Results for 'logical operators'

972 found
Order:
  1. Logical operators for ontological modeling.Stefano Borgo, Daniele Porello & Nicolas Troquard - 2014 - In Pawel Garbacz & Oliver Kutz (eds.), Formal Ontology in Information Systems - Proceedings of the Eighth International Conference, {FOIS} 2014, September, 22-25, 2014, Rio de Janeiro, Brazil}. pp. 23--36.
    We show that logic has more to offer to ontologists than standard first order and modal operators. We first describe some operators of linear logic which we believe are particularly suitable for ontological modeling, and suggest how to interpret them within an ontological framework. After showing how they can coexist with those of classical logic, we analyze three notions of artifact from the literature to conclude that these linear operators allow for reducing the ontological commitment needed for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Generalized logical operations among conditional events.Angelo Gilio & Giuseppe Sanfilippo - 2019 - Applied Intelligence 49:79-102.
    We generalize, by a progressive procedure, the notions of conjunction and disjunction of two conditional events to the case of n conditional events. In our coherence-based approach, conjunctions and disjunctions are suitable conditional random quantities. We define the notion of negation, by verifying De Morgan’s Laws. We also show that conjunction and disjunction satisfy the associative and commutative properties, and a monotonicity property. Then, we give some results on coherence of prevision assessments for some families of compounded conditionals; in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  3. Logical Concepts vs. Logical Operations.Tabea Rohr - 2021 - Journal for the History of Analytical Philosophy 9 (11):56 - 74.
    In what follows, the difference between Frege’s and Schröder’s understanding of logical connectives will be investigated. It will be argued that Frege thought of logical connectives as concepts, whereas Schröder thought of them as operations. For Frege, logical connectives can themselves be connected. There is no substantial difference between the connectives and the concepts they connect. Frege’s distinction between concepts and objects is central to this conception, because it allows a method of concept formation which enables us (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Neutrosophic Actions, Prevalence Order, Refinement of Neutrosophic Entities, and Neutrosophic Literal Logical Operators.Florentin Smarandache - 2015 - Neutrosophic Sets and Systems 10:102-107.
    In this paper, we define for the first time three neutrosophic actions and their properties. We then introduce the prevalence order on {T, I, F} with respect to a given neutrosophic operator “o”, which may be subjective - as defined by the neutrosophic experts; and the refinement of neutrosophic entities <A>, <neutA>, and <antiA> . Then we extend the classical logical operators to neutrosophic literal logical operators and to refined literal logical operators, and we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Cognitive Skills Achievement in Mathematics of the Elementary Pre-Service Teachers Using Piaget’s Seven Logical Operations.Jaynelle G. Domingo, Edwin D. Ibañez, Gener Subia, Jupeth Pentang, Lorinda E. Pascual, Jennilyn C. Mina, Arlene V. Tomas & Minnie M. Liangco - 2021 - Turkish Journal of Computer and Mathematics Education 12 (4):435-440.
    This study determined the cognitive skills achievement in mathematics of elementary pre-service teachers as a basis for improving problem-solving and critical thinking which was analyzed using Piaget's seven logical operations namely: classification, seriation, logical multiplication, compensation, ratio and proportional thinking, probability thinking, and correlational thinking. This study utilized an adopted Test on Logical Operations (TLO) and descriptive research design to describe the cognitive skills achievement and to determine the affecting factors. Overall, elementary pre-service teachers performed with sufficient (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Operant Logic.Brian Wachter - manuscript
    I relate the story of how I created the basic rule of operant logic.
    Download  
     
