Results for 'mathematical'

954 found
Order:
  1. Hội thảo các vấn đề kinh tế, tài chính và ứng dụng toán học, 27-28/2/2009.Vietnam Mathematical Society - 2009 - Vms Conference 2009.
    Nền kinh tế nước ta đang chuyển biến mạnh mẽ từ nền kinh tế bao cấp sang kinh tế thị trường, nhất là từ khi nước ta gia nhập WTO. Đảng và chính phủ đã đề ra rất nhiều các chính sách để cải tiến các thể chế quản lý nền kinh tế và tài chính. Thị trường chứng khoán Việt Nam đã ra đời và đang đóng một vai trò quan trọng trong việc huy động vốn phục vụ cho (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Mathematics, Narratives and Life: Reconciling Science and the Humanities.Arran Gare - 2024 - Cosmos and History 20 (1):133-155.
    The triumph of scientific materialism in the Seventeenth Century not only bifurcated nature into matter and mind and primary and secondary qualities, as Alfred North Whitehead pointed out in Science and the Modern World. It divided science and the humanities. The core of science is the effort to comprehend the cosmos through mathematics. The core of the humanities is the effort to comprehend history and human nature through narratives. The life sciences can be seen as the zone in which the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Are mathematical explanations causal explanations in disguise?A. Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2024 - Philosophy of Science 91 (4):887-905.
    There is a major debate as to whether there are non-causal mathematical explanations of physical facts that show how the facts under question arise from a degree of mathematical necessity considered stronger than that of contingent causal laws. We focus on Marc Lange’s account of distinctively mathematical explanations to argue that purported mathematical explanations are essentially causal explanations in disguise and are no different from ordinary applications of mathematics. This is because these explanations work not by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Against Mathematical Convenientism.Seungbae Park - 2016 - Axiomathes 26 (2):115-122.
    Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  5. (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of (...) theorems can cover at most one mathematical universe. Indispensability arguments may thus lose their central role in the debate about mathematical ontology. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  7. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. MATHEMATICS PROFICIENCY LEVEL AMONG THE GRADE THREE PUPILS IN CAGAYAN DE ORO CITY DIVISION.Atriah Fascia Dy & Conniebel Nistal - 2024 - International Journal of Research Publications 147 (1):98-114.
    Mathematics is an important subject taught in primary and secondary schools that equips students with foundational knowledge and skills for organizing their lives. This study determined the Mathematics proficiency level among the Grade Three pupils in Cagayan de Oro City in School Year 2022-2023. Specifically, it sought to determine the respondents’ profile in terms of language used at home, study habits, parental involvement, and attitude towards Mathematics; find out the proficiency level in Mathematics; and determine the significant relationship between the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Mathematics, Morality, and Self‐Effacement.Jack Woods - 2016 - Noûs 52 (1):47-68.
    I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  10. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content to key (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  11. Mathematical symbols as epistemic actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  12. Supreme Mathematics: The Five Percenter Model of Divine Self-Realization and Its Commonalities to Interpretations of the Pythagorean Tetractys in Western Esotericism.Martin A. M. Gansinger - 2023 - Interdisciplinary Journal for Religion and Transformation in Contemporary Society 1 (1):1-22.
    This contribution aims to explore the historical predecessors of the Five Percenter model of self-realization, as popularized by Hip Hop artists such as Supreme Team, Rakim Allah, Brand Nubian, Wu-Tang Clan, or Sunz of Man. As compared to frequent considerations of the phenomenon as a creative mythological background for a socio-political struggle, Five Percenter teachings shall be discussed as contemporary interpretations of historical models of self-realization in various philosophical, religious, and esoteric systems. By putting the coded system of the tenfold (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  14. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  21
    Mathematizing Bodies. Leibniz on the Application of Mathematics to Nature, and its Metaphysical Ground.Lucia Oliveri - 2023 - Studia Leibnitiana 55 (1-2):190-208.
    There are two axes of Leibniz’s philosophy about bodies that are deeply inter- twined, as this paper shows: the scientific investigation of bodies due to the application of mathematics to nature – Leibniz’s mixed mathematics – and the issue of matter/bodies ide- alism. This intertwinement raises an issue: How did Leibniz frame the relationship between mathematics, natural sciences, and metaphysics? Due to the increasing application of mathe- matics to natural sciences, especially physics, philosophers of the early modern period used the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  17. Reimagining mathematics education: Identifying training needs and challenges among public elementary school teacher’s post-pandemic.Lislee Valle - 2024 - International Journal of Education and Practice 12 (3):527-539.
