Results for 'mathematics'

952 found
Order:
  1. Hội thảo các vấn đề kinh tế, tài chính và ứng dụng toán học, 27-28/2/2009.Vietnam Mathematical Society - 2009 - Vms Conference 2009.
    Nền kinh tế nước ta đang chuyển biến mạnh mẽ từ nền kinh tế bao cấp sang kinh tế thị trường, nhất là từ khi nước ta gia nhập WTO. Đảng và chính phủ đã đề ra rất nhiều các chính sách để cải tiến các thể chế quản lý nền kinh tế và tài chính. Thị trường chứng khoán Việt Nam đã ra đời và đang đóng một vai trò quan trọng trong việc huy động vốn phục vụ cho (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  3. (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Mathematical symbols as epistemic actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols are not only used (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  5. Mathematics - an imagined tool for rational cognition.Boris Culina - manuscript
    Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) mathematical truths are not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  7. Mathematics, Morality, and Self‐Effacement.Jack Woods - 2016 - Noûs 52 (1):47-68.
    I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are vulnerable (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  8. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Mathematics, Narratives and Life: Reconciling Science and the Humanities.Arran Gare - 2024 - Cosmos and History 20 (1):133-155.
    The triumph of scientific materialism in the Seventeenth Century not only bifurcated nature into matter and mind and primary and secondary qualities, as Alfred North Whitehead pointed out in Science and the Modern World. It divided science and the humanities. The core of science is the effort to comprehend the cosmos through mathematics. The core of the humanities is the effort to comprehend history and human nature through narratives. The life sciences can be seen as the zone in which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Mathematical Thinking Undefended on The Level of The Semester for Professional Mathematics Teacher Candidates. Toheri & Widodo Winarso - 2017 - Munich University Library.
    Mathematical thinking skills are very important in mathematics, both to learn math or as learning goals. Thinking skills can be seen from the description given answers in solving mathematical problems faced. Mathematical thinking skills can be seen from the types, levels, and process. Proportionally questions given to students at universities in Indonesia (semester I, III, V, and VII). These questions are a matter of description that belong to the higher-level thinking. Students choose 5 of 8 given problem. Qualitatively, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  12. Are mathematical explanations causal explanations in disguise?A. Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2024 - Philosophy of Science 91 (4):887-905.
    There is a major debate as to whether there are non-causal mathematical explanations of physical facts that show how the facts under question arise from a degree of mathematical necessity considered stronger than that of contingent causal laws. We focus on Marc Lange’s account of distinctively mathematical explanations to argue that purported mathematical explanations are essentially causal explanations in disguise and are no different from ordinary applications of mathematics. This is because these explanations work not by appealing to what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Mathematical Explanation: A Pythagorean Proposal.Sam Baron - 2024 - British Journal for the Philosophy of Science 75 (3):663-685.
    Mathematics appears to play an explanatory role in science. This, in turn, is thought to pave a way toward mathematical Platonism. A central challenge for mathematical Platonists, however, is to provide an account of how mathematical explanations work. I propose a property-based account: physical systems possess mathematical properties, which either guarantee the presence of other mathematical properties and, by extension, the physical states that possess them; or rule out other mathematical properties, and their associated physical states. I explain why (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Naturalising Mathematics? A Wittgensteinian Perspective.Jan Stam, Martin Stokhof & Michiel Van Lambalgen - 2022 - Philosophies 7 (4):85.
    There is a noticeable gap between results of cognitive neuroscientific research into basic mathematical abilities and philosophical and empirical investigations of mathematics as a distinct intellectual activity. The paper explores the relevance of a Wittgensteinian framework for dealing with this discrepancy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Mathematical anti-realism and explanatory structure.Bruno Whittle - 2021 - Synthese 199 (3-4):6203-6217.
