Results for 'axiomatizations of arithmetic of natural and integers numbers'

959 found
Order:
  1. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Purity in Arithmetic: some Formal and Informal Issues.Andrew Arana - 2014 - In Godehard Link (ed.), Formalism and Beyond: On the Nature of Mathematical Discourse. Boston: De Gruyter. pp. 315-336.
    Over the years many mathematicians have voiced a preference for proofs that stay “close” to the statements being proved, avoiding “foreign”, “extraneous”, or “remote” considerations. Such proofs have come to be known as “pure”. Purity issues have arisen repeatedly in the practice of arithmetic; a famous instance is the question of complex-analytic considerations in the proof of the prime number theorem. This article surveys several such issues, and discusses ways in which logical considerations shed light on these issues.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Throwing Darts, Time, and the Infinite.Jeremy Gwiazda - 2013 - Erkenntnis 78 (5):971-975.
    In this paper, I present a puzzle involving special relativity and the random selection of real numbers. In a manner to be specified, darts thrown later hit reals further into a fixed well-ordering than darts thrown earlier. Special relativity is then invoked to create a puzzle. I consider four ways of responding to this puzzle which, I suggest, fail. I then propose a resolution to the puzzle, which relies on the distinction between the potential infinite and the actual infinite. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. (1 other version)God and the Numbers.Paul Studtmann - 2023 - Journal of Philosophy 120 (12):641-655.
    According to Augustine, abstract objects are ideas in the mind of God. Because numbers are a type of abstract object, it would follow that numbers are ideas in the mind of God. Call such a view the “Augustinian View of Numbers” (AVN). In this paper, I present a formal theory for AVN. The theory stems from the symmetry conception of God as it appears in Studtmann (2021). I show that the theory in Studtmann’s paper can interpret the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Number and natural language.Stephen Laurence & Eric Margolis - 2005 - In Peter Carruthers, Stephen Laurence & Stephen Stich (eds.), The Innate Mind: Structure and Contents. New York, US: Oxford University Press on Demand. pp. 1--216.
    One of the most important abilities we have as humans is the ability to think about number. In this chapter, we examine the question of whether there is an essential connection between language and number. We provide a careful examination of two prominent theories according to which concepts of the positive integers are dependent on language. The first of these claims that language creates the positive integers on the basis of an innate capacity to represent real numbers. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  7. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (e.g. that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  8. Model-checking CTL* over flat Presburger counter systems.Stéphane Demri, Alain Finkel, Valentin Goranko & Govert van Drimmelen - 2010 - Journal of Applied Non-Classical Logics 20 (4):313-344.
    This paper concerns model-checking of fragments and extensions of CTL* on infinite-state Presburger counter systems, where the states are vectors of integers and the transitions are determined by means of relations definable within Presburger arithmetic. In general, reachability properties of counter systems are undecidable, but we have identified a natural class of admissible counter systems (ACS) for which we show that the quantification over paths in CTL* can be simulated by quantification over tuples of natural (...), eventually allowing translation of the whole Presburger-CTL* into Presburger arithmetic, thereby enabling effective model checking. We provide evidence that our results are close to optimal with respect to the class of counter systems described above. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. How to Learn the Natural Numbers: Inductive Inference and the Acquisition of Number Concepts.Eric Margolis & Stephen Laurence - 2008 - Cognition 106 (2):924-939.
    Theories of number concepts often suppose that the natural numbers are acquired as children learn to count and as they draw an induction based on their interpretation of the first few count words. In a bold critique of this general approach, Rips, Asmuth, Bloomfield [Rips, L., Asmuth, J. & Bloomfield, A.. Giving the boot to the bootstrap: How not to learn the natural numbers. Cognition, 101, B51–B60.] argue that such an inductive inference is consistent with a (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  10.  77
    Brouwer's Intuition of Twoity and Constructions in Separable Mathematics.Bruno Bentzen - 2023 - History and Philosophy of Logic 45 (3):341-361.
    My first aim in this paper is to use time diagrams in the style of Brentano to analyze constructions in Brouwer's separable mathematics more precisely. I argue that constructions must involve not only pairing and projecting as basic operations guaranteed by the intuition of twoity, as sometimes assumed in the literature, but also a recalling operation. My second aim is to argue that Brouwer's views on the intuition of twoity and arithmetic lead to an ontological explosion. Redeveloping the constructions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Reference to numbers in natural language.Friederike Moltmann - 2013 - Philosophical Studies 162 (3):499 - 536.
    A common view is that natural language treats numbers as abstract objects, with expressions like the number of planets, eight, as well as the number eight acting as referential terms referring to numbers. In this paper I will argue that this view about reference to numbers in natural language is fundamentally mistaken. A more thorough look at natural language reveals a very different view of the ontological status of natural numbers. On this (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  12. Structure and the Concept of Number.Mark Eli Kalderon - 1995 - Dissertation, Princeton University
    The present essay examines and critically discusses Paul Benacerraf's antiplatonist argument of "What Numbers Could Not Be." In the course of defending platonism against Benacerraf's semantic skepticism, I develop a novel platonist analysis of the content of arithmetic on the basis of which the necessary existence of the natural numbers and the nature of numerical reference are explained.
    Download  
     
