Results for 'mathematics'

941 found
Order:
  1.  82
    Hội thảo các vấn đề kinh tế, tài chính và ứng dụng toán học, 27-28/2/2009.Vietnam Mathematical Society - 2009 - Vms Conference 2009.
    Nền kinh tế nước ta đang chuyển biến mạnh mẽ từ nền kinh tế bao cấp sang kinh tế thị trường, nhất là từ khi nước ta gia nhập WTO. Đảng và chính phủ đã đề ra rất nhiều các chính sách để cải tiến các thể chế quản lý nền kinh tế và tài chính. Thị trường chứng khoán Việt Nam đã ra đời và đang đóng một vai trò quan trọng trong việc huy động vốn phục vụ cho (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Mathematics and metaphysics: The history of the Polish philosophy of mathematics from the Romantic era.Paweł Jan Polak - 2021 - Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce) 71:45-74.
    The Polish philosophy of mathematics in the 19th century is not a well-researched topic. For this period, only five philosophers are usually mentioned, namely Jan Śniadecki, Józef Maria Hoene-Wroński, Henryk Struve, Samuel Dickstein, and Edward Stamm. This limited and incomplete perspective does not allow us to develop a well-balanced picture of the Polish philosophy of mathematics and gauge its influence on 19th- and 20th-century Polish philosophy in general. To somewhat complete our picture of the history of the Polish (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  84
    MATHEMATICAL PROBLEM SOLVING SKILLS AND ACADEMIC SELF-EFFICACYAS CORRELATES OF PRE-SERVICE NCE MATHEMATICS TEACHERS’ PERFORMANCE IN SOUTH-EAST, NIGERIA.Ebele Chinelo Okigbo & Olubu Ojo Ayegbusi - 2024 - Ijo - International Journal of Educational Research 7 (5):1-13.
    The study ascertained mathematical problem-solving skills and self-efficacy as correlates of Pre-service NCE Mathematics Teachers’ Performance in South-East, Nigeria. Seven research questions guided the study while seven hypotheses were tested at 0.05 level of significance. Correlation research design was used for the study. The population of the study was 197 pre-service NCE Mathematics teachers in South-East, Nigeria. All the population of 197 was studied as sample because, it is small and manageable. Mathematics Problem-Solving Skill Test (MPSST) and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Mathematics, explanation and reductionism: exposing the roots of the Egyptianism of European civilization.Arran Gare - 2005 - Cosmos and History 1 (1):54-89.
    We have reached the peculiar situation where the advance of mainstream science has required us to dismiss as unreal our own existence as free, creative agents, the very condition of there being science at all. Efforts to free science from this dead-end and to give a place to creative becoming in the world have been hampered by unexamined assumptions about what science should be, assumptions which presuppose that if creative becoming is explained, it will be explained away as an illusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Mathematical Modeling of Biological and Social Evolutionary Macrotrends.Leonid Grinin, Alexander V. Markov & Andrey V. Korotayev - 2014 - In Leonid Grinin & Andrey Korotayev (eds.), History & Mathematics: Trends and Cycles. Volgograd: "Uchitel" Publishing House. pp. 9-48.
    In the first part of this article we survey general similarities and differences between biological and social macroevolution. In the second (and main) part, we consider a concrete mathematical model capable of describing important features of both biological and social macroevolution. In mathematical models of historical macrodynamics, a hyperbolic pattern of world population growth arises from non-linear, second-order positive feedback between demographic growth and technological development. Based on diverse paleontological data and an analogy with macrosociological models, we suggest that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Mathematical Structure of the Emergent Event.Kent Palmer - manuscript
    Exploration of a hypothetical model of the structure of the Emergent Event. -/- Key Words: Emergent Event, Foundational Mathematical Categories, Emergent Meta-system, Orthogonal Centering Dialectic, Hegel, Sartre, Badiou, Derrida, Deleuze, Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  8. Mathematics as language.Adam Morton - 1996 - In Adam Morton & Stephen P. Stich (eds.), Benacerraf and His Critics. Blackwell. pp. 213--227.