    Plausibly, mathematical claims are true, but the fundamental furniture of the world does not include mathematical objects. This can be made sense of by providing mathematical claims with paraphrases, which make clear how the truth of such claims does not require the fundamental existence of mathematical objects. This paper explores the consequences of this type of position for explanatory structure. There is an apparently straightforward relationship between this sort of structure, and the logical sort: i.e. logically complex claims are explained (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  17. Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  19. Mathematical Gettier Cases and Their Implications.Neil Barton - manuscript
    Let mathematical justification be the kind of justification obtained when a mathematician provides a proof of a theorem. Are Gettier cases possible for this kind of justification? At first sight we might think not: The standard for mathematical justification is proof and, since proof is bound at the hip with truth, there is no possibility of having an epistemically lucky justification of a true mathematical proposition. In this paper, I argue that Gettier cases are possible (and indeed actual) in mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Mathematical Needs of Laura Vicuña Learners.Jupeth Pentang, Ronalyn M. Bautista, Aylene D. Pizaña & Susana P. Egger - 2020 - WPU Graduate Journal 5 (1):78-81.
    An inquiry on the training needs in Mathematics was conducted to Laura Vicuña Center - Palawan (LVC-P) learners. Specifically, this aimed to determine their level of performance in numbers, measurement, geometry, algebra, and statistics, identify the difficulties they encountered in solving word problems and enumerate topics where they needed coaching. -/- To identify specific training needs, the study employed a descriptive research design where 36 participants were sampled purposively. The data were gathered through a problem set test and focus (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  21. Supreme Mathematics: The Five Percenter Model of Divine Self-Realization and Its Commonalities to Interpretations of the Pythagorean Tetractys in Western Esotericism.Martin A. M. Gansinger - 2023 - Interdisciplinary Journal for Religion and Transformation in Contemporary Society 1 (1):1-22.
    This contribution aims to explore the historical predecessors of the Five Percenter model of self-realization, as popularized by Hip Hop artists such as Supreme Team, Rakim Allah, Brand Nubian, Wu-Tang Clan, or Sunz of Man. As compared to frequent considerations of the phenomenon as a creative mythological background for a socio-political struggle, Five Percenter teachings shall be discussed as contemporary interpretations of historical models of self-realization in various philosophical, religious, and esoteric systems. By putting the coded system of the tenfold (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance for (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  23. Mathematical Forms and Forms of Mathematics: Leaving the Shores of Extensional Mathematics.Jean-Pierre Marquis - 2013 - Synthese 190 (12):2141-2164.
    In this paper, I introduce the idea that some important parts of contemporary pure mathematics are moving away from what I call the extensional point of view. More specifically, these fields are based on criteria of identity that are not extensional. After presenting a few cases, I concentrate on homotopy theory where the situation is particularly clear. Moreover, homotopy types are arguably fundamental entities of geometry, thus of a large portion of mathematics, and potentially to all mathematics, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  24. Innate Mathematical Characteristics and Number Sense Competencies of Junior High School Students.Raymundo A. Santos, Leila M. Collantes, Edwin D. Ibañez, Florante P. Ibarra & Jupeth Pentang - 2022 - International Journal of Learning, Teaching and Educational Research 21 (10):325-340.
    The study determined the influence of innate mathematical characteristics on the number sense competencies of junior high school students in a Philippine public school. The descriptive-correlational research design was used to accomplish the study involving a nonrandom sample of sixty 7th-grade students attending synchronous math sessions. Data obtained from the math-specific Learning Style and Self-Efficacy questionnaires and the modified Number Sense Test (NST) were analyzed and interpreted using descriptive statistics, Pearson’s Chi-Square, and Simple Linear Regression analysis. The research instruments and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  25. Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts as a mathematical object, and how (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26. Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  27. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  28. Mathematics Intelligent Tutoring System.Nour N. AbuEloun & Samy S. Abu Naser - 2017 - International Journal of Advanced Scientific Research 2 (1):11-16.
    In these days, there is an increasing technological development in intelligent tutoring systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics that help students understand the basics of math and that helps a lot of students of all ages to understand the topic because it's important for students of adding and subtracting. Through which the student will be able to study the course and solve related problems. An (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  29. Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Mathematical skepticism: a sketch with historian in foreground.Luciano Floridi - 1998 - In J. van der Zande & R. Popkin (eds.), The Skeptical Tradition around 1800. pp. 41–60.