    Export citation  
     
    Bookmark  
  13. The life cycle of social and economic systems.Sergii Sardak & С. Е Сардак - 2016 - Marketing and Management of Innovations 1:157-169.
    The aim of the article. The aim of the article is to identify the components of social and economic systems life cycle. To achieve this aim, the article describes the traits and characteristics of the system, determines the features of social and economic systems functioning and is applied a systematic approach in the study of their life cycle. The results of the analysis. It is determined that the development of social and economic systems has signs of cyclicity and is explained (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Arithmetic Judgements, First-Person Judgements and Immunity to Error Through Misidentification.Michele Palmira - 2018 - Review of Philosophy and Psychology 10 (1):155-172.
    The paper explores the idea that some singular judgements about the natural numbers are immune to error through misidentification by pursuing a comparison between arithmetic judgements and first-person judgements. By doing so, the first part of the paper offers a conciliatory resolution of the Coliva-Pryor dispute about so-called “de re” and “which-object” misidentification. The second part of the paper draws some lessons about what it takes to explain immunity to error through misidentification. The lessons are: First, the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  16. Husserl’s Early Semiotics and Number Signs: Philosophy of Arithmetic through the Lens of “On the Logic of Signs ”.Thomas Byrne - 2017 - Journal of the British Society for Phenomenology 48 (4):287-303.
    This paper demonstrates that Edmund Husserl’s frequently overlooked 1890 manuscript, “On the Logic of Signs,” when closely investigated, reveals itself to be the hermeneutical touchstone for his seminal 1891 Philosophy of Arithmetic. As the former comprises Husserl’s earliest attempt to account for all of the different kinds of signitive experience, his conclusions there can be directly applied to the latter, which is focused on one particular type of sign; namely, number signs. Husserl’s 1890 descriptions of motivating and replacing signs (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  17. Divide and conquer: The authority of nature and why we disagree about human nature.Maria Kronfeldner - 2018 - In Elizabeth Hannon & Tim Lewens (eds.), Why We Disagree About Human Nature. Oxford: Oxford University Press. pp. 186-206.
    The term ‘human nature’ can refer to different things in the world and fulfil different epistemic roles. Human nature can refer to a classificatory nature (classificatory criteria that determine the boundaries of, and membership in, a biological or social group called ‘human’), a descriptive nature (a bundle of properties describing the respective group’s life form), or an explanatory nature (a set of factors explaining that life form). This chapter will first introduce these three kinds of ‘human nature’, together with seven (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Frege's Changing Conception of Number.Kevin C. Klement - 2012 - Theoria 78 (2):146-167.
    I trace changes to Frege's understanding of numbers, arguing in particular that the view of arithmetic based in geometry developed at the end of his life (1924–1925) was not as radical a deviation from his views during the logicist period as some have suggested. Indeed, by looking at his earlier views regarding the connection between numbers and second-level concepts, his understanding of extensions of concepts, and the changes to his views, firstly, in between Grundlagen and Grundgesetze, and, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  19. Set existence principles and closure conditions: unravelling the standard view of reverse mathematics.Benedict Eastaugh - 2019 - Philosophia Mathematica 27 (2):153-176.
    It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse mathematics, and argue that they are best understood as closure conditions on the powerset (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  20. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Semantic Arithmetic: A Preface.John Corcoran - 1995 - Agora 14 (1):149-156.
    SEMANTIC ARITHMETIC: A PREFACE John Corcoran Abstract Number theory, or pure arithmetic, concerns the natural numbers themselves, not the notation used, and in particular not the numerals. String theory, or pure syntax, concems the numerals as strings of «uninterpreted» characters without regard to the numbe~s they may be used to denote. Number theory is purely arithmetic; string theory is purely syntactical... in so far as the universe of discourse alone is considered. Semantic arithmetic is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  59
    Rule-Following, Private Language, and (Self-)Correction Practice: A Case of Local Quaddition Function.A. Nekhaev - 2022 - Tomsk State University Journal of Philosophy, Sociology, and Political Science 16 (69):32–43.
    The article contains a critical analysis of the skeptical solution to the rule- following problem. The skeptical solution denies the existence of “superlative” R-facts that would make statements of the form “P means R by ‘+’ ” true. The role of the sources for the meaning of ‘+’ here is played by the patterns of solidarity behavior of members of some community to which P belongs. The correct use of ‘+’ would be one that is approved by the competent majority (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Truth and Existence.Jan Heylen & Leon Horsten - 2017 - Thought: A Journal of Philosophy 6 (1):106-114.