    The sudden shift in the education system during the pandemic and its subsequent evolution during the post-pandemic era have been pivotal in fostering significant educational development and growth. However, this paradigm shift has not been without challenges. This paper aims to investigate the challenges faced by 68 mathematics teachers in four public elementary schools in the Philippines. The respondents were purposively selected to answer the study’s instrument. Using a descriptive survey research methodology, this study explored the five domains in teaching (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Mathematics Intelligent Tutoring System.Nour N. AbuEloun & Samy S. Abu Naser - 2017 - International Journal of Advanced Scientific Research 2 (1):11-16.
    In these days, there is an increasing technological development in intelligent tutoring systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics that help students understand the basics of math and that helps a lot of students of all ages to understand the topic because it's important for students of adding and subtracting. Through which the student will be able to study the course and solve related problems. An evaluation (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  19. Naturalising Mathematics? A Wittgensteinian Perspective.Jan Stam, Martin Stokhof & Michiel Van Lambalgen - 2022 - Philosophies 7 (4):85.
    There is a noticeable gap between results of cognitive neuroscientific research into basic mathematical abilities and philosophical and empirical investigations of mathematics as a distinct intellectual activity. The paper explores the relevance of a Wittgensteinian framework for dealing with this discrepancy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. MATHEMATICAL PROBLEM SOLVING SKILLS AND ACADEMIC SELF-EFFICACYAS CORRELATES OF PRE-SERVICE NCE MATHEMATICS TEACHERS’ PERFORMANCE IN SOUTH-EAST, NIGERIA.Ebele Chinelo Okigbo & Olubu Ojo Ayegbusi - 2024 - Ijo - International Journal of Educational Research 7 (5):1-13.
    The study ascertained mathematical problem-solving skills and self-efficacy as correlates of Pre-service NCE Mathematics Teachers’ Performance in South-East, Nigeria. Seven research questions guided the study while seven hypotheses were tested at 0.05 level of significance. Correlation research design was used for the study. The population of the study was 197 pre-service NCE Mathematics teachers in South-East, Nigeria. All the population of 197 was studied as sample because, it is small and manageable. Mathematics Problem-Solving Skill Test (MPSST) and Pre-Service Teachers’ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Mathematics - an imagined tool for rational cognition.Boris Culina - manuscript
    Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) (...) truths are not truths about the external world but specifications (formulations) of mathematical conceptions; (iii) mathematics is first and foremost our imagined tool by which, with certain assumptions about its applicability, we explore nature and synthesize our rational cognition of it. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  24. Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  27. Mathematics as Metaphysical and Constructive.Eric Schmid - 2024 - Rue Americaine 13.
    Andr ́e Weil viewed mathematics as deeply intertwined with metaphysics. In his essay ”From Metaphysics to Mathematics,” he illustrates how mathematical ideas often arise from vague, metaphysical analogies and reflections that guide researchers toward new theories. For instance, Weil discusses how analogies between different areas, such as number theory and algebraic functions, have led to significant breakthroughs. These metaphysical underpinnings provide a fertile ground for mathematical creativity, eventually transforming into rigorous mathematical structures. -/- Alexander Grothendieck’s work, particularly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Mathematical Justification without Proof.Silvia De Toffoli - forthcoming - In Giovanni Merlo, Giacomo Melis & Crispin Wright (eds.), Self-knowledge and Knowledge A Priori. Oxford University Press.
    According to a widely held view in the philosophy of mathematics, direct inferential justification for mathematical propositions (that are not axioms) requires proof. I challenge this view while accepting that mathematical justification requires arguments that are put forward as proofs. I argue that certain fallacious putative proofs considered by the relevant subjects to be correct can confer mathematical justification. But mathematical justification doesn’t come for cheap: not just any argument will do. I suggest that to successfully (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  30. What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  31. Innate Mathematical Characteristics and Number Sense Competencies of Junior High School Students.Raymundo A. Santos, Leila M. Collantes, Edwin D. Ibañez, Florante P. Ibarra & Jupeth Pentang - 2022 - International Journal of Learning, Teaching and Educational Research 21 (10):325-340.
