Results for 'mathematical practice'

967 found
Order:
  1. Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Virtue theory of mathematical practices: an introduction.Andrew Aberdein, Colin Jakob Rittberg & Fenner Stanley Tanswell - 2021 - Synthese 199 (3-4):10167-10180.
    Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some mathematicians already there, ready to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  3. Bayesian Perspectives on Mathematical Practice.James Franklin - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2711-2726.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. The interplay between mathematical practices and results.Mélissa Arneton, Amirouche Moktefi & Catherine Allamel-Raffin - 2014 - In Lena Soler, Sjoerd Zwart, Michael Lynch & Vincent Israel-Jost (eds.), Science After the Practice Turn in the Philosophy, History, and Social Studies of Science. New York: Routledge. pp. 269-276.
    Download  
     
    Export citation  
     
    Bookmark  
  5. Word choice in mathematical practice: a case study in polyhedra.Lowell Abrams & Landon D. C. Elkind - 2019 - Synthese (4):1-29.
    We examine the influence of word choices on mathematical practice, i.e. in developing definitions, theorems, and proofs. As a case study, we consider Euclid’s and Euler’s word choices in their influential developments of geometry and, in particular, their use of the term ‘polyhedron’. Then, jumping to the twentieth century, we look at word choices surrounding the use of the term ‘polyhedron’ in the work of Coxeter and of Grünbaum. We also consider a recent and explicit conflict of approach (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Proof, Explanation, and Justification in Mathematical Practice.Moti Mizrahi - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (4):551-568.
    In this paper, I propose that applying the methods of data science to “the problem of whether mathematical explanations occur within mathematics itself” (Mancosu 2018) might be a fruitful way to shed new light on the problem. By carefully selecting indicator words for explanation and justification, and then systematically searching for these indicators in databases of scholarly works in mathematics, we can get an idea of how mathematicians use these terms in mathematical practice and with what frequency. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Wittgenstein on Gödelian 'Incompleteness', Proofs and Mathematical Practice: Reading Remarks on the Foundations of Mathematics, Part I, Appendix III, Carefully.Wolfgang Kienzler & Sebastian Sunday Grève - 2016 - In Sebastian Sunday Grève & Jakub Mácha (eds.), Wittgenstein and the Creativity of Language. Palgrave Macmillan. pp. 76-116.
    We argue that Wittgenstein’s philosophical perspective on Gödel’s most famous theorem is even more radical than has commonly been assumed. Wittgenstein shows in detail that there is no way that the Gödelian construct of a string of signs could be assigned a useful function within (ordinary) mathematics. — The focus is on Appendix III to Part I of Remarks on the Foundations of Mathematics. The present reading highlights the exceptional importance of this particular set of remarks and, more specifically, emphasises (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  9. Dialogue Types, Argumentation Schemes, and Mathematical Practice: Douglas Walton and Mathematics.Andrew Aberdein - 2021 - Journal of Applied Logics 8 (1):159-182.
    Douglas Walton’s multitudinous contributions to the study of argumentation seldom, if ever, directly engage with argumentation in mathematics. Nonetheless, several of the innovations with which he is most closely associated lend themselves to improving our understanding of mathematical arguments. I concentrate on two such innovations: dialogue types (§1) and argumentation schemes (§2). I argue that both devices are much more applicable to mathematical reasoning than may be commonly supposed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Univalent Foundations as a Foundation for Mathematical Practice.Harry Crane - 2018
    I prove that invoking the univalence axiom is equivalent to arguing 'without loss of generality' (WLOG) within Propositional Univalent Foundations (PropUF), the fragment of Univalent Foundations (UF) in which all homotopy types are mere propositions. As a consequence, I argue that practicing mathematicians, in accepting WLOG as a valid form of argument, implicitly accept the univalence axiom and that UF rightly serves as a Foundation for Mathematical Practice. By contrast, ZFC is inconsistent with WLOG as it is applied, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. (1 other version)Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  12. Mathematizing as a virtuous practice: different narratives and their consequences for mathematics education and society.Deborah Kant & Deniz Sarikaya - 2020 - Synthese 199 (1-2):3405-3429.
    There are different narratives on mathematics as part of our world, some of which are more appropriate than others. Such narratives might be of the form ‘Mathematics is useful’, ‘Mathematics is beautiful’, or ‘Mathematicians aim at theorem-credit’. These narratives play a crucial role in mathematics education and in society as they are influencing people’s willingness to engage with the subject or the way they interpret mathematical results in relation to real-world questions; the latter yielding important normative considerations. Our strategy (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  13. Lakatos' Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science - Introduction to the Special Issue on Lakatos’ Undone Work.Sophie Nagler, Hannah Pillin & Deniz Sarikaya - 2022 - Kriterion - Journal of Philosophy 36:1-10.
    We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, which gave rise to this special issue. Lastly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  15. Lisa A. Shabel, Mathematics in Kant’s Critical Philosophy-Reflections on Mathematical Practice. Routledge New York & London 2003, pp.192 $ 65.00 (hbk) ISBN 0-415-93955-0. Recensione di Francesco Tampoia 3/06/2004. [REVIEW]Francesco Tampoia - manuscript
