In "Mathematical Truth", Paul Benacerraf articulated an epistemological problem for mathematical realism. His formulation of the problem relied on a causal theory of knowledge which is now widely rejected. But it is generally agreed that Benacerraf was onto a genuine problem for mathematical realism nevertheless. Hartry Field describes it as the problem of explaining the reliability of our mathematical beliefs, realistically construed. In this paper, I argue that the Benacerraf Problem cannot be made out. There simply is (...) no intelligible problem that satisfies all of the constraints which have been placed on the Benacerraf Problem. The point generalizes to all arguments with the structure of the Benacerraf Problem aimed at realism about a domain meeting certain conditions. Such arguments include so-called "Evolutionary Debunking Arguments" aimed at moral realism. I conclude with some suggestions about the relationship between the Benacerraf Problem and the Gettier Problem. (shrink)
Writers in the propositions literature consider the Benacerraf objection serious, often decisive. The objection figures heavily in dismissing standard theories of propositions of the past, notably set-theoretic theories. I argue that the situation is more complicated. After explicating the propositional Benacerraf problem, I focus on a classic set-theoretic theory of propositions, the possible worlds theory, and argue that methodological considerations influence the objection’s success.
Evolutionary debunking arguments purport to show that robust moral realism, the metaethical view that there are non-natural and mind-independent moral properties and facts that we can know about, is incompatible with evolutionary explanations of morality. One of the most prominent evolutionary debunking arguments is advanced by Sharon Street, who argues that if moral realism were true, then objective moral knowledge is unlikely because realist moral properties are evolutionary irrelevant and moral beliefs about those properties would not be selected for. However, (...) no evolutionary, causal explanation plays an essential role in reaching the argument’s epistemological conclusion. Street’s argument depends on the Benacerraf-Field challenge, which is the challenge to explain the reliability of our moral beliefs about causally inert moral properties. The Benacerraf-Field challenge relies on metaphysically necessary facts about realist moral properties, rather than on contingent Darwinian facts about the origin of our moral beliefs. Attempting to include an essential causal empirical premise yet avoiding recourse to the Benacerraf-Field problem yields an argument that is either self-defeating or of limited scope. Ultimately, evolutionary, causal explanations of our moral beliefs and their consequences do not present the strongest case against robust moral realism. Rather, the question is whether knowledge of casually-inert, mind-intendent properties is plausible at all. (shrink)
Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper (...) is to determine what Benacerraf’s challenge could be such that this view is warranted. I argue that it could not be any of the challenges with which it has been traditionally identified by its advocates, like of Benacerraf and Field. Not only are none of the challenges easier for the pluralist to meet. None satisfies a key constraint that has been placed on Benacerraf’s challenge. However, I argue that Benacerraf’s challenge could be the challenge to show that our set-theoretic beliefs are safe – i.e., to show that we could not have easily had false ones. Whether the pluralist is, in fact, better positioned to show that our set-theoretic beliefs are safe turns on a broadly empirical conjecture which is outstanding. If this conjecture proves to be false, then it is unclear what the epistemological argument for set-theoretic pluralism is supposed to be. (shrink)
A Benacerraf–Field challenge is an argument intended to show that common realist theories of a given domain are untenable: such theories make it impossible to explain how we’ve arrived at the truth in that domain, and insofar as a theory makes our reliability in a domain inexplicable, we must either reject that theory or give up the relevant beliefs. But there’s no consensus about what would count here as a satisfactory explanation of our reliability. It’s sometimes suggested that giving (...) such an explanation would involve showing that our beliefs meet some modal condition, but realists have claimed that this sort of modal interpretation of the challenge deprives it of any force: since the facts in question are metaphysically necessary and so obtain in all possible worlds, it’s trivially easy, even given realism, to show that our beliefs have the relevant modal features. Here I show that this claim is mistaken—what motivates a modal interpretation of the challenge in the first place also motivates an understanding of the relevant features in terms of epistemic possibilities rather than metaphysical possibilities, and there are indeed epistemically possible worlds where the facts in question don’t obtain. (shrink)
