In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, (...) D—the challenge to justify our D-beliefs—with the reliability challenge for D-realism—the challenge to explain the reliability of our D-beliefs. Harman’s contrast is relevant to the first, but not, evidently, to the second. One upshot of the discussion is that genealogical debunking arguments are fallacious. Another is that indispensability considerations cannot answer the Benacerraf–Field challenge for mathematical realism. (shrink)
The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last (...) hundred years. This article explains the distinction and why it has proved to be one of the great organizing themes of mathematics. (shrink)
This paper focuses on the distinction between methods which are mathematically "clever", and those which are simply crude, typically repetitive and computer intensive, approaches for "crunching" out answers to problems. Examples of the latter include simulated probability distributions and resampling methods in statistics, and iterative methods for solving equations or optimisation problems. Most of these methods require software support, but this is easily provided by a PC. The paper argues that the crunchier methods often have substantial advantages from the perspectives (...) of user-friendliness, reliability (in the sense that misuse is less likely), educational efficiency and realism. This means that they offer very considerable potential for simplifying the mathematical syllabus underlying many areas of applied mathematics such as management science and statistics: crunchier methods can provide the same, or greater, technical power, flexibility and insight, while requiring only a fraction of the mathematical conceptual background needed by their cleverer brethren. (shrink)
This article will consider imagination in mathematics from a historical point of view, noting the key moments in its conception during the ancient, modern and contemporary eras.
Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of Frege (...) to a wider audience. In addition to the new introduction by John Slater, this edition contains Russell's introduction to the 1937 edition in which he defends his position against his formalist and intuitionist critics. (shrink)
The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...) mathematical practices and their foundations. Yet, the collapse of Euclidean certitudes, of over 2300 years, and the crisis in the mathematical analysis of the 19th century, led to the exclusion of “geometric judgments” from the foundations of Mathematics. After the success and the limits of the logico-formal analysis, it is necessary to broaden our foundational tools and re-examine the interactions with natural sciences. In particular, the way the geometric and algebraic approaches organize knowledge is analyzed as a cross-disciplinary and cross-cultural issue and will be examined in Mathematical Physics and Biology. We finally discuss how the current notions of mathematical (phase) “space” should be revisited for the purposes of life sciences. (shrink)
Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) mathematical truths are not (...) truths about the external world but specifications (formulations) of mathematical conceptions; (iii) mathematics is first and foremost our imagined tool by which, with certain assumptions about its applicability, we explore nature and synthesize our rational cognition of it. (shrink)
I claim that a relatively new position in philosophy of mathematics, pluralism, overlaps in striking ways with the much older Jain doctrine of anekantavada and the associated doctrines of nyayavada and syadvada. I first outline the pluralist position, following this with a sketch of the Jain doctrine of anekantavada. I then note the srrong points of overlaps and the morals of this comparison of pluralism and anekantavada.
Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the ‘why’). My (...) argument shows that Hobbesian natural philosophy relies upon suppositions that bodies plausibly behave according to these borrowed causal principles from geometry, acknowledging that bodies in the world may not actually behave this way. First, I consider Hobbes's relation to Aristotelian mixed mathematics and to Isaac Barrow's broadening of mixed mathematics in Mathematical Lectures (1683). I show that for Hobbes maker's knowledge from geometry provides the ‘why’ in mixed-mathematical explanations. Next, I examine two explanations from De corpore Part IV: (1) the explanation of sense in De corpore 25.1-2; and (2) the explanation of the swelling of parts of the body when they become warm in De corpore 27.3. In both explanations, I show Hobbes borrowing and citing geometrical principles and mixing these principles with appeals to experience. (shrink)
This paper is concerned with counterfactual logic and its implications for the modal status of mathematical claims. It is most directly a response to an ambitious program by Yli-Vakkuri and Hawthorne (2018), who seek to establish that mathematics is committed to its own necessity. I claim that their argument fails to establish this result for two reasons. First, their assumptions force our hand on a controversial debate within counterfactual logic. In particular, they license counterfactual strengthening— the inference from ‘If (...) A were true then C would be true’ to ‘If A and B were true then C would be true’—which many reject. Second, the system they develop is provably equivalent to appending Deduction Theorem to a T modal logic. It is unsurprising that the combination of Deduction Theorem with T results in necessitation; indeed, it is precisely for this reason that many logicians reject Deduction Theorem in modal contexts. If Deduction Theorem is unacceptable for modal logic, it cannot be assumed to derive the necessity of mathematics. (shrink)
Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation or (...) theorem and its proof. An attempt is made to meet directly some of Wittgenstein’s critical comments on the mathematical treatment of infinity and irrational numbers. (shrink)
This study provides a basic introduction to agent-based modeling (ABM) as a powerful blend of classical and constructive mathematics, with a primary focus on its applicability for social science research. The typical goals of ABM social science researchers are discussed along with the culture-dish nature of their computer experiments. The applicability of ABM for science more generally is also considered, with special attention to physics. Finally, two distinct types of ABM applications are summarized in order to illustrate concretely the (...) duality of ABM: Real-world systems can not only be simulated with verisimilitude using ABM; they can also be efficiently and robustly designed and constructed on the basis of ABM principles. (shrink)
Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. For Nietzsche, (...) math is an artistic and moral activity that has an essential role to play in the joyful wisdom. (shrink)
It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse mathematics, and argue that they are best understood as closure conditions on (...) the powerset of the natural numbers. (shrink)
Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...) of themes in recent philosophy of mathematics (concerning a priority and fictionalism, for example) in revealing new light. (shrink)
Otávio Bueno* * and Steven French.** ** Applying Mathematics: Immersion, Inference, Interpretation. Oxford University Press, 2018. ISBN: 978-0-19-881504-4 978-0-19-185286-2. doi:10.1093/oso/9780198815044. 001.0001. Pp. xvii + 257.
In the last decades two different and apparently unrelated lines of research have increasingly connected mathematics and evolutionism. Indeed, on the one hand different attempts to formalize darwinism have been made, while, on the other hand, different attempts to naturalize logic and mathematics have been put forward. Those researches may appear either to be completely distinct or at least in some way convergent. They may in fact both be seen as supporting a naturalistic stance. Evolutionism is indeed crucial (...) for a naturalistic perspective, and formalizing it seems to be a way to strengthen its scientificity. The paper shows that, on the contrary, those directions of research may be seen as conflicting, since the conception of knowledge on which they rest may be undermined by the consequences of accepting an evolutionary perspective. (shrink)
ABSTRACT This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of (...) representing and assessing the relation between cognitive processes and certain properties of the stimuli at which they are directed. (shrink)
The idea behind this special theme journal issue was to continue the work we have started with the INBIOSA initiative (www.inbiosa.eu) and our small inter-disciplinary scientific community. The result of this EU funded project was a white paper (Simeonov et al., 2012a) defining a new direction for future research in theoretical biology we called Integral Biomathics and a volume (Simeonov et al., 2012b) with contributions from two workshops and our first international conference in this field in 2011. The initial impulse (...) for this effort was given a year earlier by a publication of one of the guest editors of this issue (Simeonov, 2010) in this journal. This time we wish to provide a broader forum and more space to elaborate in detail some of the most interesting concepts we have encountered in our discussions, as well as to invite some new contributions of particular interest in the field. Another goal we had in mind was to collect and review as many provocative perspectives as possible on the same key topic we are interested before making a decision to follow a more focused notion that would lead to a funded research program. Therefore we welcomed the generous suggestion of Professor Denis Noble, FRS, who is also editor of this journal to prepare a special theme issue entitled: “Can biology create a profoundly new mathematics and computation?” It has taken a while to invite and collect the contributions. Most of them had a couple of revision cycles and adjustments after having been thoroughly discussed with colleagues, incl. the editors of this issue. We think that the result we have obtained at the end is a satisfactory one, since we succeeded to integrate a diversity of original, but sometimes controversial and mutually excluding concepts organized within chapters of a self-contained volume. The task of compiling all this was not easy at all. Despite our efforts to position the articles of different authors and themes in a way allowing their easy comprehension and relation to each other within the individual chapters, some of them still require a sort of introduction to dissolve possible ambiguities. This is what we are going to do in the following few paragraphs with the hope that the reader (and some of the authors) would excuse our failures. (shrink)