    The study determined the influence of innate mathematical characteristics on the number sense competencies of junior high school students in a Philippine public school. The descriptive-correlational research design was used to accomplish the study involving a nonrandom sample of sixty 7th-grade students attending synchronous math sessions. Data obtained from the math-specific Learning Style and Self-Efficacy questionnaires and the modified Number Sense Test (NST) were analyzed and interpreted using descriptive statistics, Pearson’s Chi-Square, and Simple Linear Regression analysis. The research instruments (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  32. Mathematical Forms and Forms of Mathematics: Leaving the Shores of Extensional Mathematics.Jean-Pierre Marquis - 2013 - Synthese 190 (12):2141-2164.
    In this paper, I introduce the idea that some important parts of contemporary pure mathematics are moving away from what I call the extensional point of view. More specifically, these fields are based on criteria of identity that are not extensional. After presenting a few cases, I concentrate on homotopy theory where the situation is particularly clear. Moreover, homotopy types are arguably fundamental entities of geometry, thus of a large portion of mathematics, and potentially to all mathematics, at least according (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  33. Mathematical anti-realism and explanatory structure.Bruno Whittle - 2021 - Synthese 199 (3-4):6203-6217.
    Plausibly, mathematical claims are true, but the fundamental furniture of the world does not include mathematical objects. This can be made sense of by providing mathematical claims with paraphrases, which make clear how the truth of such claims does not require the fundamental existence of mathematical objects. This paper explores the consequences of this type of position for explanatory structure. There is an apparently straightforward relationship between this sort of structure, and the logical sort: i.e. logically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Mathematics, core of the past and hope of the future.James Franklin - 2018 - In Catherine A. Runcie & David Brooks (eds.), Reclaiming Education: Renewing Schools and Universities in Contemporary Western Society. Edwin H. Lowe Publishing. pp. 149-162.
    Mathematics has always been a core part of western education, from the medieval quadrivium to the large amount of arithmetic and algebra still compulsory in high schools. It is an essential part. Its commitment to exactitude and to rigid demonstration balances humanist subjects devoted to appreciation and rhetoric as well as giving the lie to postmodernist insinuations that all “truths” are subject to political negotiation. In recent decades, the character of mathematics has changed – or rather broadened: it has become (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Mathematical Gettier Cases and Their Implications.Neil Barton - manuscript
    Let mathematical justification be the kind of justification obtained when a mathematician provides a proof of a theorem. Are Gettier cases possible for this kind of justification? At first sight we might think not: The standard for mathematical justification is proof and, since proof is bound at the hip with truth, there is no possibility of having an epistemically lucky justification of a true mathematical proposition. In this paper, I argue that Gettier cases are possible (and indeed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Comparative Mathematical Analyses Between Different Building Typology in the City of Kruja, Albania.Klodjan Xhexhi - 2020 - Test Engineering and Management 83 (March-April 2020):17225-17234.
    The city of Kruja dates back to its existence in the 5th and 6th centuries. In the inner city are preserved great historical, cultural, and architectural values that are inherited from generation to generation. In the city interact and coexist three different typologies of dwellings: historic buildings that belong to the XIII, XIV, XV, XIII, XIX centuries (built using the foundations of previous buildings); socialist buildings dating back to the Second World War until 1990; and modern buildings which were built (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Mathematical Needs of Laura Vicuña Learners.Jupeth Pentang, Ronalyn M. Bautista, Aylene D. Pizaña & Susana P. Egger - 2020 - WPU Graduate Journal 5 (1):78-81.
    An inquiry on the training needs in Mathematics was conducted to Laura Vicuña Center - Palawan (LVC-P) learners. Specifically, this aimed to determine their level of performance in numbers, measurement, geometry, algebra, and statistics, identify the difficulties they encountered in solving word problems and enumerate topics where they needed coaching. -/- To identify specific training needs, the study employed a descriptive research design where 36 participants were sampled purposively. The data were gathered through a problem set test and focus group (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  38. Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  39. Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of (...) instrumentalism are defeated by Gödel’s theorem, not all are. By considering inductive reasons in mathematics, we show that some mathematical instrumentalisms survive the theorem. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Mathematical Thinking Undefended on The Level of The Semester for Professional Mathematics Teacher Candidates. Toheri & Widodo Winarso - 2017 - Munich University Library.
