manual control scheduling, slow adjust rate, heavy workload, etc. have been solved. It can improve the capacity of wind power grid, and it also has the important meaning to the safe and stable operation of power grid. This paper introduces wind power control system from certain aspects such as control mode, control principle, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Number Words and Ontological Commitment.Berit Brogaard - 2007 - Philosophical Quarterly 57 (226):1–20.
    With the aid of some results from current linguistic theory I examine a recent anti-Fregean line with respect to hybrid talk of numbers and ordinary things, such as ‘the number of moons of Jupiter is four’. I conclude that the anti-Fregean line with respect to these sentences is indefensible.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  14. Number adaptation: A critical look.Sami R. Yousif, Sam Clarke & Elizabeth M. Brannon - 2024 - Cognition 249 (105813):1-17.
    It is often assumed that adaptation — a temporary change in sensitivity to a perceptual dimension following exposure to that dimension — is a litmus test for what is and is not a “primary visual attribute”. Thus, papers purporting to find evidence of number adaptation motivate a claim of great philosophical significance: That number is something that can be seen in much the way that canonical visual features, like color, contrast, size, and speed, can. Fifteen years after its reported discovery, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  15. The number sense represents (rational) numbers.Sam Clarke & Jacob Beck - 2021 - Behavioral and Brain Sciences 44:1-57.
    On a now orthodox view, humans and many other animals possess a “number sense,” or approximate number system, that represents number. Recently, this orthodox view has been subject to numerous critiques that question whether the ANS genuinely represents number. We distinguish three lines of critique – the arguments from congruency, confounds, and imprecision – and show that none succeed. We then provide positive reasons to think that the ANS genuinely represents numbers, and not just non-numerical confounds or exotic substitutes (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  16. Number and natural language.Stephen Laurence & Eric Margolis - 2005 - In Peter Carruthers, Stephen Laurence & Stephen P. Stich (eds.), The Innate Mind: Structure and Contents. New York, US: Oxford University Press on Demand. pp. 1--216.
    One of the most important abilities we have as humans is the ability to think about number. In this chapter, we examine the question of whether there is an essential connection between language and number. We provide a careful examination of two prominent theories according to which concepts of the positive integers are dependent on language. The first of these claims that language creates the positive integers on the basis of an innate capacity to represent real numbers. The second (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  17. Rational Number Representation by the Approximate Number System.Chuyan Qu, Sam Clarke, Francesca Luzzi & Elizabeth Brannon - 2024 - Cognition 250 (105839):1-13.
    The approximate number system (ANS) enables organisms to represent the approximate number of items in an observed collection, quickly and independently of natural language. Recently, it has been proposed that the ANS goes beyond representing natural numbers by extracting and representing rational numbers (Clarke & Beck, 2021a). Prior work demonstrates that adults and children discriminate ratios in an approximate and ratio-dependent manner, consistent with the hallmarks of the ANS. Here, we use a well-known “connectedness illusion” to provide evidence (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Numbers without aggregation.Tim Henning - 2023 - Noûs (3):755-777.
    Suppose we can save either a larger group of persons or a distinct, smaller group from some harm. Many people think that, all else equal, we ought to save the greater number. This article defends this view (with qualifications). But unlike earlier theories, it does not rely on the idea that several people's interests or claims receive greater aggregate weight. The argument starts from the idea that due to their stakes, the affected people have claims to have a say in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19. Bafurada (The WInd).Mota Victor - manuscript
    "The Answer is blow'in in the wind" (Bob Dylan).
    Download  
     