    Export citation  
     
    Bookmark  
  7. Normality operators and Classical Recapture in Extensions of Kleene Logics.Ciuni Roberto & Massimiliano Carrara - forthcoming - Logic Journal of the IGPL.
    In this paper, we approach the problem of classical recapture for LP and K3 by using normality operators. These generalize the consistency and determinedness operators from Logics of Formal Inconsistency and Underterminedness, by expressing, in any many-valued logic, that a given formula has a classical truth value (0 or 1). In particular, in the rst part of the paper we introduce the logics LPe and Ke3 , which extends LP and K3 with normality operators, and we establish (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Natural Deduction for Modal Logic with a Backtracking Operator.Jonathan Payne - 2015 - Journal of Philosophical Logic 44 (3):237-258.
    Harold Hodes in [1] introduces an extension of first-order modal logic featuring a backtracking operator, and provides a possible worlds semantics, according to which the operator is a kind of device for ‘world travel’; he does not provide a proof theory. In this paper, I provide a natural deduction system for modal logic featuring this operator, and argue that the system can be motivated in terms of a reading of the backtracking operator whereby it serves to indicate modal scope. I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. On Operator N and Wittgenstein’s Logical Philosophy.James R. Connelly - 2017 - Journal for the History of Analytical Philosophy 5 (4).
    In this paper, I provide a new reading of Wittgenstein’s N operator, and of its significance within his early logical philosophy. I thereby aim to resolve a longstanding scholarly controversy concerning the expressive completeness of N. Within the debate between Fogelin and Geach in particular, an apparent dilemma emerged to the effect that we must either concede Fogelin’s claim that N is expressively incomplete, or reject certain fundamental tenets within Wittgenstein’s logical philosophy. Despite their various points of disagreement, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Completeness and decidability results for some propositional modal logics containing “actually” operators.Dominic Gregory - 2001 - Journal of Philosophical Logic 30 (1):57-78.
    The addition of "actually" operators to modal languages allows us to capture important inferential behaviours which cannot be adequately captured in logics formulated in simpler languages. Previous work on modal logics containing "actually" operators has concentrated entirely upon extensions of KT5 and has employed a particular modeltheoretic treatment of them. This paper proves completeness and decidability results for a range of normal and nonnormal but quasi-normal propositional modal logics containing "actually" operators, the weakest of which are conservative (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  12. Recovery operators, paraconsistency and duality.Walter A. Carnielli, Marcelo E. Coniglio & Abilio Rodrigues Filho - 2020 - Logic Journal of the IGPL 28 (5):624-656.
    There are two foundational, but not fully developed, ideas in paraconsistency, namely, the duality between paraconsistent and intuitionistic paradigms, and the introduction of logical operators that express meta-logical notions in the object language. The aim of this paper is to show how these two ideas can be adequately accomplished by the Logics of Formal Inconsistency (LFIs) and by the Logics of Formal Undeterminedness (LFUs). LFIs recover the validity of the principle of explosion in a paraconsistent scenario, while (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. On the expressive power of first-order modal logic with two-dimensional operators.Alexander W. Kocurek - 2018 - Synthese 195 (10):4373-4417.
    Many authors have noted that there are types of English modal sentences cannot be formalized in the language of basic first-order modal logic. Some widely discussed examples include “There could have been things other than there actually are” and “Everyone who is actually rich could have been poor.” In response to this lack of expressive power, many authors have discussed extensions of first-order modal logic with two-dimensional operators. But claims about the relative expressive power of these extensions are often (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  14. (1 other version)On Strengthening the Logic of Iterated Belief Revision: Proper Ordinal Interval Operators.Jake Chandler & Richard Booth - 2018 - In Michael Thielscher, Francesca Toni & Frank Wolter (eds.), Proceedings of the Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (KR2018). pp. 210-219.
    Darwiche and Pearl’s seminal 1997 article outlined a number of baseline principles for a logic of iterated belief revision. These principles, the DP postulates, have been supplemented in a number of alternative ways. Most suggestions have resulted in a form of ‘reductionism’ that identifies belief states with orderings of worlds. However, this position has recently been criticised as being unacceptably strong. Other proposals, such as the popular principle (P), aka ‘Independence’, characteristic of ‘admissible’ operators, remain commendably more modest. In (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Propositional Logic – A Primer.Leslie Allan - manuscript
    This tutorial is for beginners wanting to learn the basics of propositional logic; the simplest of the formal systems of logic. Leslie Allan introduces students to the nature of arguments, validity, formal proofs, logical operators and rules of inference. With many examples, Allan shows how these concepts are employed through the application of three different methods for proving the formal validity of arguments.
    Download  
     