    We know very little about mathematical skepticism in modem times. Imre Lakatos once remarked that “in discussing modem efforts to establish foundations for mathematical knowledge one tends to forget that these are but a chapter in the great effort to overcome skepticism by establishing foundations for knowledge in general." And in a sense he was clearly right: modem thought — with its new discoveries in mathematical sciences, the mathematization of physics, the spreading of Pyrrhonist doctrines, the centrality of epistemological foundationalism (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  31. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Comparative Mathematical Analyses Between Different Building Typology in the City of Kruja, Albania.Klodjan Xhexhi - 2020 - Test Engineering and Management 83 (March-April 2020):17225-17234.
    The city of Kruja dates back to its existence in the 5th and 6th centuries. In the inner city are preserved great historical, cultural, and architectural values that are inherited from generation to generation. In the city interact and coexist three different typologies of dwellings: historic buildings that belong to the XIII, XIV, XV, XIII, XIX centuries (built using the foundations of previous buildings); socialist buildings dating back to the Second World War until 1990; and modern buildings which were built (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Against Mathematical Convenientism.Seungbae Park - 2016 - Axiomathes 26 (2):115-122.
    Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that it demolishes the Quine-Putnam (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  36. Mathematical necessity and reality.James Franklin - 1989 - Australasian Journal of Philosophy 67 (3):286 – 294.
    Einstein, like most philosophers, thought that there cannot be mathematical truths which are both necessary and about reality. The article argues against this, starting with prima facie examples such as "It is impossible to tile my bathroom floor with regular pentagonal tiles." Replies are given to objections based on the supposedly purely logical or hypothetical nature of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  37. Mathematics, core of the past and hope of the future.James Franklin - 2018 - In Catherine A. Runcie & David Brooks (eds.), Reclaiming Education: Renewing Schools and Universities in Contemporary Western Society. Edwin H. Lowe Publishing. pp. 149-162.
    Mathematics has always been a core part of western education, from the medieval quadrivium to the large amount of arithmetic and algebra still compulsory in high schools. It is an essential part. Its commitment to exactitude and to rigid demonstration balances humanist subjects devoted to appreciation and rhetoric as well as giving the lie to postmodernist insinuations that all “truths” are subject to political negotiation. In recent decades, the character of mathematics has changed – or rather broadened: it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Mathematical Internal Realism.Tim Button - 2022 - In Sanjit Chakraborty & James Ferguson Conant (eds.), Engaging Putnam. Berlin, Germany: De Gruyter. pp. 157-182.
    In “Models and Reality” (1980), Putnam sketched a version of his internal realism as it might arise in the philosophy of mathematics. Here, I will develop that sketch. By combining Putnam’s model-theoretic arguments with Dummett’s reflections on Gödelian incompleteness, we arrive at (what I call) the Skolem-Gödel Antinomy. In brief: our mathematical concepts are perfectly precise; however, these perfectly precise mathematical concepts are manifested and acquired via a formal theory, which is understood in terms of a computable system of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  39. Mathematics and conceptual analysis.Antony Eagle - 2008 - Synthese 161 (1):67–88.
    Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  40. MATHEMATICS PROFICIENCY LEVEL AMONG THE GRADE THREE PUPILS IN CAGAYAN DE ORO CITY DIVISION.Atriah Fascia Dy & Conniebel Nistal - 2024 - International Journal of Research Publications 147 (1):98-114.
    Mathematics is an important subject taught in primary and secondary schools that equips students with foundational knowledge and skills for organizing their lives. This study determined the Mathematics proficiency level among the Grade Three pupils in Cagayan de Oro City in School Year 2022-2023. Specifically, it sought to determine the respondents’ profile in terms of language used at home, study habits, parental involvement, and attitude towards Mathematics; find out the proficiency level in Mathematics; and determine the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Mathematical Modelling and Contrastive Explanation.Adam Morton - 1990 - Canadian Journal of Philosophy 20 (Supplement):251-270.
    Mathematical models provide explanations of limited power of specific aspects of phenomena. One way of articulating their limits here, without denying their essential powers, is in terms of contrastive explanation.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  42. How Mathematics Isn’t Logic.Roger Wertheimer - 1999 - Ratio 12 (3):279-295.