Imre Lakatos' views on the philosophy of mathematics are important and they have often been underappreciated. The most obvious lacuna in this respect is the lack of detailed discussion and analysis of his 1976a paper and its implications for the methodology of mathematics, particularly its implications with respect to argumentation and the matter of how truths are established in mathematics. The most important themes that run through his work on the philosophy of mathematics and which culminate (...) in the 1976a paper are (1) the (quasi-)empirical character of mathematics and (2) the rejection of axiomatic deductivism as the basis of mathematical knowledge. In this paper Lakatos' later views on the quasi-empirical nature of mathematical theories and methodology are examined and specific attention is paid to what this view implies about the nature of mathematical argumentation and its relation to the empirical sciences. (shrink)
The paper discusses some changes in Bolzano's definition of mathematics attested in several quotations from the Beyträge, Wissenschaftslehre and Grössenlehre: is mathematics a theory of forms or a theory of quantities? Several issues that are maintained throughout Bolzano's works are distinguished from others that were accepted in the Beyträge and abandoned in the Grössenlehre. Changes are interpreted as a consequence of the new logical theory of truth introduced in the Wissenschaftslehre, but also as a consequence of the overcome (...) of Kant's terminology, and of the radicalization of Bolzano's anti‐Kantianism. Bolzano's evolution is understood as a coherent move, once the criticism expressed in the Beyträge on the notion of quantity is compared with a different and larger notion of quantity that Bolzano developed already in 1816. This discussion is enriched by the discovery that two unknown texts mentioned by Bolzano in the Beyträge can be identified with works by von Spaun and Vieth respectively. Bolzano's evolution is interpreted as a radicalization of the criticism of the Kantian definition of mathematics and as an effect of Bolzano's unaltered interest in the Leibnizian notion of mathesis universalis. As a conclusion, the author claims that Bolzano never abandoned his original idea of considering mathematics as a scientia universalis, i.e. as the science of quantities in general, and suggests that the question of ideal elements in mathematics, apart from being a main reason for the development of a new logical theory, can also be considered as a main reason for developing a different definition of quantity. (shrink)
We have reached the peculiar situation where the advance of mainstream science has required us to dismiss as unreal our own existence as free, creative agents, the very condition of there being science at all. Efforts to free science from this dead-end and to give a place to creative becoming in the world have been hampered by unexamined assumptions about what science should be, assumptions which presuppose that if creative becoming is explained, it will be explained away as an illusion. (...) In this paper it is shown that this problem has permeated the whole of European civilization from the Ancient Greeks onwards, leading to a radical disjunction between cosmology which aims at a grasp of the universe through mathematics and history which aims to comprehend human action through stories. By going back to the Ancient Greeks and tracing the evolution of the denial of creative becoming, I trace the layers of assumptions that must in some way be transcended if we are to develop a truly post-Egyptian science consistent with the forms of understanding and explanation that have evolved within history. (shrink)
Mathematics has always been a core part of western education, from the medieval quadrivium to the large amount of arithmetic and algebra still compulsory in high schools. It is an essential part. Its commitment to exactitude and to rigid demonstration balances humanist subjects devoted to appreciation and rhetoric as well as giving the lie to postmodernist insinuations that all “truths” are subject to political negotiation. In recent decades, the character of mathematics has changed – or rather broadened: it (...) has become the enabling science behind the complexity of contemporary knowledge, from gene interpretation to bank risk. Mathematical understanding is all the more necessary for future jobs, as well as remaining, as ever, a prophylactic against the more corrosive philosophical views emanating from the humanities. (shrink)
According to Steiner (1998), in contemporary physics new important discoveries are often obtained by means of strategies which rely on purely formal mathematical considerations. In such discoveries, mathematics seems to have a peculiar and controversial role, which apparently cannot be accounted for by means of standard methodological criteria. M. Gell-Mann and Y. Ne׳eman׳s prediction of the Ω− particle is usually considered a typical example of application of this kind of strategy. According to Bangu (2008), this prediction is apparently based (...) on the employment of a highly controversial principle—what he calls the “reification principle”. Bangu himself takes this principle to be methodologically unjustifiable, but still indispensable to make the prediction logically sound. In the present paper I will offer a new reconstruction of the reasoning that led to this prediction. By means of this reconstruction, I will show that we do not need to postulate any “reificatory” role of mathematics in contemporary physics and I will contextually clarify the representative and heuristic role of mathematics in science. (shrink)