One of the important challenges in the philosophy of mathematics is to account for the semantics of sentences that express mathematical propositions while simultaneously explaining our access to their contents. This is Benacerraf’s Dilemma. In this dissertation, I argue that cognitive science furnishes new tools by means of which we can make progress on this problem. The foundation of the solution, I argue, must be an ontologically realist, albeit non-platonist, conception of mathematical reality. The semantic portion of the problem (...) can be addressed by accepting a Chomskyan conception of natural languages and a matching internalist, mentalist and nativist view of semantics. A helpful perspective on the epistemic aspect of the puzzle can be gained by translating Kurt G ̈odel’s neo-Kantian conception of the nature of mathematics and its objects into modern, cognitive terms. (shrink)
Speaks defends the view that propositions are properties: for example, the proposition that grass is green is the property being such that grass is green. We argue that there is no reason to prefer Speaks's theory to analogous but competing theories that identify propositions with, say, 2-adic relations. This style of argument has recently been deployed by many, including Moore and King, against the view that propositions are n-tuples, and by Caplan and Tillman against King's view that propositions are facts (...) of a special sort. We offer our argument as an objection to the view that propositions are unsaturated relations. (shrink)
We are reliable about logic in the sense that we by-and-large believe logical truths and disbelieve logical falsehoods. Given that logic is an objective subject matter, it is difficult to provide a satisfying explanation of our reliability. This generates a significant epistemological challenge, analogous to the well-known Benacerraf-Field problem for mathematical Platonism. One initially plausible way to answer the challenge is to appeal to evolution by natural selection. The central idea is that being able to correctly deductively reason conferred (...) a heritable survival advantage upon our ancestors. However, there are several arguments that purport to show that evolutionary accounts cannot even in principle explain how it is that we are reliable about logic. In this paper, I address these arguments. I show that there is no general reason to think that evolutionary accounts are incapable of explaining our reliability about logic. (shrink)
Non-skeptical robust realists about normativity, mathematics, or any other domain of non- causal truths are committed to a correlation between their beliefs and non- causal, mind-independent facts. Hartry Field and others have argued that if realists cannot explain this striking correlation, that is a strong reason to reject their theory. Some consider this argument, known as the Benacerraf–Field argument, as the strongest challenge to robust realism about mathematics, normativity, and even logic. In this article I offer two closely related (...) accounts for the type of explanation needed in order to address Field's challenge. I then argue that both accounts imply that the striking correlation to which robust realists are committed is explainable, thereby discharging Field's challenge. Finally, I respond to some objections and end with a few unresolved worries. (shrink)
It is our contention that an ontological commitment to propositions faces a number of problems; so many, in fact, that an attitude of realism towards propositions—understood the usual “platonistic” way, as a kind of mind- and language-independent abstract entity—is ultimately untenable. The particular worries about propositions that marshal parallel problems that Paul Benacerraf has raised for mathematical platonists. At the same time, the utility of “proposition-talk”—indeed, the apparent linguistic commitment evident in our use of 'that'-clauses (in offering explanations and (...) making predictions)—is also in need of explanation. We account for this with a fictionalist analysis of our use of 'that'-clauses. Our account avoids certain problems that arise for the usual error-theoretic versions of fictionalism because we apply the notion of semantic pretense to develop an alternative, pretense-involving, non-error-theoretic, fictionalist account of proposition-talk. (shrink)
In his précis of a recent book, Richard Joyce writes, “My contention…is that…any epistemological benefit-of-the-doubt that might have been extended to moral beliefs…will be neutralized by the availability of an empirically confirmed moral genealogy that nowhere…presupposes their truth.” Such reasoning – falling under the heading “Genealogical Debunking Arguments” – is now commonplace. But how might “the availability of an empirically confirmed moral genealogy that nowhere… presupposes” the truth of our moral beliefs “neutralize” whatever “epistemological benefit-of-the-doubt that might have been extended (...) to” them? In this article, I argue that there appears to be no satisfactory answer to this question. The problem is quite general, applying to all arguments with the structure of Genealogical Debunking Arguments aimed at realism about a domain meeting two conditions. The Benacerraf-Field Challenge for mathematical realism affords an important special case. (shrink)