    Export citation  
     
    Bookmark  
  20. The Number of Planets, a Number-Referring Term?Friederike Moltmann - 2016 - In Philip A. Ebert & Marcus Rossberg (eds.), Abstractionism: Essays in Philosophy of Mathematics. Oxford, England: Oxford University Press UK. pp. 113-129.
    The question whether numbers are objects is a central question in the philosophy of mathematics. Frege made use of a syntactic criterion for objethood: numbers are objects because there are singular terms that stand for them, and not just singular terms in some formal language, but in natural language in particular. In particular, Frege (1884) thought that both noun phrases like the number of planets and simple numerals like eight as in (1) are singular terms referring to (...) as abstract objects. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  21. Number words as number names.Friederike Moltmann - 2017 - Linguistics and Philosophy 40 (4):331-345.
    This paper criticizes the view that number words in argument position retain the meaning they have on an adjectival or determiner use, as argued by Hofweber :179–225, 2005) and Moltmann :499–534, 2013a, 2013b). In particular the paper re-evaluates syntactic evidence from German given in Moltmann to that effect.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  22. Number Concepts: An Interdisciplinary Inquiry.Richard Samuels & Eric Snyder - 2024 - Cambridge University Press.
    This Element, written for researchers and students in philosophy and the behavioral sciences, reviews and critically assesses extant work on number concepts in developmental psychology and cognitive science. It has four main aims. First, it characterizes the core commitments of mainstream number cognition research, including the commitment to representationalism, the hypothesis that there exist certain number-specific cognitive systems, and the key milestones in the development of number cognition. Second, it provides a taxonomy of influential views within mainstream number cognition research, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Numbers, numerosities, and new directions.Jacob Beck & Sam Clarke - 2021 - Behavioral and Brain Sciences 44:1-20.
    In our target article, we argued that the number sense represents natural and rational numbers. Here, we respond to the 26 commentaries we received, highlighting new directions for empirical and theoretical research. We discuss two background assumptions, arguments against the number sense, whether the approximate number system represents numbers or numerosities, and why the ANS represents rational numbers.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  24. Of Numbers and Electrons.Cian Dorr - 2010 - Proceedings of the Aristotelian Society 110 (2pt2):133-181.
    According to a tradition stemming from Quine and Putnam, we have the same broadly inductive reason for believing in numbers as we have for believing in electrons: certain theories that entail that there are numbers are better, qua explanations of our evidence, than any theories that do not. This paper investigates how modal theories of the form ‘Possibly, the concrete world is just as it in fact is and T’ and ‘Necessarily, if standard mathematics is true and the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  25. Process Reliabilism, Prime Numbers and the Generality Problem.Frederik J. Andersen & Klemens Kappel - 2020 - Logos and Episteme 11 (2):231-236.
    This paper aims to show that Selim Berker’s widely discussed prime number case is merely an instance of the well-known generality problem for process reliabilism and thus arguably not as interesting a case as one might have thought. Initially, Berker’s case is introduced and interpreted. Then the most recent response to the case from the literature is presented. Eventually, it is argued that Berker’s case is nothing but a straightforward consequence of the generality problem, i.e., the problematic aspect of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Incomparable numbers.Kenneth Walden - 2020 - Oxford Studies in Normative Ethics 10.
    This chapter presents arguments for two slightly different versions of the thesis that the value of persons is incomparable. Both arguments allege an incompatibility between the demands of a certain kind of practical reasoning and the presuppositions of value comparisons. The significance of these claims is assessed in the context of the “Numbers problem”—the question of whether one morally ought to benefit one group of potential aid recipients rather than another simply because they are greater in number. It is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Numbers and Propositions: Reply to Melia.Tim Crane - 1992 - Analysis 52 (4):253-256.
    Is the way we use propositions to individuate beliefs and other intentional states analogous to the way we use numbers to measure weights and other physical magnitudes? In an earlier paper [2], I argued that there is an important disanalogy. One and the same weight can be 'related to' different numbers under different units of measurement. Moreover, the choice of a unit of measurement is arbitrary,in the sense that which way we choose doesn't affect the weight attributed to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. Why the numbers should sometimes count.John T. Sanders - 1988 - Philosophy and Public Affairs 17 (1):3-14.
    John Taurek has argued that, where choices must be made between alternatives that affect different numbers of people, the numbers are not, by themselves, morally relevant. This is because we "must" take "losses-to" the persons into account (and these don't sum), but "must not" consider "losses-of" persons (because we must not treat persons like objects). I argue that the numbers are always ethically relevant, and that they may sometimes be the decisive consideration.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  29. Reference to numbers in natural language.Friederike Moltmann - 2013 - Philosophical Studies 162 (3):499 - 536.
    A common view is that natural language treats numbers as abstract objects, with expressions like the number of planets, eight, as well as the number eight acting as referential terms referring to numbers. In this paper I will argue that this view about reference to numbers in natural language is fundamentally mistaken. A more thorough look at natural language reveals a very different view of the ontological status of natural numbers. On this view, numbers are (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  30.  88
    Strange and wonderful: Numbers through a new (material) lens.Karenleigh A. Overmann - 2024 - Cuneiform Digital Library Journal 2:1–21.
    I respond to P. McLaughlin and O. Schlaudt’s critique of my analysis of the cross-cultural origins of numbers, noting that my work draws extensively upon number systems as ethnographically attested around the globe, and thus is based only in part on the important Mesopotamian case study. I place the work of Peter Damerow in its historical context, noting its genesis in Piaget’s genetic epistemology and the problems associated with applying Piaget’s developmental theory to societies. While Piaget assumed numeracy involves (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Number, Language, and Mathematics.Joosoak Kim - manuscript
    Number is a major object in mathematics. Mathematics is a discipline which studies the properties of a number. The object is expressible by mathematical language, which has been devised more rigorously than natural language. However, the language is not thoroughly free from natural language. Countability of natural number is also originated from natural language. It is necessary to understand how language leads a number into mathematics, its’ main playground.
    Download  
     