The imperviousness of mathematical truth to anti-objectivist attacks has always heartened those who defend objectivism in other areas, such as ethics. It is argued that the parallel between mathematics and ethics is close and does support objectivist theories of ethics. The parallel depends on the foundational role of equality in both disciplines. Despite obvious differences in their subject matter, mathematics and ethics share a status as pure forms of knowledge, distinct from empirical sciences. A pure understanding of principles (...) is possible because of the simplicity of the notion of equality, despite the different origins of our understanding of equality of objects in general and of the equality of the ethical worth of persons. (shrink)
This article is mainly a critique of Philip Kitcher's book, The Nature of Mathematical Knowledge. Four weaknesses in Kitcher's objection to Kant arise out of Kitcher's failure to recognize the perspectival nature of Kant's position. A proper understanding of Kant's theory of mathematics requires awareness of the perspectival nuances implicit in Kant's theory of pure intuition. (Apologies that the pdf of this article was prepared with every other page upside down. Take it as an opportunity to practice changing one's (...) perspective!). (shrink)
Given the sharp distinction that follows from Hume’s Fork, the proper epistemic status of propositions of mixed mathematics seems to be a mystery. On the one hand, mathematical propositions concern the relation of ideas. They are intuitive and demonstratively certain. On the other hand, propositions of mixed mathematics, such as in Hume’s own example, the law of conservation of momentum, are also matter of fact propositions. They concern causal relations between species of objects, and, in this sense, they (...) are not intuitive or demonstratively certain, but probable or provable. In this article, I argue that the epistemic status of propositions of mixed mathematics is that of matters of fact. I wish to show that their epistemic status is not a mystery. The reason for this is that the propositions of mixed mathematics are dependent on the Uniformity Principle, unlike the propositions of pure mathematics. (shrink)
Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be (...) fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert’s program due to Simpson [1988], and predicativism in the extended form due to Feferman and Schütte. -/- Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Pi-1-1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Pi-1-1-CA0. (shrink)
For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could (...)mathematics be knowledge about? (2) How do we distinguish significant from insignificant mathematics? This is a fundamental philosophical problem concerning the nature of mathematics. But it is also a practical problem concerning mathematics itself. In the absence of the solution to the problem, there is the danger that genuinely significant mathematics will be lost among the unchecked growth of a mass of insignificant mathematics. This second problem cannot, it would seem, be solved granted knowledge-inquiry. For, in order to solve the problem, mathematics needs to be related to values, but this is, it seems, prohibited by knowledge-inquiry because it could only lead to the subversion of mathematical rigour. Both problems are solved, however, when mathematics is viewed from the perspective of wisdom-inquiry. (1) Mathematics is not a branch of knowledge. It is a body of systematized, unified and inter-connected problem-solving methods, a body of problematic possibilities. (2) A piece of mathematics is significant if (a) it links up to the interconnected body of existing mathematics, ideally in such a way that some problems difficult to solve in other branches become much easier to solve when translated into the piece of mathematics in question; (b) it has fruitful applications for (other) worthwhile human endeavours. If ever the revolution from knowledge to wisdom occurs, I would hope wisdom mathematics would flourish, the nature of mathematics would become much more transparent, more pupils and students would come to appreciate the fascination of mathematics, and it would be easier to discern what is genuinely significant in mathematics (something that baffled even Einstein). As a result of clarifying what should count as significant, the pursuit of wisdom mathematics might even lead to the development of significant new mathematics. (shrink)
Abstract In the new millennium there have been important empirical developments in the philosophy of mathematics. One of these is the so-called “Empirical Philosophy of Mathematics”(EPM) of Buldt, Löwe, Müller and Müller-Hill, which aims to complement the methodology of the philosophy of mathematics with empirical work. Among other things, this includes surveys of mathematicians, which EPM believes to give philosophically important results. In this paper I take a critical look at the sociological part of EPM as a (...) case study of ... (shrink)
Albert Lautman. Mathematics, Ideas and the Physical Real. Simon B. Duffy, trans. London and New York: Continuum, 2011. 978-1-4411-2344-2 (pbk); 978-1-44114656-4 (hbk); 978-1-44114433-1 (pdf e-bk); 978-1-44114654-0 (epub e-bk). Pp. xlii + 310.