    I discuss ways in which the linguistic form of mathimatics helps us think mathematically.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  9. Time, Mathematics, and the Fold: A Post-Heideggerian Itinerary.Said Mikki - manuscript
    A perspective is provided on how to move beyond postmodernism while struggling to do philosophy in the twenty-first century. The ontological structures of time, history, and mathematics are analyzed from the vantagepoint of the Heideggerian theory of nonspatial Fold.
    Download  
     
    Export citation  
     
    Bookmark  
  10.  90
    Mathematics as Metaphysical and Constructive.Eric Schmid - 2024 - Rue Americaine 13.
    Andr ́e Weil viewed mathematics as deeply intertwined with metaphysics. In his essay ”From Metaphysics to Mathematics,” he illustrates how mathematical ideas often arise from vague, metaphysical analogies and reflections that guide researchers toward new theories. For instance, Weil discusses how analogies between different areas, such as number theory and algebraic functions, have led to significant breakthroughs. These metaphysical underpinnings provide a fertile ground for mathematical creativity, eventually transforming into rigorous mathematical structures. -/- Alexander Grothendieck’s work, particularly in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Grasping Mathematical Reality.Catherine Legg - 2015 - CUADERNOS DE SISTEMÁTICA PEIRCEANA 7.
    This paper presents a Peircean take on Wittgenstein's famous rule-following problem as it pertains to 'knowing how to go on in mathematics'. I argue that McDowell's advice that the philosophical picture of 'rules as rails' must be abandoned is not sufficient on its own to fully appreciate mathematics' unique blend of creativity and rigor. Rather, we need to understand how Peirce counterposes to the brute compulsion of 'Secondness', both the spontaneity of 'Firstness' and also the rational intelligibility of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. The Mathematical Roots of Semantic Analysis.Axel Arturo Barcelo Aspeitia - manuscript
    Semantic analysis in early analytic philosophy belongs to a long tradition of adopting geometrical methodologies to the solution of philosophical problems. In particular, it adapts Descartes’ development of formalization as a mechanism of analytic representation, for its application in natural language semantics. This article aims to trace the mathematical roots of Frege, Russel and Carnap’s analytic method. Special attention is paid to the formal character of modern analysis introduced by Descartes. The goal is to identify the particular conception of “form” (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  15. Mathematics, Morality, and Self‐Effacement.Jack Woods - 2016 - Noûs 52 (1):47-68.
    I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are vulnerable (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  16. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  17. Mathematical symbols as epistemic actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols are not only used (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  18. Mathematics - an imagined tool for rational cognition.Boris Culina - manuscript
    Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) mathematical truths are not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. Mathematical thought in the light of Matte Blanco’s work.Giuseppe Iurato - 2013 - Philosophy of Mathematics Education Journal 27:1-9.
    Taking into account some basic epistemological considerations on psychoanalysis by Ignacio Matte Blanco, it is possible to deduce some first simple remarks on certain logical aspects of schizophrenic reasoning. Further remarks on mathematical thought are also made in the light of what established, taking into account the comparison with the schizophrenia pattern.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  20. Supreme Mathematics: The Five Percenter Model of Divine Self-Realization and Its Commonalities to Interpretations of the Pythagorean Tetractys in Western Esotericism.Martin A. M. Gansinger - 2023 - Interdisciplinary Journal for Religion and Transformation in Contemporary Society 1 (1):1-22.
    This contribution aims to explore the historical predecessors of the Five Percenter model of self-realization, as popularized by Hip Hop artists such as Supreme Team, Rakim Allah, Brand Nubian, Wu-Tang Clan, or Sunz of Man. As compared to frequent considerations of the phenomenon as a creative mythological background for a socio-political struggle, Five Percenter teachings shall be discussed as contemporary interpretations of historical models of self-realization in various philosophical, religious, and esoteric systems. By putting the coded system of the tenfold (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Mathematics' Poincare Conjecture and The Shape of the Universe.Rodney Bartlett - 2011 - Tomorrow's Science Today.
    intro to Part 1 - -/- Most people disliked mathematics when they were at school and they were absolutely correct to do so. This is because maths as we know it is severely incomplete. No matter how elaborated and complicated mathematical equations become, in today's world they're based on 1+1=2. This certainly conforms to the world our physical senses perceive and to the world scientific instruments detect. It has been of immeasurable value to all knowledge throughout history and has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Mathematics, Narratives and Life: Reconciling Science and the Humanities.Arran Gare - 2024 - Cosmos and History 20 (1):133-155.