    Mathematical thinking skills are very important in mathematics, both to learn math or as learning goals. Thinking skills can be seen from the description given answers in solving mathematical problems faced. Mathematical thinking skills can be seen from the types, levels, and process. Proportionally questions given to students at universities in Indonesia (semester I, III, V, and VII). These questions are a matter of description that belong to the higher-level thinking. Students choose 5 of 8 given problem. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Mathematical Quality and Experiential Qualia.Posina Venkata Rayudu & Sisir Roy - manuscript
    Our conscious experiences are qualitative and unitary. The qualitative universals given in particular experiences, i.e. qualia, combine into the seamless unity of our conscious experience. The problematics of quality and cohesion are not unique to consciousness studies. In mathematics, the study of qualities (e.g., shape) resulting from quantitative variations in cohesive spaces led to the axiomatization of cohesion and quality. Using the mathematical definition of quality, herein we model qualia space as a categorical product of qualities. Thus modeled qualia (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Bayesian Perspectives on Mathematical Practice.James Franklin - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2711-2726.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Mature Intuition and Mathematical Understanding.William D'Alessandro & Irma Stevens - forthcoming - Journal of Mathematical Behavior.
    Mathematicians often describe the importance of well-developed intuition to productive research and successful learning. But neither education researchers nor philosophers interested in epistemic dimensions of mathematical practice have yet given the topic the sustained attention it deserves. The trouble is partly that intuition in the relevant sense lacks a usefully clear characterization, so we begin by offering one: mature intuition, we say, is the capacity for fast, fluent, reliable and insightful inference with respect to some subject matter. We illustrate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Mathematical skepticism: a sketch with historian in foreground.Luciano Floridi - 1998 - In J. van der Zande & R. Popkin (eds.), The Skeptical Tradition around 1800. pp. 41–60.
    We know very little about mathematical skepticism in modem times. Imre Lakatos once remarked that “in discussing modem efforts to establish foundations for mathematical knowledge one tends to forget that these are but a chapter in the great effort to overcome skepticism by establishing foundations for knowledge in general." And in a sense he was clearly right: modem thought — with its new discoveries in mathematical sciences, the mathematization of physics, the spreading of Pyrrhonist doctrines, the centrality (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  45. Mathematical Knowledge, the Analytic Method, and Naturalism.Fabio Sterpetti - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science. New York: Routledge. pp. 268-293.
    This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors tried to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Mathematics and conceptual analysis.Antony Eagle - 2008 - Synthese 161 (1):67–88.
    Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  47. Mathematics as language.Adam Morton - 1996 - In Adam Morton & Stephen P. Stich (eds.), Benacerraf and His Critics. Blackwell. pp. 213--227.
    I discuss ways in which the linguistic form of mathimatics helps us think mathematically.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  48. Mathematical Internal Realism.Tim Button - 2022 - In Sanjit Chakraborty & James Ferguson Conant (eds.), Engaging Putnam. Berlin, Germany: De Gruyter. pp. 157-182.
    In “Models and Reality” (1980), Putnam sketched a version of his internal realism as it might arise in the philosophy of mathematics. Here, I will develop that sketch. By combining Putnam’s model-theoretic arguments with Dummett’s reflections on Gödelian incompleteness, we arrive at (what I call) the Skolem-Gödel Antinomy. In brief: our mathematical concepts are perfectly precise; however, these perfectly precise mathematical concepts are manifested and acquired via a formal theory, which is understood in terms of a computable system (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  49. Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50.  71
    (1 other version)Mathematics and society reunited: The social aspects of Brouwer's intuitionism.Kati Kish Bar-On - 2024 - Studies in History and Philosophy of Science 108:28-37.
    Brouwer's philosophy of mathematics is usually regarded as an intra-subjective, even solipsistic approach, an approach that also underlies his mathematical intuitionism, as he strived to create a mathematics that develops out of something inner and a-linguistic. Thus, points of connection between Brouwer's mathematical views and his views about and the social world seem improbable and are rarely mentioned in the literature. The current paper aims to challenge and change that. The paper employs a socially oriented prism to examine (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 954