    Export citation  
     
    Bookmark  
  16. Dispositionalism and the Modal Operators.David Yates - 2015 - Philosophy and Phenomenological Research 91 (2):411-424.
    Actualists of a certain stripe—dispositionalists—hold that metaphysical modality is grounded in the powers of actual things. Roughly: p is possible iff something has, or some things have, the power to bring it about that p. Extant critiques of dispositionalism focus on its material adequacy, and question whether there are enough powers to account for all the possibilities we intuitively want to countenance. For instance, it seems possible that none of the actual contingent particulars ever existed, but it is impossible to (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  17. Operator Counterparts of Types of Reasoning.Urszula Wybraniec-Skardowska - 2023 - Logica Universalis 17 (4):511-528.
    Logical and philosophical literature provides different classifications of reasoning. In the Polish literature on the subject, for instance, there are three popular ones accepted by representatives of the Lvov-Warsaw School: Jan Łukasiewicz, Tadeusz Czeżowski and Kazimierz Ajdukiewicz (Ajdukiewicz in Logika pragmatyczna [Pragmatic Logic]. PWN, Warsaw (1965, 2nd ed. 1974). Translated as: Pragmatic Logic. Reidel & PWN, Dordrecht, 1975). The author of this paper, having modified those classifications, distinguished the following types of reasoning: (1) deductive and (2) non-deductive, and additionally (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Logicality and Invariance.Denis Bonnay - 2006 - Bulletin of Symbolic Logic 14 (1):29-68.
    What is a logical constant? The question is addressed in the tradition of Tarski's definition of logical operations as operations which are invariant under permutation. The paper introduces a general setting in which invariance criteria for logical operations can be compared and argues for invariance under potential isomorphism as the most natural characterization of logical operations.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  19. Variable Binding Term Operators.John Corcoran, William Hatcher & John Herring - 1972 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 18 (12):177-182.
    Chapin reviewed this 1972 ZEITSCHRIFT paper that proves the completeness theorem for the logic of variable-binding-term operators created by Corcoran and his student John Herring in the 1971 LOGIQUE ET ANALYSE paper in which the theorem was conjectured. This leveraging proof extends completeness of ordinary first-order logic to the extension with vbtos. Newton da Costa independently proved the same theorem about the same time using a Henkin-type proof. This 1972 paper builds on the 1971 “Notes on a Semantic Analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  20. Tableau-based decision procedure for the multiagent epistemic logic with all coalitional operators for common and distributed knowledge.M. Ajspur, V. Goranko & D. Shkatov - 2013 - Logic Journal of the IGPL 21 (3):407-437.
    We develop a conceptually clear, intuitive, and feasible decision procedure for testing satisfiability in the full multi\-agent epistemic logic \CMAELCD\ with operators for common and distributed knowledge for all coalitions of agents mentioned in the language. To that end, we introduce Hintikka structures for \CMAELCD\ and prove that satisfiability in such structures is equivalent to satisfiability in standard models. Using that result, we design an incremental tableau-building procedure that eventually constructs a satisfying Hintikka structure for every satisfiable input set (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Logical Expressivism and Logical Relations.Lionel Shapiro - 2018 - In Ondřej Beran, Vojtěch Kolman & ‎Ladislav Koreň (eds.), From rules to meanings. New essays on inferentialism. New York, NY, USA: Routledge. pp. 179-95.
    According to traditional logical expressivism, logical operators allow speakers to explicitly endorse claims that are already implicitly endorsed in their discursive practice — endorsed in virtue of that practice’s having instituted certain logical relations. Here, I propose a different version of logical expressivism, according to which the expressive role of logical operators is explained without invoking logical relations at all, but instead in terms of the expression of discursive-practical attitudes. In defense of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Logical Relations between Pictures.Jan Westerhoff - 2005 - Journal of Philosophy 102 (12):603-623.
    An implication relation between pictures is defined, it is then shown how conjunctions, disjunctions, negations, and hypotheticals of pictures can be formed on the basis of this. It is argued that these logical operations on pictures correspond to natural cognitive operations employed when thinking about pictures.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  23. Logical Combinatorialism.Andrew Bacon - 2020 - Philosophical Review 129 (4):537-589.
    In explaining the notion of a fundamental property or relation, metaphysicians will often draw an analogy with languages. The fundamental properties and relations stand to reality as the primitive predicates and relations stand to a language: the smallest set of vocabulary God would need in order to write the “book of the world.” This paper attempts to make good on this metaphor. To that end, a modality is introduced that, put informally, stands to propositions as logical truth stands to (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  24. Logical Indefinites.Jack Woods - 2014 - Logique Et Analyse -- Special Issue Edited by Julien Murzi and Massimiliano Carrara 227: 277-307.
    I argue that we can and should extend Tarski's model-theoretic criterion of logicality to cover indefinite expressions like Hilbert's ɛ operator, Russell's indefinite description operator η, and abstraction operators like 'the number of'. I draw on this extension to discuss the logical status of both abstraction operators and abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  25. Tense Logic and Ontology of Time.Avril Styrman - 2021 - Emilio M. Sanfilippo Et Al, Eds., Proceedings of FOUST 2021: 5th Workshop on Foundational Ontology, Held at JOWO 2021: Episode VII The Bolzano Summer of Knowledge, September 11–18, 2021, Bolzano, Italy, CEURWS, Vol. 2969, 2021.
    This work aims to make tense logic a more robust tool for ontologists, philosophers, knowledge engineers and programmers by outlining a fusion of tense logic and ontology of time. In order to make tense logic better understandable, the central formal primitives of standard tense logic are derived as theorems from an informal and intuitive ontology of time. In order to make formulation of temporal propositions easier, temporal operators that were introduced by Georg Henrik von Wright are developed, and mapped (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Conjunctive and Disjunctive Limits: Abstract Logics and Modal Operators.Edelcio G. de Souza & Alexandre Costa-Leite - 2020 - Studia Humana 9 (3-4):66-71.
    Departing from basic concepts in abstract logics, this paper introduces two concepts: conjunctive and disjunctive limits. These notions are used to formalize levels of modal operators.
    Download  
     