    The triumph of scientific materialism in the Seventeenth Century not only bifurcated nature into matter and mind and primary and secondary qualities, as Alfred North Whitehead pointed out in Science and the Modern World. It divided science and the humanities. The core of science is the effort to comprehend the cosmos through mathematics. The core of the humanities is the effort to comprehend history and human nature through narratives. The life sciences can be seen as the zone in which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  25. Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Against Mathematical Convenientism.Seungbae Park - 2016 - Axiomathes 26 (2):115-122.
    Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that it demolishes the Quine-Putnam (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts as a mathematical object, and how (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  28. Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Are mathematical explanations causal explanations in disguise?A. Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2024 - Philosophy of Science (NA):1-19.
    There is a major debate as to whether there are non-causal mathematical explanations of physical facts that show how the facts under question arise from a degree of mathematical necessity considered stronger than that of contingent causal laws. We focus on Marc Lange’s account of distinctively mathematical explanations to argue that purported mathematical explanations are essentially causal explanations in disguise and are no different from ordinary applications of mathematics. This is because these explanations work not by appealing to what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Naturalising Mathematics? A Wittgensteinian Perspective.Jan Stam, Martin Stokhof & Michiel Van Lambalgen - 2022 - Philosophies 7 (4):85.
    There is a noticeable gap between results of cognitive neuroscientific research into basic mathematical abilities and philosophical and empirical investigations of mathematics as a distinct intellectual activity. The paper explores the relevance of a Wittgensteinian framework for dealing with this discrepancy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. Artistic Mediation in Mathematized Phenomenology.Robert Prentner & Shanna Dobson - manuscript
    Mathematics has a long track record of refining the concepts by which we make sense of the world. For example, mathematics allows one to speak about different senses of "sameness", depending on the larger context. Phenomenology is the name of a philosophical discipline that tries to systematically investigate the first-personal perspective on reality and how it is constituted. Together, mathematics and phenomenology seem to be a good fit to derive statements about our experience that are, at the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Mathematics Intelligent Tutoring System.Nour N. AbuEloun & Samy S. Abu Naser - 2017 - International Journal of Advanced Scientific Research 2 (1):11-16.
    In these days, there is an increasing technological development in intelligent tutoring systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics that help students understand the basics of math and that helps a lot of students of all ages to understand the topic because it's important for students of adding and subtracting. Through which the student will be able to study the course and solve related problems. An (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  36. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  37. Mathematical anti-realism and explanatory structure.Bruno Whittle - 2021 - Synthese 199 (3-4):6203-6217.
    Plausibly, mathematical claims are true, but the fundamental furniture of the world does not include mathematical objects. This can be made sense of by providing mathematical claims with paraphrases, which make clear how the truth of such claims does not require the fundamental existence of mathematical objects. This paper explores the consequences of this type of position for explanatory structure. There is an apparently straightforward relationship between this sort of structure, and the logical sort: i.e. logically complex claims are explained (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Mathematics and conceptual analysis.Antony Eagle - 2008 - Synthese 161 (1):67–88.
    Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  39. A mathematical theory of truth and an application to the regress problem.S. Heikkilä - forthcoming - Nonlinear Studies 22 (2).
    In this paper a class of languages which are formal enough for mathematical reasoning is introduced. Its languages are called mathematically agreeable. Languages containing a given MA language L, and being sublanguages of L augmented by a monadic predicate, are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of those languages. MTT makes them fully interpreted MA languages which posses their own truth predicates. MTT is shown to conform well with the eight norms formulated for theories (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Innate Mathematical Characteristics and Number Sense Competencies of Junior High School Students.Raymundo A. Santos, Leila M. Collantes, Edwin D. Ibañez, Florante P. Ibarra & Jupeth Pentang - 2022 - International Journal of Learning, Teaching and Educational Research 21 (10):325-340.