The role of mathematics in the development of Gilles Deleuze's (1925-95) philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic is demonstrated in this paper by differentiating Deleuze's interpretation of the problem of the infinitesimal in Difference and Repetition from that which G. W. F Hegel (1770-1831) presents in the Science of Logic . Each deploys the operation of integration as conceived at different stages in the development of the infinitesimal calculus in (...) his treatment of the problem of the infinitesimal. Against the role that Hegel assigns to integration as the inverse transformation of differentiation in the development of his dialectical logic, Deleuze strategically redeploys Leibniz's account of integration as a method of summation in the form of a series in the development of his philosophy of difference. By demonstrating the relation between the differential point of view of the Leibnizian infinitesimal calculus and the differential calculus of contemporary mathematics, I argue that Deleuze effectively bypasses the methods of the differential calculus which Hegel uses to support the development of the dialectical logic, and by doing so, sets up the critical perspective from which to construct an alternative logic of relations characteristic of a philosophy of difference. The mode of operation of this logic is then demonstrated by drawing upon the mathematical philosophy of Albert Lautman (1908-44), which plays a significant role in Deleuze's project of constructing a philosophy of difference. Indeed, the logic of relations that Deleuze constructs is dialectical in the Lautmanian sense. (shrink)
This essay offers a strategic reinterpretation of Kant’s philosophy of mathematics in Critique of Pure Reason via a broad, empirically based reconception of Kant’s conception of drawing. It begins with a general overview of Kant’s philosophy of mathematics, observing how he differentiates mathematics in the Critique from both the dynamical and the philosophical. Second, it examines how a recent wave of critical analyses of Kant’s constructivism takes up these issues, largely inspired by Hintikka’s unorthodox conception of Kantian (...) intuition. Third, it offers further analyses of three Kantian concepts vitally linked to that of drawing. It concludes with an etymologically based exploration of the seven clusters of meanings of the word drawing to gesture toward new possibilities for interpreting a Kantian philosophy of mathematics. (shrink)
The physical foundations of mathematics in the theory of emergent space-time-matter were considered. It is shown that mathematics, including logic, is a consequence of equation which describes the fundamental field. If the most fundamental level were described not by mathematics, but something else, then instead of mathematics there would be consequences of this something else.
Some courses achieve existence, some have to create Professional Issues and Ethics in existence thrust upon them. It is normally Mathematics; but if you don’t do it, we will a struggle to create a course on the ethical be.” I accepted. or social aspects of science or mathematics. The gift of a greenfield site and a bull- This is the story of one that was forced to dozer is a happy occasion, undoubtedly. But exist by an unusual confluence (...) of outside cirwhat to do next? It seemed to me I should cumstances. ensure the course satisfied these require- In the mid 1990s, the University of New ments: South Wales instituted a policy that all its • It should look good to students, to staff. (shrink)
Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered (...) and rejected. Constructive empiricism cannot be realist about abstract objects; it must reject even the realism advocated by otherwise ontologically restrained and epistemologically empiricist indispensability theorists. Indispensability arguments rely on the kind of inference to the best explanation the rejection of which is definitive of constructive empiricism. On the other hand, formalist and logicist anti-realist positions are also shown to be untenable. It is argued that a constructive empiricist philosophy of mathematics must be fictionalist. Borrowing and developing elements from both Philip Kitcher's constructive naturalism and Kendall Walton's theory of fiction, the account of mathematics advanced treats mathematics as a collection of stories told about an ideal agent and mathematical objects as fictions. The account explains what true portions of mathematics are about and why mathematics is useful, even while it is a story about an ideal agent operating in an ideal world; it connects theory and practice in mathematics with human experience of the phenomenal world. At the same time, the make-believe and game-playing aspects of the theory show how we can make sense of mathematics as fiction, as stories, without either undermining that explanation or being forced to accept abstract mathematical objects into our ontology. All of this occurs within the framework that constructive empiricism itself provides the epistemological limitations it mandates, the semantic view of theories, and an emphasis on the pragmatic dimension of our theories, our explanations, and of our relation to the language we use. (shrink)
In the early 1900s, Russell began to recognize that he, and many other mathematicians, had been using assertions like the Axiom of Choice implicitly, and without explicitly proving them. In working with the Axioms of Choice, Infinity, and Reducibility, and his and Whitehead’s Multiplicative Axiom, Russell came to take the position that some axioms are necessary to recovering certain results of mathematics, but may not be proven to be true absolutely. The essay traces historical roots of, and motivations for, (...) Russell’s method of analysis, which are intended to shed light on his view about the status of mathematical axioms. I describe the position Russell develops in consequence as “immanent logicism,” in contrast to what Irving (1989) describes as “epistemic logicism.” Immanent logicism allows Russell to avoid the logocentric predicament, and to propose a method for discovering structural relationships of dependence within mathematical theories. (shrink)