    Export citation  
     
    Bookmark  
  32. Real Numbers are the Hidden Variables of Classical Mechanics.Nicolas Gisin - 2020 - Quantum Studies: Mathematics and Foundations 7:197–201.
    Do scientific theories limit human knowledge? In other words, are there physical variables hidden by essence forever? We argue for negative answers and illustrate our point on chaotic classical dynamical systems. We emphasize parallels with quantum theory and conclude that the common real numbers are, de facto, the hidden variables of classical physics. Consequently, real numbers should not be considered as ``physically real" and classical mechanics, like quantum physics, is indeterministic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  33. Slicing Up Eyeballs: The Criminal Underworlds of Nicolas Winding Refn.M. Blake Wilson - 2020 - Philosophical Journal of Conflict and Violence 4 (2):15-39.
    From Buñuel and Dali’s Un Chien Andalou to recent works by Danish filmmaker Nicolas Winding Refn, the cinematic destruction of the eye has become iconic due to its striking effect upon film spectators’ visceral experiences as well as its ability to influence their symbolic or fetishistic desires. By exploiting the natural discomfort and disgust produced by these types of images and then situating them within an aesthetic and psychoanalytic framework, Refn and other filmmakers provide a visual showcase for a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. The Small Number System.Eric Margolis - 2020 - Philosophy of Science 87 (1):113-134.
    I argue that the human mind includes an innate domain-specific system for representing precise small numerical quantities. This theory contrasts with object-tracking theories and with domain-general theories that only make use of mental models. I argue that there is a good amount of evidence for innate representations of small numerical quantities and that such a domain-specific system has explanatory advantages when infants’ poor working memory is taken into account. I also show that the mental models approach requires previously unnoticed domain-specific (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  35. Numbers and functions in Hilbert's finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  36. Leibniz on Number Systems.Lloyd Strickland - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 167-197.
    This chapter examines the pioneering work of Gottfried Wilhelm Leibniz (1646-1716) on various number systems, in particular binary, which he independently invented in the mid-to-late 1670s, and hexadecimal, which he invented in 1679. The chapter begins with the oft-debated question of who may have influenced Leibniz’s invention of binary, though as none of the proposed candidates is plausible I suggest a different hypothesis, that Leibniz initially developed binary notation as a tool to assist his investigations in mathematical problems that were (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Rational Numbers: A Non‐Consequentialist Explanation Of Why You Should Save The Many And Not The Few.Tom Dougherty - 2013 - Philosophical Quarterly 63 (252):413-427.
    You ought to save a larger group of people rather than a distinct smaller group of people, all else equal. A consequentialist may say that you ought to do so because this produces the most good. If a non-consequentialist rejects this explanation, what alternative can he or she give? This essay defends the following explanation, as a solution to the so-called numbers problem. Its two parts can be roughly summarised as follows. First, you are morally required to want the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  38. Numbers, Ontologically Speaking: Plato on Numerosity.Calian Florin George - 2021 - In Numbers and Numeracy in the Greek Polis. Brill.
    The conceptualisation of numbers is culturally bound. This may seem like a counterintuitive claim, but one illustration thereof is the limitations of the resemblance of the ancient Greek concept of number to that in modern mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Why do numbers exist? A psychologist constructivist account.Markus Pantsar - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    In this paper, I study the kind of questions we can ask about the existence of numbers. In addition to asking whether numbers exist, and how, I argue that there is also a third relevant question: why numbers exist. In platonist and nominalist accounts this question may not make sense, but in the psychologist account I develop, it is as well-placed as the other two questions. In fact, there are two such why-questions: the causal why-question asks what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Why Numbers Are Sets.Eric Steinhart - 2002 - Synthese 133 (3):343-361.
    I follow standard mathematical practice and theory to argue that the natural numbers are the finite von Neumann ordinals. I present the reasons standardly given for identifying the natural numbers with the finite von Neumann's (e.g., recursiveness; well-ordering principles; continuity at transfinite limits; minimality; and identification of n with the set of all numbers less than n). I give a detailed mathematical demonstration that 0 is { } and for every natural number n, n is the set (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  41. Number and Reality: Sources of Scientific Knowledge.Alex V. Halapsis - 2016 - ScienceRise 23 (6):59-64.
    Pythagoras’s number doctrine had a great effect on the development of science. Number – the key to the highest reality, and such approach allowed Pythagoras to transform mathematics from craft into science, which continues implementation of its project of “digitization of being”. Pythagoras's project underwent considerable transformation, but it only means that the plan in knowledge is often far from result.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Numbers, Fairness and Charity.Adam Hosein - manuscript
    This paper discusses the "numbers problem," the problem of explaining why you should save more people rather than fewer when forced to choose. Existing non-consequentialist approaches to the problem appeal to fairness to explain why. I argue that this is a mistake and that we can give a more satisfying answer by appealing to requirements of charity or beneficence.
    Download  
     