    Export citation  
     
    Bookmark  
  27. The Logic of Joint Ability in Two-Player Tacit Games.Peter Hawke - 2017 - Review of Symbolic Logic 10 (3):481-508.
    Logics of joint strategic ability have recently received attention, with arguably the most influential being those in a family that includes Coalition Logic (CL) and Alternating-time Temporal Logic (ATL). Notably, both CL and ATL bypass the epistemic issues that underpin Schelling-type coordination problems, by apparently relying on the meta-level assumption of (perfectly reliable) communication between cooperating rational agents. Yet such epistemic issues arise naturally in settings relevant to ATL and CL: these logics are standardly interpreted on structures where agents move (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Operator arguments revisited.Juhani Yli-Vakkuri, John Hawthorne & Peter Fritz - 2019 - Philosophical Studies 176 (11):2933-2959.
    Certain passages in Kaplan’s ‘Demonstratives’ are often taken to show that non-vacuous sentential operators associated with a certain parameter of sentential truth require a corresponding relativism concerning assertoric contents: namely, their truth values also must vary with that parameter. Thus, for example, the non-vacuity of a temporal sentential operator ‘always’ would require some of its operands to have contents that have different truth values at different times. While making no claims about Kaplan’s intentions, we provide several reconstructions of how (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  29. Logics of Formal Inconsistency Enriched with Replacement: An Algebraic and Modal Account.Walter Carnielli, Marcelo E. Coniglio & David Fuenmayor - 2022 - Review of Symbolic Logic 15 (3):771-806.
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. A Graph-theoretic Method to Define any Boolean Operation on Partitions.David Ellerman - 2019 - The Art of Discrete and Applied Mathematics 2 (2):1-9.
    The lattice operations of join and meet were defined for set partitions in the nineteenth century, but no new logical operations on partitions were defined and studied during the twentieth century. Yet there is a simple and natural graph-theoretic method presented here to define any n-ary Boolean operation on partitions. An equivalent closure-theoretic method is also defined. In closing, the question is addressed of why it took so long for all Boolean operations to be defined for partitions.
    Download  
     