At the beginning of the present century, a series of paradoxes were discovered within mathematics which suggested a fundamental unclarity in traditional mathematical methods. These methods rested on the assumption of a realm of mathematical idealities existing independently of our thinking activity, and in order to arrive at a firmly grounded mathematics different attempts were made to formulate a conception of mathematical objects as purely human constructions. It was, however, realised that such formulations necessarily result in a (...) class='Hi'>mathematics which lacks the richness and power of the old ‘platonistic’ methods, and the latter are still defended, in various modified forms, as embodying truths about self-existent mathematical entities. Thus there is an idealism-realism dispute in the philosophy of mathematics in some respects parallel to the controversy over the existence of the experiential world to the settlement of which lngarden devoted his life. The present paper is an attempt to apply Ingarden’s methods to the sphere of mathematical existence. This exercise will reveal new modes of being applicable to non-real objects, and we shall put forward arguments to suggest that these modes of being have an importance outside mathematics, especially in the areas of value theory and the ontology of art. (shrink)
This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal (...) science, mathematical ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is. The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl’s phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of “naturalist” and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the “unreasonable” effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies. (shrink)
I argue for the Wittgensteinian thesis that mathematical statements are expressions of norms, rather than descriptions of the world. An expression of a norm is a statement like a promise or a New Year's resolution, which says that someone is committed or entitled to a certain line of action. A expression of a norm is not a mere description of a regularity of human behavior, nor is it merely a descriptive statement which happens to entail a norms. The view can (...) be thought of as a sort of logicism for the logical expressivist---a person who believes that the purpose of logical language is to make explicit commitments and entitlements that are implicit in ordinary practice. The thesis that mathematical statements are expression of norms is a kind of logicism, not because it says that mathematics can be reduced to logic, but because it says that mathematical statements play the same role as logical statements. ;I contrast my position with two sets of views, an empiricist view, which says that mathematical knowledge is acquired and justified through experience, and a cluster of nativist and apriorist views, which say that mathematical knowledge is either hardwired into the human brain, or justified a priori, or both. To develop the empiricist view, I look at the work of Kitcher and Mill, arguing that although their ideas can withstand the criticisms brought against empiricism by Frege and others, they cannot reply to a version of the critique brought by Wittgenstein in the Remarks on the Foundations of Mathematics. To develop the nativist and apriorist views, I look at the work of contemporary developmental psychologists, like Gelman and Gallistel and Karen Wynn, as well as the work of philosophers who advocate the existence of a mathematical intuition, such as Kant, Husserl, and Parsons. After clarifying the definitions of "innate" and "a priori," I argue that the mechanisms proposed by the nativists cannot bring knowledge, and the existence of the mechanisms proposed by the apriorists is not supported by the arguments they give. (shrink)
The current literature suggests that the use of Husserl’s and Heidegger’s approaches to phenomenology is still practiced. However, a clear gap exists on how these approaches are viewed in the context of constructivism, particularly with non-traditional female students’ study of mathematics. The dissertation attempts to clarify the constructivist role of phenomenology within a transcendental framework from the first-hand meanings associated with the expression of the relevancy as expressed by interviews of six nontraditional female students who have studied undergraduate (...) class='Hi'>mathematics. Comparisons also illustrate how the views associated with Husserl’s stance on phenomenology inadvertently relate to the stances of the participants interviewed as part of the study. The research questions focus on the emotional association with studying mathematics and how pre-conceived opinions regarding the study of mathematics may have influenced the essences of the experiences of the participants who have studied collegiate-level mathematics. The essences of the experiences of the participants are analyzed using bracketing and epoché to ensure personal biases of the researcher do not affect the interpretation of the expressed essences of the participants. Data collection is accomplished through two series of qualitative interviews seeking the participants’ firsthand impressions of how they view the way instructional design is oriented with regard to mathematics. Additional questions seek to illuminate the participants’ point of view regarding their emotional association with mathematics as well as their opinions and theoretical perspectives on the study of mathematics. (shrink)
Anyone who has read Plato’s Republic knows it has a lot to say about mathematics. But why? I shall not be satisfied with the answer that the future rulers of the ideal city are to be educated in mathematics, so Plato is bound to give some space to the subject. I want to know why the rulers are to be educated in mathematics. More pointedly, why are they required to study so much mathematics, for so long?
I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are vulnerable (...) to such arguments while mathematical, logical, and normative beliefs are not—the very construction of Harman-style skeptical arguments requires the truth of significant fragments of our mathematical, logical, and normative beliefs, but requires no such thing of our moral beliefs. Given this property, Harman-style skeptical arguments against logical, mathematical, and normative beliefs are self-effacing; doubting these beliefs on the basis of such arguments results in the loss of our reasons for doubt. But we can cleanly doubt the truth of morality. (shrink)
Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...) they relate to the sorts of explanation encountered in philosophy of science and metaphysics? (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.