    Halbach has argued that Tarski biconditionals are not ontologically conservative over classical logic, but his argument is undermined by the fact that he cannot include a theory of arithmetic, which functions as a theory of syntax. This article is an improvement on Halbach's argument. By adding the Tarski biconditionals to inclusive negative free logic and the universal closure of minimal arithmetic, which is by itself an ontologically neutral combination, one can prove that at least one thing exists. The (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26. Why did Fermat believe he had `a truly marvellous demonstration' of FLT?Bhupinder Singh Anand - manuscript
    Conventional wisdom dictates that proofs of mathematical propositions should be treated as necessary, and sufficient, for entailing `significant' mathematical truths only if the proofs are expressed in a---minimally, deemed consistent---formal mathematical theory in terms of: * Axioms/Axiom schemas * Rules of Deduction * Definitions * Lemmas * Theorems * Corollaries. Whilst Andrew Wiles' proof of Fermat's Last Theorem FLT, which appeals essentially to geometrical properties of real and complex numbers, can be treated as meeting this criteria, it nevertheless leaves (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. The Nature of Work and Its Relation to the Type of Communication among Employees in Palestinian Universities - A Comparative Study between Al-Azhar and Al-Aqsa Universities.Ahmed M. A. FarajAllah, Suliman A. El Talla, Samy S. Abu-Naser & Mazen J. Al Shobaki - 2018 - International Journal of Academic Multidisciplinary Research (IJAMR) 2 (6):10-29.
    The study aimed to know the relationship between the nature of the work and the type of communication among the Employees in the Palestinian universities. A comparative study between Al-Azhar University and Al-Aqsa University. The researchers used the analytical descriptive method through a questionnaire that is randomly distributed among the employees of Al-Azhar and Al-Aqsa universities in Gaza Strip. The study was conducted on a sample of (176) administrative employees from the surveyed universities. The response rate was (85.79%). The study (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Schemata: The concept of schema in the history of logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by Herbrand’s (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  30. An Arithmetization of Logical Oppositions.Fabien Schang - 2016 - In Jean-Yves Béziau & Gianfranco Basti (eds.), The Square of Opposition: A Cornerstone of Thought. Basel, Switzerland: Birkhäuser. pp. 215-237.
    An arithmetic theory of oppositions is devised by comparing expressions, Boolean bitstrings, and integers. This leads to a set of correspondences between three domains of investigation, namely: logic, geometry, and arithmetic. The structural properties of each area are investigated in turn, before justifying the procedure as a whole. Io finish, I show how this helps to improve the logical calculus of oppositions, through the consideration of corresponding operations between integers.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  31. Approximating trees as coloured linear orders and complete axiomatisations of some classes of trees.Ruaan Kellerman & Valentin Goranko - 2021 - Journal of Symbolic Logic 86 (3):1035-1065.
    We study the first-order theories of some natural and important classes of coloured trees, including the four classes of trees whose paths have the order type respectively of the natural numbers, the integers, the rationals, and the reals. We develop a technique for approximating a tree as a suitably coloured linear order. We then present the first-order theories of certain classes of coloured linear orders and use them, along with the approximating technique, to establish complete axiomatisations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
    The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave function describing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Non-archimedean analysis on the extended hyperreal line *R_d and the solution of some very old transcendence conjectures over the field Q.Jaykov Foukzon - 2015 - Advances in Pure Mathematics 5 (10):587-628.
    In 1980 F. Wattenberg constructed the Dedekind completiond of the Robinson non-archimedean field  and established basic algebraic properties of d [6]. In 1985 H. Gonshor established further fundamental properties of d [7].In [4] important construction of summation of countable sequence of Wattenberg numbers was proposed and corresponding basic properties of such summation were considered. In this paper the important applications of the Dedekind completiond in transcendental number theory were considered. We dealing using set theory ZFC  (-model of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. The Frontier of Time: The Concept of Quantum Information.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (17):1-5.