    Export citation  
     
    Bookmark  
  32. Neutrosophic Modal Logic.Florentin Smarandache - 2017 - Neutrosophic Sets and Systems 15:90-96.
    We introduce now for the first time the neutrosophic modal logic. The Neutrosophic Modal Logic includes the neutrosophic operators that express the modalities. It is an extension of neutrosophic predicate logic and of neutrosophic propositional logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. A recovery operator for nontransitive approaches.Eduardo Alejandro Barrio, Federico Pailos & Damian Szmuc - 2020 - Review of Symbolic Logic 13 (1):80-104.
    In some recent articles, Cobreros, Egré, Ripley, & van Rooij have defended the idea that abandoning transitivity may lead to a solution to the trouble caused by semantic paradoxes. For that purpose, they develop the Strict-Tolerant approach, which leads them to entertain a nontransitive theory of truth, where the structural rule of Cut is not generally valid. However, that Cut fails in general in the target theory of truth does not mean that there are not certain safe instances of Cut (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  34. Deontic Logics based on Boolean Algebra.Pablo F. Castro & Piotr Kulicki - 2013 - In Robert Trypuz (ed.), Krister Segerberg on Logic of Actions. Dordrecht, Netherland: Springer Verlag.
    Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known athematical framework to study the properties (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  35. Notes on a semantic analysis of variable binding term operators.J. Corcoran & John Herring - 1971 - Logique Et Analyse 55:644-657.
    -/- A variable binding term operator (vbto) is a non-logical constant, say v, which combines with a variable y and a formula F containing y free to form a term (vy:F) whose free variables are exact ly those of F, excluding y. -/- Kalish-Montague proposed using vbtos to formalize definite descriptions, set abstracts {x: F}, minimalization in recursive function theory, etc. However, they gave no sematics for vbtos. Hatcher gave a semantics but one that has flaws. We give a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  36. The Logic of Logical Necessity.Andrew Bacon & Kit Fine - 2024 - In Yale Weiss & Romina Birman (eds.), Saul Kripke on Modal Logic. Cham: Springer. pp. 43-92.
    Prior to Kripke’s seminal work on the semantics of modal logic, McKinsey offered an alternative interpretation of the necessity operator, inspired by the Bolzano–Tarski notion of logical truth. According to this interpretation, ‘it is necessary that A’ is true just in case every sentence with the same logical form as A is true. In our paper, we investigate this interpretation of the modal operator, resolving some technical questions, and relating it to the logical interpretation of modality and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Language and Logic in Wittgenstein’s Tractatus.Daniele Mezzadri - 2013 - Nordic Wittgenstein Review 2 (1):57-80.
    This paper investigates Wittgenstein’s account of the relation between elementary and molecular propositions (and thus, also, the propositions of logic) in the Tractatus Logico-Philosophicus. I start by sketching a natural reading of that relation – which I call the “bipartite reading” – holding that the Tractatus gives an account of elementary propositions, based on the so-called picture theory, and a different account of molecular ones, based on the principle of truth- functionality. I then show that such a reading cannot be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Buying Logical Principles with Ontological Coin: The Metaphysical Lessons of Adding epsilon to Intuitionistic Logic.David DeVidi & Corey Mulvihill - 2017 - IfCoLog Journal of Logics and Their Applications 4 (2):287-312.
    We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Cathoristic Logic.Richard Evans - manuscript
    Cathoristic logic is a multi-modal logic where negation is replaced by a novel operator allowing the expression of incompatible sentences. We present the syntax and semantics of the logic including complete proof rules, and establish a number of results such as compactness, a semantic characterisa- tion of elementary equivalence, the existence of a quadratic-time decision pro- cedure, and Brandom’s incompatibility semantics property. We demonstrate the usefulness of the logic as a language for knowledge representation.
    Download  
     