    Scopo di questo agile ma denso volume è approfondire “The part played by the mathematical construction in the context of a full investigation of Kant’s theory of sensibility, that to say the Transcendental Aesthetic”. Si tratta della ripresentazione della tesi di dottorato della Shabel, da cui la stessa ha riportato ampi squarci per un articolo award-winning 1998 dal titolo ”Kant on the Symbolic Construction of Mathematical Concepts” (Studies in the History and the Philosophy of Science). Non si tratta (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Mathematical Wit and Mathematical Cognition.Andrew Aberdein - 2013 - Topics in Cognitive Science 5 (2):231-250.
    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  17. Envisioning Transformations – The Practice of Topology.Silvia De Toffoli & Valeria Giardino - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012-2014. Springer International Publishing. pp. 25-50.
    The objective of this article is twofold. First, a methodological issue is addressed. It is pointed out that even if philosophers of mathematics have been recently more and more concerned with the practice of mathematics, there is still a need for a sharp definition of what the targets of a philosophy of mathematical practice should be. Three possible objects of inquiry are put forward: (1) the collective dimension of the practice of mathematics; (2) the cognitives capacities (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  18. Indigenous People Mathematics Teachers’ Beliefs and Teaching Practices: An Explanatory Sequential Analysis.Alexis Tancontian, Ivy Lyt Abina & Orville Evardo Jr - 2024 - Journal of Interdisciplinary Perspectives 2 (6):77-94.
    Indigenous communities have a rich cultural heritage encompassing diverse ways of knowing, learning, and understanding the world around them. This mixed methods study utilized the explanatory sequential design to determine the level and relationship of the IP mathematics teachers' beliefs and teaching practices and gain a deeper insight into these beliefs and attitudes. There are 115 respondents for the quantitative phase, while 10 participants in the qualitative phase. Data were collected through survey and key informant interviews and were analyzed through (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. (1 other version)The Great Gibberish - Mathematics in Western Popular Culture.Markus Pantsar - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012-2014. Springer International Publishing. pp. 409-437.
    In this paper, I study how mathematicians are presented in western popular culture. I identify five stereotypes that I test on the best-known modern movies and television shows containing a significant amount of mathematics or important mathematician characters: (1) Mathematics is highly valued as an intellectual pursuit. (2) Little attention is given to the mathematical content. (3) Mathematical practice is portrayed in an unrealistic way. (4) Mathematicians are asocial and unable to enjoy normal life. (5) Higher mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Deep Disagreement in Mathematics.Andrew Aberdein - 2023 - Global Philosophy 33 (1):1-27.
    Disagreements that resist rational resolution, often termed “deep disagreements”, have been the focus of much work in epistemology and informal logic. In this paper, I argue that they also deserve the attention of philosophers of mathematics. I link the question of whether there can be deep disagreements in mathematics to a more familiar debate over whether there can be revolutions in mathematics. I propose an affirmative answer to both questions, using the controversy over Shinichi Mochizuki’s work on the abc conjecture (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  23. Mathematical Gettier Cases and Their Implications.Neil Barton - manuscript
    Let mathematical justification be the kind of justification obtained when a mathematician provides a proof of a theorem. Are Gettier cases possible for this kind of justification? At first sight we might think not: The standard for mathematical justification is proof and, since proof is bound at the hip with truth, there is no possibility of having an epistemically lucky justification of a true mathematical proposition. In this paper, I argue that Gettier cases are possible (and indeed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Crunchy Methods in Practical Mathematics.Michael Wood - 2001 - Philosophy of Mathematics Education Journal 14.
    This paper focuses on the distinction between methods which are mathematically "clever", and those which are simply crude, typically repetitive and computer intensive, approaches for "crunching" out answers to problems. Examples of the latter include simulated probability distributions and resampling methods in statistics, and iterative methods for solving equations or optimisation problems. Most of these methods require software support, but this is easily provided by a PC. The paper argues that the crunchier methods often have substantial advantages from the perspectives (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Mature Intuition and Mathematical Understanding.William D'Alessandro & Irma Stevens - forthcoming - Journal of Mathematical Behavior.
    Mathematicians often describe the importance of well-developed intuition to productive research and successful learning. But neither education researchers nor philosophers interested in epistemic dimensions of mathematical practice have yet given the topic the sustained attention it deserves. The trouble is partly that intuition in the relevant sense lacks a usefully clear characterization, so we begin by offering one: mature intuition, we say, is the capacity for fast, fluent, reliable and insightful inference with respect to some subject matter. We (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Group Knowledge and Mathematical Collaboration: A Philosophical Examination of the Classification of Finite Simple Groups.Joshua Habgood-Coote & Fenner Stanley Tanswell - 2023 - Episteme 20 (2):281-307.
    In this paper we apply social epistemology to mathematical proofs and their role in mathematical knowledge. The most famous modern collaborative mathematical proof effort is the Classification of Finite Simple Groups. The history and sociology of this proof have been well-documented by Alma Steingart (2012), who highlights a number of surprising and unusual features of this collaborative endeavour that set it apart from smaller-scale pieces of mathematics. These features raise a number of interesting philosophical issues, but have (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  27. Marriages of Mathematics and Physics: A Challenge for Biology.Arezoo Islami & Giuseppe Longo - 2017 - Progress in Biophysics and Molecular Biology 131:179-192.