Charles Peirce's diagrammatic logic — the Existential Graphs — is presented as a tool for illuminating how we know necessity, in answer to Benacerraf's famous challenge that most ‘semantics for mathematics’ do not ‘fit an acceptable epistemology’. It is suggested that necessary reasoning is in essence a recognition that a certain structure has the particular structure that it has. This means that, contra Hume and his contemporary heirs, necessity is observable. One just needs to pay attention, not merely to (...) individual things but to how those things are related in larger structures, certain aspects of which relations force certain other aspects to be a certain way. (shrink)
Reductionist realist accounts of certain entities, such as the natural numbers and propositions, have been taken to be fatally undermined by what we may call the problem of arbitrary identification. The problem is that there are multiple and equally adequate reductions of the natural numbers to sets (see Benacerraf, 1965), as well as of propositions to unstructured or structured entities (see, e.g., Bealer, 1998; King, Soames, & Speaks, 2014; Melia, 1992). This paper sets out to solve the problem by (...) canvassing what we may call the arbitrary reference strategy. The main claims of such strategy are 2. First, we do not know which objects are the referents of proposition and numerical terms since their reference is fixed arbitrarily. Second, our ignorance of which object is picked out as the referent does not entail that no object is referred to by the relevant expression. Different articulations of the strategy are assessed, and a new one is defended. (shrink)
In this essay, the tension that Benacerraf identifies for theories of mathematical truth is used as the vehicle for arguing against a particular desideratum for semantic theories. More specifically, I place in question the desideratum that a semantic theory, provided for some area of discourse, should run in parallel with the semantic theory holding for the rest of the language. The importance of this desideratum is also made clear by means of tracing out the subtle implications of its rejection.
I discuss Benacerraf's epistemological challenge for realism about areas like mathematics, metalogic, and modality, and describe the pluralist response to it. I explain why normative pluralism is peculiarly unsatisfactory, and use this explanation to formulate a radicalization of Moore's Open Question Argument. According to the argument, the facts -- even the normative facts -- fail to settle the practical questions at the center of our normative lives. One lesson is that the concepts of realism and objectivity, which are widely (...) identified, are actually in tension. (shrink)
The dominant approach to analyzing the meaning of natural language sentences that express mathematical knowl- edge relies on a referential, formal semantics. Below, I discuss an argument against this approach and in favour of an internalist, conceptual, intensional alternative. The proposed shift in analytic method offers several benefits, including a novel perspective on what is required to track mathematical content, and hence on the Benacerraf dilemma. The new perspective also promises to facilitate discussion between philosophers of mathematics and cognitive (...) scientists working on topics of common interest. (shrink)
I critically examine an evolutionary debunking argument against moral realism. The key premise of the argument is that there is no adequate explanation of our moral reliability. I search for the strongest version of the argument; this involves exploring how ‘adequate explanation’ could be understood such that the key premise comes out true. Finally, I give a reductio: in the sense in which there is no adequate explanation of our moral reliability, there is equally no adequate explanation of our inductive (...) reliability. Thus, the argument that would debunk our moral views would also, absurdly, debunk all inductive reasoning. (shrink)
Since Benacerraf’s ‘What Numbers Could Not Be, ’ there has been a growing interest in mathematical structuralism. An influential form of mathematical structuralism, modal structuralism, uses logical possibility and second order logic to provide paraphrases of mathematical statements which don’t quantify over mathematical objects. These modal structuralist paraphrases are a useful tool for nominalists and realists alike. But their use of second order logic and quantification into the logical possibility operator raises concerns. In this paper, I show that the (...) work of both these elements can be done by a single natural generalization of the logical possibility operator. (shrink)
Field’s challenge to platonists is the challenge to explain the reliable match between mathematical truth and belief. The challenge grounds an objection claiming that platonists cannot provide such an explanation. This objection is often taken to be both neutral with respect to controversial epistemological assumptions, and a comparatively forceful objection against platonists. I argue that these two characteristics are in tension: no construal of the objection in the current literature realises both, and there are strong reasons to think that no (...) version of Field’s epistemological objection which has both Neutrality and Force can be construed. (shrink)