    Export citation  
     
    Bookmark  
  40. Track-Down Operations on Bilattices.Damian Szmuc - 2018 - In Robert Wille & Martin Lukac (eds.), Proceedings of the 48th IEEE International Symposium on Multiple-Valued Logic. pp. 74-79.
    This paper discusses a dualization of Fitting's notion of a "cut-down" operation on a bilattice, rendering a "track-down" operation, later used to represent the idea that a consistent opinion cannot arise from a set including an inconsistent opinion. The logic of track-down operations on bilattices is proved equivalent to the logic d_Sfde, dual to Deutsch's system S_fde. Furthermore, track-down operations are employed to provide an epistemic interpretation for paraconsistent weak Kleene logic. Finally, two logics of sequential combinations of cut-and track-down (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. Complex Logic.Boris Dernovoy - manuscript
    Complex logic is a novel logical framework, which formalizes the semantics of the categories of matter, space, and time in a system of logic that operates with complex logical objects. A complex logical object represents a superposition of a logical statement and its logical negation positioning any statement co-relatively to its logical negation. In the system of logical notations, where S is a logical statement and Not S is its logical negation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. A logic for epistemic two-dimensional semantics.Peter Fritz - 2013 - Synthese 190 (10):1753-1770.
    Epistemic two-dimensional semantics is a theory in the philosophy of language that provides an account of meaning which is sensitive to the distinction between necessity and apriority. While this theory is usually presented in an informal manner, I take some steps in formalizing it in this paper. To do so, I define a semantics for a propositional modal logic with operators for the modalities of necessity, actuality, and apriority that captures the relevant ideas of epistemic two-dimensional semantics. I also (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  43. The Logic of Hyperlogic. Part A: Foundations.Alexander W. Kocurek - 2024 - Review of Symbolic Logic 17 (1):244-271.
    Hyperlogic is a hyperintensional system designed to regiment metalogical claims (e.g., “Intuitionistic logic is correct” or “The law of excluded middle holds”) into the object language, including within embedded environments such as attitude reports and counterfactuals. This paper is the first of a two-part series exploring the logic of hyperlogic. This part presents a minimal logic of hyperlogic and proves its completeness. It consists of two interdefined axiomatic systems: one for classical consequence (truth preservation under a classical interpretation of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. The enduring scandal of deduction: is propositional logic really uninformative?Marcello D'Agostino & Luciano Floridi - 2009 - Synthese 167 (2):271-315.
    Deductive inference is usually regarded as being “tautological” or “analytical”: the information conveyed by the conclusion is contained in the information conveyed by the premises. This idea, however, clashes with the undecidability of first-order logic and with the (likely) intractability of Boolean logic. In this article, we address the problem both from the semantic and the proof-theoretical point of view. We propose a hierarchy of propositional logics that are all tractable (i.e. decidable in polynomial time), although by means of growing (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  45. Imperatives, Logic Of.Peter B. M. Vranas - 2013 - In Hugh LaFollette (ed.), The International Encyclopedia of Ethics. Hoboken, NJ: Blackwell. pp. 2575-2585.
    Suppose that a sign at the entrance of a hotel reads: “Don’t enter these premises unless you are accompanied by a registered guest”. You see someone who is about to enter, and you tell her: “Don’t enter these premises if you are an unaccompanied registered guest”. She asks why, and you reply: “It follows from what the sign says”. It seems that you made a valid inference from an imperative premise to an imperative conclusion. But it also seems that imperatives (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. (1 other version)The Logic of Hyperlogic. Part B: Extensions and Restrictions.Alexander W. Kocurek - 2022 - Review of Symbolic Logic:1-28.
    This is the second part of a two-part series on the logic of hyperlogic, a formal system for regimenting metalogical claims in the object language (even within embedded environments). Part A provided a minimal logic for hyperlogic that is sound and complete over the class of all models. In this part, we extend these completeness results to stronger logics that are sound and complete over restricted classes of models. We also investigate the logic of hyperlogic when the language is enriched (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  47. Normality Operators and Classical Collapse.Roberto Ciuni & Massimiliano Carrara - 2018 - In Pavel Arazim & Tomas Lavicka (eds.), The Logica Yearbook 2017. College Publications. pp. 2-20.
    In this paper, we extend the expressive power of the logics K3, LP and FDE with anormality operator, which is able to express whether a for-mula is assigned a classical truth value or not. We then establish classical recapture theorems for the resulting logics. Finally, we compare the approach via normality operator with the classical collapse approach devisedby Jc Beall.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Epistemic Multilateral Logic.Luca Incurvati & Julian J. Schlöder - 2022 - Review of Symbolic Logic 15 (2):505-536.
    We present epistemic multilateral logic, a general logical framework for reasoning involving epistemic modality. Standard bilateral systems use propositional formulae marked with signs for assertion and rejection. Epistemic multilateral logic extends standard bilateral systems with a sign for the speech act of weak assertion (Incurvati and Schlöder 2019) and an operator for epistemic modality. We prove that epistemic multilateral logic is sound and complete with respect to the modal logic S5 modulo an appropriate translation. The logical framework developed (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  49. A General Semantics for Logics of Affirmation and Negation.Fabien Schang - 2021 - Journal of Applied Logics - IfCoLoG Journal of Logics and Their Applications 8 (2):593-609.
    A general framework for translating various logical systems is presented, including a set of partial unary operators of affirmation and negation. Despite its usual reading, affirmation is not redundant in any domain of values and whenever it does not behave like a full mapping. After depicting the process of partial functions, a number of logics are translated through a variety of affirmations and a unique pair of negations. This relies upon two preconditions: a deconstruction of truth-values as ordered (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. (1 other version)Natural Deduction for Diagonal Operators.Fabio Lampert - 2017 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta. New York: Birkhäuser. pp. 39-51.
    We present a sound and complete Fitch-style natural deduction system for an S5 modal logic containing an actuality operator, a diagonal necessity operator, and a diagonal possibility operator. The logic is two-dimensional, where we evaluate sentences with respect to both an actual world (first dimension) and a world of evaluation (second dimension). The diagonal necessity operator behaves as a quantifier over every point on the diagonal between actual worlds and worlds of evaluation, while the diagonal possibility quantifies over some point (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 972