    Export citation  
     
    Bookmark  
  43. Neutosophic Quadruple Numbers, Refined Neutrosophic Quadruple Number, Absorbance Law, and the Multiplication of Neutrosophic Quadruple Numbers.Florentin Smarandache - 2015 - Neutrosophic Sets and Systems 10:96-98.
    In this paper, we introduce for the first time the neutrosophic quadruple numbers (of the form a + bT + cI + dF) and the refined neutrosophic quadruple numbers. Then we define an absorbance law, based on a prevalence order, both of them in order to multiply the neutrosophic components T, I, F, or their sub-components tJ, Ik, Fl and thus to construct the multiplication of neutrosophic quadruple numbers.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. The number of senses.Kevin C. Klement - 2003 - Erkenntnis 58 (3):303 - 323.
    Many philosophers still countenance senses or meanings in the broadly Fregean vein. However, it is difficult to posit the existence of senses without positing quite a lot of them, including at least one presenting every entity in existence. I discuss a number of Cantorian paradoxes that seem to result from an overly large metaphysics of senses, and various possible solutions. Certain more deflationary and nontraditional understanding of senses, and to what extent they fare better in solving the problems, are also (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  45. The Number of Bricks in a Ziggurat.Ben Blumson & Jarinah Jabbar - 2020 - Mathematics Magazine 93 (3):226-227.
    The number of bricks in a ziggurat is a sum of consecutive squares.
    Download  
     
    Export citation  
     
    Bookmark  
  46. Numbers without Science.Russell Marcus - 2007 - Dissertation, The Graduate School and University Center of the City University of New York
    Numbers without Science opposes the Quine-Putnam indispensability argument, seeking to undermine the argument and reduce its profound influence. Philosophers rely on indispensability to justify mathematical knowledge using only empiricist epistemology. I argue that we need an independent account of our knowledge of mathematics. The indispensability argument, in broad form, consists of two premises. The major premise alleges that we are committed to mathematical objects if science requires them. The minor premise alleges that science in fact requires mathematical objects. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Numbers, Empiricism and the A Priori.Olga Ramírez Calle - 2020 - Logos and Episteme 11 (2):149-177.
    The present paper deals with the ontological status of numbers and considers Frege ́s proposal in Grundlagen upon the background of the Post-Kantian semantic turn in analytical philosophy. Through a more systematic study of his philosophical premises, it comes to unearth a first level paradox that would unset earlier still than it was exposed by Russell. It then studies an alternative path, that departin1g from Frege’s initial premises, drives to a conception of numbers as synthetic a priori in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Constructing a concept of number.Karenleigh Overmann - 2018 - Journal of Numerical Cognition 2 (4):464–493.
    Numbers are concepts whose content, structure, and organization are influenced by the material forms used to represent and manipulate them. Indeed, as argued here, it is the inclusion of multiple forms (distributed objects, fingers, single- and two-dimensional forms like pebbles and abaci, and written notations) that is the mechanism of numerical elaboration. Further, variety in employed forms explains at least part of the synchronic and diachronic variability that exists between and within cultural number systems. Material forms also impart characteristics (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  49. Infinite numbers are large finite numbers.Jeremy Gwiazda - unknown
    In this paper, I suggest that infinite numbers are large finite numbers, and that infinite numbers, properly understood, are 1) of the structure omega + (omega* + omega)Ө + omega*, and 2) the part is smaller than the whole. I present an explanation of these claims in terms of epistemic limitations. I then consider the importance, part of which is demonstrating the contradiction that lies at the heart of Cantorian set theory: the natural numbers are too (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Numbers versus Nominalists.Nathan Salmon - 2008 - Analysis 68 (3):177–182.
    A nominalist account of statements of number (e.g., ‘There are exactly two moons of Mars’) is rebutted.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 968