In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, D—the (...) challenge to justify our D-beliefs—with the reliability challenge for D-realism—the challenge to explain the reliability of our D-beliefs. Harman’s contrast is relevant to the first, but not, evidently, to the second. One upshot of the discussion is that genealogical debunking arguments are fallacious. Another is that indispensability considerations cannot answer the Benacerraf–Field challenge for mathematical realism. (shrink)
In this paper, I will attempt to develop and defend a common form of intuitive resistance to the companions in guilt argument. I will argue that one can reasonably believe there are promising solutions to the access problem for mathematical realism that don’t translate to moral realism. In particular, I will suggest that the structuralist project of accounting for mathematical knowledge in terms of some form of logical knowledge offers significant hope of success while no analogous approach offers such hope (...) for moral realism. (shrink)
A prominent version of mathematical structuralism holds that mathematical objects are at bottom nothing but "positions in structures," purely relational entities without any sort of nature independent of the structure to which they belong. Such an ontology is often presented as a response to Benacerraf's "multiple reductions" problem, or motivated on hermeneutic grounds, as a faithful representation of the discourse and practice of mathematics. In this paper I argue that there are serious difficulties with this kind of view: its (...) proponents rely on a distinction between "essential" and "nonessential" features of mathematical objects, and there's no good way to articulate this distinction which is compatible with basic structuralist commitments. But all is not lost. For I further argue that the insights motivating structuralism (or at least those worth preserving) can be preserved without formulating the view in ontologically committal terms. (shrink)
This paper provides a new approach to a family of outstanding logical and semantical puzzles, the most famous being Frege's puzzle. The three main reductionist theories of propositions (the possible-worlds theory, the propositional-function theory, the propositional-complex theory) are shown to be vulnerable to Benacerraf-style problems, difficulties involving modality, and other problems. The nonreductionist algebraic theory avoids these problems and allows us to identify the elusive nondescriptive, non-metalinguistic, necessary propositions responsible for the indicated family of puzzles. The algebraic approach is (...) also used to defend antiexistentialism against existentialist prejudices. The paper closes with a suggestion about how this theory of content might enable us to give purely semantic (as opposed to pragmatic) solutions to the puzzles based on a novel formulation of the principle of compositionality. (shrink)
The paper begins with an argument against eliminativism with respect to the propositional attitudes. There follows an argument that concepts are sui generis ante rem entities. A nonreductionist view of concepts and propositions is then sketched. This provides the background for a theory of concept possession, which forms the bulk of the paper. The central idea is that concept possession is to be analyzed in terms of a certain kind of pattern of reliability in one’s intuitions regarding the behavior of (...) the concept. The challenge is to find an analysis that is at once noncircular and fully general. Environmentalism, anti-individualism, holism, analyticity, etc. provide additional hurdles. The paper closes with a discussion of the theory’s implications for the Wittgenstein-Kripke puzzle about rule-following and the Benacerraf problem concerning mathematical knowledge. (shrink)
The idea that justified modal belief can be accounted for in terms of empirically justified, non-modal belief is enjoying increasing popularity in the epistemology of modality. One alleged reason to prefer modal empiricism over more traditional, rationalist modal epistemologies is that empiricism avoids the problem with the integration challenge that arise for rationalism, assuming that we want to be realists about modal metaphysics. In this paper, I argue that given two very reasonable constraints on what it means to meet the (...) integration challenge for modality, empiricism is currently at best on a par with, but potentially worse off than, rationalist alternatives, with respect to the integration challenge. (shrink)
In this article, I discuss a trivialization worry for Hartry Field’s official formulation of the access problem for mathematical realists, which was pointed out by Øystein Linnebo (and has recently been made much of by Justin Clarke-Doane). I argue that various attempted reformulations of the Benacerraf problem fail to block trivialization, but that access worriers can better defend themselves by sticking closer to Hartry Field’s initial informal characterization of the access problem in terms of (something like) general epistemic norms (...) of coincidence avoidance. (shrink)