    View more Abstract If logical truth is necessitated by sheer syntax, mathematics is categorially unlike logic even if all mathematics derives from definitions and logical principles. This contrast gets obscured by the plausibility of the Synonym Substitution Principle implicit in conceptions of analyticity: synonym substitution cannot alter sentence sense. The Principle obviously fails with intercepting: nonuniform term substitution in logical sentences. ‘Televisions are televisions’ and ‘TVs are televisions’ neither sound alike nor are used interchangeably. Interception synonymy gets assumed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Bayesian Perspectives on Mathematical Practice.James Franklin - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2711-2726.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure (...) and for the behavior of complex applied mathematical models and statistical algorithms. Mathematics has therefore become (among other things) an experimental science (though that has not diminished the importance of proof in the traditional style). We examine how the evaluation of evidence for conjectures works in mathematical practice. We explain the (objective) Bayesian view of probability, which gives a theoretical framework for unifying evidence evaluation in science and law as well as in mathematics. Numerical evidence in mathematics is related to the problem of induction; the occurrence of straightforward inductive reasoning in the purely logical material of pure mathematics casts light on the nature of induction as well as of mathematical reasoning. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Mathematics, The Computer Revolution and the Real World.James Franklin - 1988 - Philosophica 42:79-92.
    The philosophy of mathematics has largely abandoned foundational studies, but is still fixated on theorem proving, logic and number theory, and on whether mathematical knowledge is certain. That is not what mathematics looks like to, say, a knot theorist or an industrial mathematical modeller. The "computer revolution" shows that mathematics is a much more direct study of the world, especially its structural aspects.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Mathematical Evaluation Methodology Among Residents, Social Interaction andEnergy Efficiency, For Socialist Buildings Typology,Case of Kruja (Albania).Klodjan Xhexhi - 2020 - Test Engineering and Management 83 (March-April 2020):17005-17020.
    Socialist buildings in the city of Kruja (Albania) date back after the Second World War between the years 1945-1990. These buildings were built during the time of the socialist Albanian dictatorship and the totalitarian communist regime. A questionnaire with 30 questions was conducted and 14 people were interviewed. The interviewed residents belong to a certain area of the city of Kruja. Based on the results obtained, diagrams have been conceived and mathematical regression models have been developed which will serve as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. (1 other version)Mathematical Modality: An Investigation in Higher-order Logic.Andrew Bacon - forthcoming - Journal of Philosophical Logic.
    An increasing amount of contemporary philosophy of mathematics posits, and theorizes in terms of special kinds of mathematical modality. The goal of this paper is to bring recent work on higher-order metaphysics to bear on the investigation of these modalities. The main focus of the paper will be views that posit mathematical contingency or indeterminacy about statements that concern the `width' of the set theoretic universe, such as Cantor's continuum hypothesis. Within a higher-order framework I show that contingency about (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Non-mathematical Content by Mathematical Means.Sam Adam-Day - manuscript
    In this paper, I consider the use of mathematical results in philosophical arguments arriving at conclusions with non-mathematical content, with the view that in general such usage requires additional justification. As a cautionary example, I examine Kreisel’s arguments that the Continuum Hypothesis is determined by the axioms of Zermelo-Fraenkel set theory, and interpret Weston’s 1976 reply as showing that Kreisel fails to provide sufficient justification for the use of his main technical result. If we take the perspective that mathematical results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Mathematical Knowledge, the Analytic Method, and Naturalism.Fabio Sterpetti - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science. New York: Routledge. pp. 268-293.
    This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Mathematical Wit and Mathematical Cognition.Andrew Aberdein - 2013 - Topics in Cognitive Science 5 (2):231-250.
    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, which are essential (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  50. Mathematics as language.Adam Morton - 1996 - In Adam Morton & Stephen P. Stich (eds.), Benacerraf and His Critics. Blackwell. pp. 213--227.
    I discuss ways in which the linguistic form of mathimatics helps us think mathematically.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
1 — 50 / 952