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  28. Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  29. Mathematical Monsters.Andrew Aberdein - 2019 - In Diego Compagna & Stefanie Steinhart (eds.), Monsters, Monstrosities, and the Monstrous in Culture and Society. Vernon Press. pp. 391-412.
    Monsters lurk within mathematical as well as literary haunts. I propose to trace some pathways between these two monstrous habitats. I start from Jeffrey Jerome Cohen’s influential account of monster culture and explore how well mathematical monsters fit each of his seven theses. The mathematical monsters I discuss are drawn primarily from three distinct but overlapping domains. Firstly, late nineteenth-century mathematicians made numerous unsettling discoveries that threatened their understanding of their own discipline and challenged their intuitions. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Classroom Assessment Thoughts, Skills, and Practices of Secondary School Mathematics Teachers: An In-Depth Analysis.Jerry Dimla Cruz - 2023 - Universal Journal of Educational Research 2 (2):184-190.
    The study sought to identify and evaluate the classroom assessment thoughts, practices, and skills of secondary mathematics teachers in Bulacan. The study revealed that there are no significant relationships between teachers’ thoughts of classroom assessments and practices, and classroom assessment practices and skills. However, there is significant relationship between teachers’ thoughts of classroom assessments and skills. There are no significant differences between the teachers’ thoughts of classroom assessments and their age, educational attainment, teaching experience, number of years in teaching mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Unrealistic Models in Mathematics.William D'Alessandro - 2023 - Philosophers' Imprint 23 (#27).
    Models are indispensable tools of scientific inquiry, and one of their main uses is to improve our understanding of the phenomena they represent. How do models accomplish this? And what does this tell us about the nature of understanding? While much recent work has aimed at answering these questions, philosophers' focus has been squarely on models in empirical science. I aim to show that pure mathematics also deserves a seat at the table. I begin by presenting two cases: Cramér’s random (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  33. What is Mathematical Rigor?John Burgess & Silvia De Toffoli - 2022 - Aphex 25:1-17.
    Rigorous proof is supposed to guarantee that the premises invoked imply the conclusion reached, and the problem of rigor may be described as that of bringing together the perspectives of formal logic and mathematical practice on how this is to be achieved. This problem has recently raised a lot of discussion among philosophers of mathematics. We survey some possible solutions and argue that failure to understand its terms properly has led to misunderstandings in the literature.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Nietzsche’s Philosophy of Mathematics.Eric Steinhart - 1999 - International Studies in Philosophy 31 (3):19-27.
    Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. A fresh look at research strategies in computational cognitive science: The case of enculturated mathematical problem solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach applies methods (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  37. A Noetic Account of Explanation in Mathematics.William D’Alessandro & Ellen Lehet - forthcoming - Philosophical Quarterly.
    We defend a noetic account of intramathematical explanation. On this view, a piece of mathematics is explanatory just in case it produces understanding of an appropriate type. We motivate the view by presenting some appealing features of noeticism. We then discuss and criticize the most prominent extant version of noeticism, due to Inglis and Mejía Ramos, which identifies explanatory understanding with the possession of well-organized cognitive schemas. Finally, we present a novel noetic account. On our view, explanatory understanding arises from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Observations on Sick Mathematics.Andrew Aberdein - 2010 - In Bart Van Kerkhove, Jean Paul Van Bendegem & Jonas De Vuyst (eds.), Philosophical Perspectives on Mathematical Practice. College Publications. pp. 269--300.
    This paper argues that new light may be shed on mathematical reasoning in its non-pathological forms by careful observation of its pathologies. The first section explores the application to mathematics of recent work on fallacy theory, specifically the concept of an ‘argumentation scheme’: a characteristic pattern under which many similar inferential steps may be subsumed. Fallacies may then be understood as argumentation schemes used inappropriately. The next section demonstrates how some specific mathematical fallacies may be characterized in terms (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  39. Rethinking inconsistent mathematics.Franci Mangraviti - 2023 - Dissertation, Ruhr University Bochum
    This dissertation has two main goals. The first is to provide a practice-based analysis of the field of inconsistent mathematics: what motivates it? what role does logic have in it? what distinguishes it from classical mathematics? is it alternative or revolutionary? The second goal is to introduce and defend a new conception of inconsistent mathematics - queer incomaths - as a particularly effective answer to feminist critiques of classical logic and mathematics. This sets the stage for a genuine revolution (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. The changing practices of proof in mathematics: Gilles Dowek: Computation, proof, machine. Cambridge: Cambridge University Press, 2015. Translation of Les Métamorphoses du calcul, Paris: Le Pommier, 2007. Translation from the French by Pierre Guillot and Marion Roman, $124.00HB, $40.99PB. [REVIEW]Andrew Arana - 2017 - Metascience 26 (1):131-135.
    Review of Dowek, Gilles, Computation, Proof, Machine, Cambridge University Press, Cambridge, 2015. Translation of Les Métamorphoses du calcul, Le Pommier, Paris, 2007. Translation from the French by Pierre Guillot and Marion Roman.
    Download  
     
