Results for 'mathematics'

1000+ found
Order:
  1. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  2. Mathematics, Morality, and Self‐Effacement.Jack Woods - 2016 - Noûs.
    I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are vulnerable (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  3. Mathematical Symbols as Epistemic Actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols are not only used (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  4. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2019 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   5 citations  
  5. Mathematics Intelligent Tutoring System.Nour N. AbuEloun & Samy S. Abu Naser - 2017 - International Journal of Advanced Scientific Research 2 (1):11-16.
    In these days, there is an increasing technological development in intelligent tutoring systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics that help students understand the basics of math and that helps a lot of students of all ages to understand the topic because it's important for students of adding and subtracting. Through which the student will be able to study the course and solve related problems. An (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  6. Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Mathematical Cognition: A Case of Enculturation.Richard Menary - 2015 - Open Mind.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  8. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  9. Against Mathematical Convenientism.Seungbae Park - 2016 - Axiomathes 26 (2):115-122.
    Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that it demolishes the Quine-Putnam (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  10. Extended Mathematical Cognition: External Representations with Non-Derived Content.Karina Vold & Dirk Schlimm - 2020 - Synthese 197 (9):3757-3777.
    Vehicle externalism maintains that the vehicles of our mental representations can be located outside of the head, that is, they need not be instantiated by neurons located inside the brain of the cogniser. But some disagree, insisting that ‘non-derived’, or ‘original’, content is the mark of the cognitive and that only biologically instantiated representational vehicles can have non-derived content, while the contents of all extra-neural representational vehicles are derived and thus lie outside the scope of the cognitive. In this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Justification and Explanation in Mathematics and Morality.Justin Clarke-Doane - 2015 - Oxford Studies in Metaethics 10.
    In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  12. Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts as a mathematical object, and how (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. The Directionality of Distinctively Mathematical Explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is remediable in each (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  14. Mathematical Explanation: A Contextual Approach.Sven Delarivière, Joachim Frans & Bart Van Kerkhove - 2017 - Journal of Indian Council of Philosophical Research 34 (2):309-329.
    PurposeIn this article, we aim to present and defend a contextual approach to mathematical explanation.MethodTo do this, we introduce an epistemic reading of mathematical explanation.ResultsThe epistemic reading not only clarifies the link between mathematical explanation and mathematical understanding, but also allows us to explicate some contextual factors governing explanation. We then show how several accounts of mathematical explanation can be read in this approach.ConclusionThe contextual approach defended here clears up the notion of explanation and pushes us towards a pluralist vision (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  15. Mathematics and Conceptual Analysis.Antony Eagle - 2008 - Synthese 161 (1):67–88.
    Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  16. The Principles of Mathematics.Bertrand Arthur William Russell - 1903 - Cambridge, England: Allen & Unwin.
    Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of Frege (...)
    Download  
     
    Export citation  
     
    Bookmark   428 citations  
  17. Mathematical Knowledge, the Analytic Method, and Naturalism.Fabio Sterpetti - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge. Approaches from Philosophy, Psychology and Cognitive Science. New York, Stati Uniti: pp. 268-293.
    This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. From Mathematical Fictionalism to Truth‐Theoretic Fictionalism.Bradley Armour-Garb & James A. Woodbridge - 2014 - Philosophy and Phenomenological Research 88 (1):93-118.
    We argue that if Stephen Yablo (2005) is right that philosophers of mathematics ought to endorse a fictionalist view of number-talk, then there is a compelling reason for deflationists about truth to endorse a fictionalist view of truth-talk. More specifically, our claim will be that, for deflationists about truth, Yablo’s argument for mathematical fictionalism can be employed and mounted as an argument for truth-theoretic fictionalism.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  19. Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Mathematical Representation: Playing a Role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. Mathematics and Argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  22. Mathematical Biology and the Existence of Biological Laws.Mauro Dorato - 2012 - In D. Dieks, S. Hartmann, T. Uebel & M. Weber (eds.), Probabilities, Laws and Structure. Springer.
    An influential position in the philosophy of biology claims that there are no biological laws, since any apparently biological generalization is either too accidental, fact-like or contingent to be named a law, or is simply reducible to physical laws that regulate electrical and chemical interactions taking place between merely physical systems. In the following I will stress a neglected aspect of the debate that emerges directly from the growing importance of mathematical models of biological phenomena. My main aim is to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  23. Mathematics as Language.Adam Morton - 1996 - In Adam Morton & Stephen P. Stich (eds.), Benacerraf and His Critics. Blackwell. pp. 213--227.
    I discuss ways in which the linguistic form of mathimatics helps us think mathematically.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  24. A Mathematical Model of Aristotle’s Syllogistic.John Corcoran - 1973 - Archiv für Geschichte der Philosophie 55 (2):191-219.
    In the present article we attempt to show that Aristotle's syllogistic is an underlying logiC which includes a natural deductive system and that it isn't an axiomatic theory as had previously been thought. We construct a mathematical model which reflects certain structural aspects of Aristotle's logic. We examine the relation of the model to the system of logic envisaged in scattered parts of Prior and Posterior Analytics. Our interpretation restores Aristotle's reputation as a logician of consummate imagination and skill. Several (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  25. Mathematics and the Theory of Multiplicities: Badiou and Deleuze Revisited.Daniel W. Smith - 2003 - Southern Journal of Philosophy 41 (3):411-449.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  26. Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11).