    The concept of formal transcendentalism is utilized. The fundamental and definitive property of the totality suggests for “the totality to be all”, thus, its externality (unlike any other entity) is contained within it. This generates a fundamental (or philosophical) “doubling” of anything being referred to the totality, i.e. considered philosophically. Thus, that doubling as well as transcendentalism underlying it can be interpreted formally as an elementary choice such as a bit of information and a quantity corresponding to the number of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Retrieving the Mathematical Mission of the Continuum Concept from the Transfinitely Reductionist Debris of Cantor’s Paradise. Extended Abstract.Edward G. Belaga - forthcoming - International Journal of Pure and Applied Mathematics.
    What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from the transfinite deadlock (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. The Nature and Ethics of Indifference.Hallvard Lillehammer - 2017 - The Journal of Ethics 21 (1):17-35.
    Indifference is sometimes said to be a virtue. Perhaps more frequently it is said to be a vice. Yet who is indifferent; to what; and in what way is poorly understood, and frequently subject to controversy and confusion. This paper presents a framework for the interpretation and analysis of ethically significant forms of indifference in terms of how subjects of indifference are variously related to their objects in different circumstances; and how an indifferent orientation can be either more or less (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  37. Self-reference and the languages of arithmetic.Richard Heck - 2007 - Philosophia Mathematica 15 (1):1-29.
    I here investigate the sense in which diagonalization allows one to construct sentences that are self-referential. Truly self-referential sentences cannot be constructed in the standard language of arithmetic: There is a simple theory of truth that is intuitively inconsistent but is consistent with Peano arithmetic, as standardly formulated. True self-reference is possible only if we expand the language to include function-symbols for all primitive recursive functions. This language is therefore the natural setting for investigations of self-reference.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  38. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Statements and open problems on decidable sets X⊆N that contain informal notions and refer to the current knowledge on X.Apoloniusz Tyszka - 2022 - Journal of Applied Computer Science and Mathematics 16 (2):31-35.
    Let f(1)=2, f(2)=4, and let f(n+1)=f(n)! for every integer n≥2. Edmund Landau's conjecture states that the set P(n^2+1) of primes of the form n^2+1 is infinite. Landau's conjecture implies the following unproven statement Φ: card(P(n^2+1))<ω ⇒ P(n^2+1)⊆[2,f(7)]. Let B denote the system of equations: {x_j!=x_k: i,k∈{1,...,9}}∪{x_i⋅x_j=x_k: i,j,k∈{1,...,9}}. The system of equations {x_1!=x_1, x_1 \cdot x_1=x_2, x_2!=x_3, x_3!=x_4, x_4!=x_5, x_5!=x_6, x_6!=x_7, x_7!=x_8, x_8!=x_9} has exactly two solutions in positive integers x_1,...,x_9, namely (1,...,1) and (f(1),...,f(9)). No known system S⊆B with a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. A defense of Isaacson’s thesis, or how to make sense of the boundaries of finite mathematics.Pablo Dopico - 2024 - Synthese 203 (2):1-22.
    Daniel Isaacson has advanced an epistemic notion of arithmetical truth according to which the latter is the set of truths that we grasp on the basis of our understanding of the structure of natural numbers alone. Isaacson’s thesis is then the claim that Peano Arithmetic (PA) is the theory of finite mathematics, in the sense that it proves all and only arithmetical truths thus understood. In this paper, we raise a challenge for the thesis and show how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Concepts of Law of Nature.Brendan Shea - 2011 - Dissertation, University of Illinois
    Over the past 50 years, there has been a great deal of philosophical interest in laws of nature, perhaps because of the essential role that laws play in the formulation of, and proposed solutions to, a number of perennial philosophical problems. For example, many have thought that a satisfactory account of laws could be used to resolve thorny issues concerning explanation, causation, free-will, probability, and counterfactual truth. Moreover, interest in laws of nature is not constrained to metaphysics or philosophy of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Strong Normalization via Natural Ordinal.Daniel Durante Pereira Alves - 1999 - Dissertation,
    The main objective of this PhD Thesis is to present a method of obtaining strong normalization via natural ordinal, which is applicable to natural deduction systems and typed lambda calculus. The method includes (a) the definition of a numerical assignment that associates each derivation (or lambda term) to a natural number and (b) the proof that this assignment decreases with reductions of maximal formulas (or redex). Besides, because the numerical assignment used coincide with the length of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Frege’s Concept Of Natural Numbers.A. P. Bird - 2021 - Cantor's Paradise (00):00.
    Frege discussed Mill’s empiricist ideas and Kant’s rationalist ideas about the nature of mathematics, and employed Set Theory and logico-philosophical notions to develop a new concept for the natural numbers. All this is objectively exposed by this paper.
    Download  
     