    Export citation  
     
    Bookmark  
  41. On faith in the practice of mathematics.Silvere Gangloff - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  42. Mathematics for Preschoolers. Handboook for parents and educators.Boris Culina - manuscript
    In this handbook, I put into practice my philosophical views on children's mathematics. The handbook contains brief instructions and examples of mathematical activities. In the INSTRUCTIONS section, instructions are given on how, and in part why that way, to help preschool children in their mathematical development. In the ACTIVITIES section, there are examples of activities through which the child develops her mathematical abilities.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  71
    (1 other version)Mathematics and society reunited: The social aspects of Brouwer's intuitionism.Kati Kish Bar-On - 2024 - Studies in History and Philosophy of Science 108:28-37.
    Brouwer's philosophy of mathematics is usually regarded as an intra-subjective, even solipsistic approach, an approach that also underlies his mathematical intuitionism, as he strived to create a mathematics that develops out of something inner and a-linguistic. Thus, points of connection between Brouwer's mathematical views and his views about and the social world seem improbable and are rarely mentioned in the literature. The current paper aims to challenge and change that. The paper employs a socially oriented prism to examine (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. The Structuralist Mathematical Style: Bourbaki as a case study.Jean-Pierre Marquis - 2022 - In Claudio Ternullo Gianluigi Oliveri (ed.), Boston Studies in the Philosophy and the History of Science. pp. 199-231.
    In this paper, we look at Bourbaki’s work as a case study for the notion of mathematical style. We argue that indeed Bourbaki exemplifies a mathematical style, namely the structuralist style.
    Download  
     
    Export citation  
     
    Bookmark  
  45. (1 other version)Nominalism and Mathematical Intuition.Otávio Bueno - 2008 - ProtoSociology 25:89-107.
    As part of the development of an epistemology for mathematics, some Platonists have defended the view that we have (i) intuition that certain mathematical principles hold, and (ii) intuition of the properties of some mathematical objects. In this paper, I discuss some difficulties that this view faces to accommodate some salient features of mathematical practice. I then offer an alternative, agnostic nominalist proposal in which, despite the role played by mathematical intuition, these difficulties do not (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. Wisdom Mathematics.Nicholas Maxwell - 2010 - Friends of Wisdom Newsletter (6):1-6.
    For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could mathematics be knowledge (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Mathematics as Make-Believe: A Constructive Empiricist Account.Sarah Elizabeth Hoffman - 1999 - Dissertation, University of Alberta (Canada)
    Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered and rejected. Constructive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. Computational reverse mathematics and foundational analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 967