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  27. The Necessity of Mathematics.Juhani Yli‐Vakkuri & John Hawthorne - 2018 - Noûs 52.
    Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  28. Mathematical Modeling in Biology: Philosophy and Pragmatics.Rasmus Grønfeldt Winther - 2012 - Frontiers in Plant Evolution and Development 2012:1-3.
    Philosophy can shed light on mathematical modeling and the juxtaposition of modeling and empirical data. This paper explores three philosophical traditions of the structure of scientific theory—Syntactic, Semantic, and Pragmatic—to show that each illuminates mathematical modeling. The Pragmatic View identifies four critical functions of mathematical modeling: (1) unification of both models and data, (2) model fitting to data, (3) mechanism identification accounting for observation, and (4) prediction of future observations. Such facets are explored using a recent exchange between two groups (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   6 citations  
  29. Mathematical Necessity and Reality.James Franklin - 1989 - Australasian Journal of Philosophy 67 (3):286 – 294.
    Einstein, like most philosophers, thought that there cannot be mathematical truths which are both necessary and about reality. The article argues against this, starting with prima facie examples such as "It is impossible to tile my bathroom floor with regular pentagonal tiles." Replies are given to objections based on the supposedly purely logical or hypothetical nature of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  30. Numerical Cognition and Mathematical Realism.Helen De Cruz - 2016 - Philosophers' Imprint 16.
    Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that they prima (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  31. Virtual Mathematics: The Logic of Difference.Simon B. Duffy (ed.) - 2006 - Clinamen.
    Of all twentieth century philosophers, it is Gilles Deleuze whose work agitates most forcefully for a worldview privileging becoming over being, difference over sameness; the world as a complex, open set of multiplicities. Nevertheless, Deleuze remains singular in enlisting mathematical resources to underpin and inform such a position, refusing the hackneyed opposition between ‘static’ mathematical logic versus ‘dynamic’ physical world. This is an international collection of work commissioned from foremost philosophers, mathematicians and philosophers of science, to address the wide range (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32. The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  33. Mathematical Modelling and Contrastive Explanation.Adam Morton - 1990 - Canadian Journal of Philosophy 20 (Supplement):251-270.
    Mathematical models provide explanations of limited power of specific aspects of phenomena. One way of articulating their limits here, without denying their essential powers, is in terms of contrastive explanation.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. Leibniz, Mathematics and the Monad.Simon Duffy - 2010 - In Sjoerd van Tuinen & Niamh McDonnell (eds.), Deleuze and the Fold: A Critical Reader. Palgrave-Macmillan. pp. 89--111.
    The reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold provides a systematic account of the structure of Leibniz’s metaphysics in terms of its mathematical foundations. However, in doing so, Deleuze draws not only upon the mathematics developed by Leibniz—including the law of continuity as reflected in the calculus of infinite series and the infinitesimal calculus—but also upon developments in mathematics made by a number of Leibniz’s contemporaries—including Newton’s method of fluxions. He also draws upon a number (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  35. Mathematical Wit and Mathematical Cognition.Andrew Aberdein - 2013 - Topics in Cognitive Science 5 (2):231-250.
    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, which are essential (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36.  17
    Mathematization in Synthetic Biology: Analogies, Templates, and Fictions.Andrea Loettgers & Tarja Knuuttila - 2017 - In Martin Carrier & Johannes Lenhard (eds.), Mathematics as a Tool. Tracing New Roles of Mathematics in the Sciences. Springer Verlag.
    In his famous article “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” Eugen Wigner argues for a unique tie between mathematics and physics, invoking even religious language: “The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve”. The possible existence of such a unique match between mathematics and physics has been extensively discussed by philosophers and historians of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Platonic Relations and Mathematical Explanations.Robert Knowles - forthcoming - The Philosophical Quarterly.
    Some scientific explanations appear to turn on pure mathematical claims. The enhanced indispensability argument appeals to these ‘mathematical explanations’ in support of mathematical platonism. I argue that the success of this argument rests on the claim that mathematical explanations locate pure mathematical facts on which their physical explananda depend, and that any account of mathematical explanation that supports this claim fails to provide an adequate understanding of mathematical explanation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Marriages of Mathematics and Physics: A Challenge for Biology.Arezoo Islami & Giuseppe Longo - 2017 - Progress in Biophysics and Molecular Biology 131:179-192.
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Mathematical Metaphors in Natorp’s Neo-Kantian Epistemology and Philosophy of Science.Thomas Mormann - 2005 - In Falk Seeger, Johannes Lenard & Michael H. G. Hoffmann (eds.), Activity and Sign. Grounding Mathematical Education. Springer.