    The study determined the influence of innate mathematical characteristics on the number sense competencies of junior high school students in a Philippine public school. The descriptive-correlational research design was used to accomplish the study involving a nonrandom sample of sixty 7th-grade students attending synchronous math sessions. Data obtained from the math-specific Learning Style and Self-Efficacy questionnaires and the modified Number Sense Test (NST) were analyzed and interpreted using descriptive statistics, Pearson’s Chi-Square, and Simple Linear Regression analysis. The research instruments and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  41. Mathematical Needs of Laura Vicuña Learners.Jupeth Pentang, Ronalyn M. Bautista, Aylene D. Pizaña & Susana P. Egger - 2020 - WPU Graduate Journal 5 (1):78-81.
    An inquiry on the training needs in Mathematics was conducted to Laura Vicuña Center - Palawan (LVC-P) learners. Specifically, this aimed to determine their level of performance in numbers, measurement, geometry, algebra, and statistics, identify the difficulties they encountered in solving word problems and enumerate topics where they needed coaching. -/- To identify specific training needs, the study employed a descriptive research design where 36 participants were sampled purposively. The data were gathered through a problem set test and focus (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  42. Mathematical Evaluation Methodology Among Residents, Social Interaction andEnergy Efficiency, For Socialist Buildings Typology,Case of Kruja (Albania).Klodjan Xhexhi - 2020 - Test Engineering and Management 83 (March-April 2020):17005-17020.
    Socialist buildings in the city of Kruja (Albania) date back after the Second World War between the years 1945-1990. These buildings were built during the time of the socialist Albanian dictatorship and the totalitarian communist regime. A questionnaire with 30 questions was conducted and 14 people were interviewed. The interviewed residents belong to a certain area of the city of Kruja. Based on the results obtained, diagrams have been conceived and mathematical regression models have been developed which will serve as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance for (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  44. Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  45. Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Mathematics, core of the past and hope of the future.James Franklin - 2018 - In Catherine A. Runcie & David Brooks (eds.), Reclaiming Education: Renewing Schools and Universities in Contemporary Western Society. Edwin H. Lowe Publishing. pp. 149-162.
    Mathematics has always been a core part of western education, from the medieval quadrivium to the large amount of arithmetic and algebra still compulsory in high schools. It is an essential part. Its commitment to exactitude and to rigid demonstration balances humanist subjects devoted to appreciation and rhetoric as well as giving the lie to postmodernist insinuations that all “truths” are subject to political negotiation. In recent decades, the character of mathematics has changed – or rather broadened: it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Mathematical skepticism: a sketch with historian in foreground.Luciano Floridi - 1998 - In J. van der Zande & R. Popkin (eds.), The Skeptical Tradition around 1800. pp. 41–60.
    We know very little about mathematical skepticism in modem times. Imre Lakatos once remarked that “in discussing modem efforts to establish foundations for mathematical knowledge one tends to forget that these are but a chapter in the great effort to overcome skepticism by establishing foundations for knowledge in general." And in a sense he was clearly right: modem thought — with its new discoveries in mathematical sciences, the mathematization of physics, the spreading of Pyrrhonist doctrines, the centrality of epistemological foundationalism (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49. Mathematical Modelling and Contrastive Explanation.Adam Morton - 1990 - Canadian Journal of Philosophy 20 (Supplement):251-270.
    Mathematical models provide explanations of limited power of specific aspects of phenomena. One way of articulating their limits here, without denying their essential powers, is in terms of contrastive explanation.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  50. Mathematical necessity and reality.James Franklin - 1989 - Australasian Journal of Philosophy 67 (3):286 – 294.
    Einstein, like most philosophers, thought that there cannot be mathematical truths which are both necessary and about reality. The article argues against this, starting with prima facie examples such as "It is impossible to tile my bathroom floor with regular pentagonal tiles." Replies are given to objections based on the supposedly purely logical or hypothetical nature of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
1 — 50 / 941