    Export citation  
     
    Bookmark  
  45. Moderna logika u hrvatskoj filozofiji 20. stoljeća [Modern logic in Croatian philosophy of the 20th century].Srećko Kovač - 2007 - In Damir Barbarić & Franjo Zenko (eds.), Hrvatska filozofija u XX. stoljeću. Matica hrvatska. pp. 97-110.
    The first beginnings of modern logic in Croatia are recognizable as early as in the middle of the 19th century in Vatroslav Bertić. At the turn of the 20th century, Albin Nagy, who was teaching in Italy, made contributions to algebraic logic and to the philosophy of logic. At that time, a distinctive author Mate Meršić stood out, also working on algebraic logic. In the Croatian academic philosophy, until the publication of Gajo Petrović's textbook (1964) and the contributions by Heda (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. The Nature and Rationality of Faith.Elizabeth Jackson - 2019 - In Kevin Vallier & Joshua Rasmussen (eds.), A New Theist Response to the New Atheists. New York: Routledge. pp. 77-92.
    A popular objection to theistic commitment involves the idea that faith is irrational. Specifically, some seem to put forth something like the following argument: (P1) Everyone (or almost everyone) who has faith is epistemically irrational, (P2) All theistic believers have faith, thus (C) All (or most) theistic believers are epistemically irrational. In this paper, I argue that this line of reasoning fails. I do so by considering a number of candidates for what faith might be. I argue that, for each (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  47. Talking about Numbers: Easy Arguments for Mathematical Realism. [REVIEW]Richard Lawrence - 2017 - History and Philosophy of Logic 38 (4):390-394.
    In §57 of the Foundations of Arithmetic, Frege famously turns to natural language to support his claim that numbers are ‘self-subsistent objects’:I have already drawn attention above to the fact th...
    Download  
     
    Export citation  
     
    Bookmark  
  48. A Complex Number Notation of Nature of Time: An Ancient Indian Insight.R. B. Varanasi Varanasi Varanasi Ramabrahmam, Ramabrahmam Varanasi, V. Ramabrahmam - 2013 - In Varanasi Ramabrahmam Ramabrahmam Varanasi V. Ramabrahmam R. B. Varanasi Varanasi (ed.), Proceedings of 5th International Conference on Vedic Sciences on “Applications and Challenges in Vedic / Ancient Indian Mathematics". Veda Vijnaana Sudha. pp. 386-399.
    The nature of time is perceived by intellectuals variedly. An attempt is made in this paper to reconcile such varied views in the light of the Upanishads and related Indian spiritual and philosophical texts. The complex analysis of modern mathematics is used to represent the nature and presentation physical and psychological times so differentiated. Also the relation between time and energy is probed using uncertainty relations, forms of energy and phases of matter.
    Download  
     
    Export citation  
     
    Bookmark  
  49. Abstract Objects and the Semantics of Natural Language.Friederike Moltmann - 2012 - Oxford, United Kingdom: Oxford University Press.
    This book pursues the question of how and whether natural language allows for reference to abstract objects in a fully systematic way. By making full use of contemporary linguistic semantics, it presents a much greater range of linguistic generalizations than has previously been taken into consideration in philosophical discussions, and it argues for an ontological picture is very different from that generally taken for granted by philosophers and semanticists alike. Reference to abstract objects such as properties, numbers, propositions, (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  50. On Radical Enactivist Accounts of Arithmetical Cognition.Markus Pantsar - 2022 - Ergo: An Open Access Journal of Philosophy 9.
    Hutto and Myin have proposed an account of radically enactive (or embodied) cognition (REC) as an explanation of cognitive phenomena, one that does not include mental representations or mental content in basic minds. Recently, Zahidi and Myin have presented an account of arithmetical cognition that is consistent with the REC view. In this paper, I first evaluate the feasibility of that account by focusing on the evolutionarily developed proto-arithmetical abilities and whether empirical data on them support the radical enactivist view. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 959