    A basic thesis of Neokantian epistemology and philosophy of science contends that the knowing subject and the object to be known are only abstractions. What really exists, is the relation between both. For the elucidation of this “knowledge relation ("Erkenntnisrelation") the Neokantians of the Marburg school used a variety of mathematical metaphors. In this con-tribution I reconsider some of these metaphors proposed by Paul Natorp, who was one of the leading members of the Marburg school. It is shown that Natorp's (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  40. Can Mathematics Explain the Evolution of Human Language?Guenther Witzany - 2011 - Communicative and Integrative Biology 4 (5):516-520.
    Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e., the hidden logical order of things and its relations determined by natural (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. A Mathematical Model of Divine Infinity.Eric Steinhart - 2009 - Theology and Science 7 (3):261-274.
    Mathematics is obviously important in the sciences. And so it is likely to be equally important in any effort that aims to understand God in a scientifically significant way or that aims to clarify the relations between science and theology. The degree to which God has any perfection is absolutely infinite. We use contemporary mathematics to precisely define that absolute infinity. For any perfection, we use transfinite recursion to define an endlessly ascending series of degrees of that perfection. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Wisdom Mathematics.Nicholas Maxwell - 2010 - Friends of Wisdom Newsletter (6):1-6.
    For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  43. Virtue Theory of Mathematical Practices: An Introduction.Andrew Aberdein, Colin Jakob Rittberg & Fenner Stanley Tanswell - forthcoming - Synthese:1-14.
    Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some mathematicians already there, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Mathematical Abstraction, Conceptual Variation and Identity.Jean-Pierre Marquis - 2014 - In Peter Schroeder-Heister, Gerhard Heinzmann, Wilfred Hodges & Pierre Edouard Bour (eds.), Logic, Methodology and Philosophy of Science, Proceedings of the 14th International Congress. London, UK: pp. 299-322.
    One of the key features of modern mathematics is the adoption of the abstract method. Our goal in this paper is to propose an explication of that method that is rooted in the history of the subject.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Aristotle on Mathematical Truth.Phil Corkum - 2012 - British Journal for the History of Philosophy 20 (6):1057-1076.
    Both literalism, the view that mathematical objects simply exist in the empirical world, and fictionalism, the view that mathematical objects do not exist but are rather harmless fictions, have been both ascribed to Aristotle. The ascription of literalism to Aristotle, however, commits Aristotle to the unattractive view that mathematics studies but a small fragment of the physical world; and there is evidence that Aristotle would deny the literalist position that mathematical objects are perceivable. The ascription of fictionalism also faces (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  46. Plato on Why Mathematics is Good for the Soul.Myles Burnyeat - 2000 - In T. Smiley (ed.), Mathematics and Necessity: Essays in the History of Philosophy. pp. 1-81.
    Anyone who has read Plato’s Republic knows it has a lot to say about mathematics. But why? I shall not be satisfied with the answer that the future rulers of the ideal city are to be educated in mathematics, so Plato is bound to give some space to the subject. I want to know why the rulers are to be educated in mathematics. More pointedly, why are they required to study so much mathematics, for so long?
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  47. Intuition in Mathematics.Elijah Chudnoff - 2014 - In Barbara Held & Lisa Osbeck (eds.), Rational Intuition. Cambridge University Press.
    The literature on mathematics suggests that intuition plays a role in it as a ground of belief. This article explores the nature of intuition as it occurs in mathematical thinking. Section 1 suggests that intuitions should be understood by analogy with perceptions. Section 2 explains what fleshing out such an analogy requires. Section 3 discusses Kantian ways of fleshing it out. Section 4 discusses Platonist ways of fleshing it out. Section 5 sketches a proposal for resolving the main problem (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  48. Mathematical Skepticism: The Debate Between Hobbes and Wallis.Luciano Floridi - 2004 - In Maia Neto, José Raimundo & Richard H. Popkin (eds.), Skepticism in Renaissance and Post-Renaissance Thought: New Interpretations. Humanity Books.
    The label “mathematical scepticism” was coined in Floridi [1998] to refer to the body of sceptical arguments developed against mathematical knowledge. Focusing on the debate between Hobbes and Wallis, this paper traces the development of modern mathematical scepticism. -/- Section 1 provides a summary of the salient points, while Sections 2 and 3 provide the necessary background against which the remarks on mathematical scepticism, occurring in the debate between Hobbes and Wallis, need to be interpreted. Sections 4 and 5 introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49.  34
    On the Mathematics and Metaphysics of the Hole Argument.Oliver Pooley & James Read - forthcoming - The British Journal for the Philosophy of Science.
    We make some remarks on the mathematics and metaphysics of the hole argument, in response to a recent article in this journal by Weatherall ([2018]). Broadly speaking, we defend the mainstream philosophical literature from the claim that correct usage of the mathematics of general relativity `blocks' the argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Mathematics, Explanation and Reductionism: Exposing the Roots of the Egyptianism of European Civilization.Arran Gare - 2005 - Cosmos and History 1 (1):54-89.
    We have reached the peculiar situation where the advance of mainstream science has required us to dismiss as unreal our own existence as free, creative agents, the very condition of there being science at all. Efforts to free science from this dead-end and to give a place to creative becoming in the world have been hampered by unexamined assumptions about what science should be, assumptions which presuppose that if creative becoming is explained, it will be explained away as an illusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 1000