Motivated by examples, many philosophers believe that there is a significant distinction between states of affairs that are striking and therefore call for explanation and states of affairs that are not striking. This idea underlies several influential debates in metaphysics, philosophy of mathematics, normative theory, philosophy of modality, and philosophy of science but is not fully elaborated or explored. This paper aims to address this lack of clear explanation first by clarifying the epistemological issue at hand. Then it introduces an (...) initially attractive account for strikingness that is inspired by the work of Paul Horwich and adopted by a number of philosophers. The paper identifies two logically distinct accounts that have both been attributed to Horwich and then argues that, when properly interpreted, they can withstand former criticisms. The final two sections present a new set of considerations against both Horwichian accounts that avoid the shortcomings of former critiques. It remains to be seen whether an adequate account of strikingness exists. (shrink)
This paper provides an exposition of the structuralist approach to underdetermination, which aims to resolve the underdetermination of theories by identifying their common theoretical structure. Applications of the structuralist approach can be found in many areas of philosophy. I present a schema of the structuralist approach, which conceptually unifies such applications in different subject matters. It is argued that two classic arguments in the literature, Paul Benacerraf’s argument on natural numbers and W. V. O. Quine’s argument for the indeterminacy (...) of translation, can be analyzed as instances of the structuralist schema. These two applications illustrate different kinds of conclusions that can be drawn through the structuralist approach; Benacerraf’s argument shows that we can derive an ontological conclusion about the given subject matter, while Quine’s structuralist approach leads to a semantic conclusion about how to determine linguistic meanings given radical translation. Then, as a case study, I review a recent debate in metaphysics between Shamik Dasgupta, Jason Turner, and Catharine Diehl to consider the extent to which different instances of the structuralist schema are conceptually unified. Both sides of the debate can be interpreted as utilizing the structuralist approach; one side uses the structuralist approach for an ontological conclusion, while the other side relies on a semantic conclusion. I argue that this has a strong dialectical consequence, which sheds light on the conceptual unity of the structuralist approach. (shrink)
In this paper, I develop a theory on which each of a thing’s abundant properties is immanent in that thing. On the version of the theory I will propose, universals are abundant, each instantiated universal is immanent, and each uninstantiated universal is such that it could have been instantiated, in which case it would have been immanent. After setting out the theory, I will defend it from David Lewis’s argument that such a combination of immanence and abundance is absurd. I (...) will then advocate the theory on the grounds that it accomplishes all of Lewis’s “new work” while providing a gain in parsimony and a new account of fine-grained content. I will close with a discussion of how the theory also affords a new reply to two objections to uninstantiated universals: Armstrong’s charge that they are inconsistent with naturalism, and a Benacerraf-Field-style objection about epistemic access. (shrink)
Hartry Field has argued that mathematical realism is epistemologically problematic, because the realist is unable to explain the supposed reliability of our mathematical beliefs. In some of his discussions of this point, Field backs up his argument by saying that our purely mathematical beliefs do not ‘counterfactually depend on the facts’. I argue that counterfactual dependence is irrelevant in this context; it does nothing to bolster Field's argument.
This paper concerns an epistemological objection against mathematical platonism, due to Hartry Field.The argument poses an explanatory challenge – the challenge to explain the reliability of our mathematical beliefs – which the platonist, it’s argued, cannot meet. Is the objection compelling? Philosophers disagree, but they also disagree on (and are sometimes very unclear about) how the objection should be understood. Here I distinguish some options, and highlight some gaps that need to be filled in on the potentially most compelling version (...) of the argument. (shrink)
This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...) that they do not have output states, or they are specified such that they do have output states, but involve contradiction. Repairs though non-effective methods or special rules for semi-decidable problems are sought, but not found. The paper concludes that hypercomputing supertasks are impossible in the actual world and thus no reason for rejection of the Church-Turing thesis in its traditional interpretation. (shrink)
On an optimistic version of realist moral epistemology, a significant range of ordinary moral beliefs, construed in realist terms, constitute knowledge—or at least some weaker positive epistemic status, such as epistemic justification. The “debunking challenge” to this view grants prima facie justification but claims that it is “debunked” (i.e., defeated), yielding the final verdict that moral beliefs are ultima facie unjustified. Notable candidate “debunkers” (i.e., defeaters) include the so-called “evolutionary debunking arguments,” the “Benacerraf-Field Challenge,” and persistent moral disagreement among (...) epistemic peers. Such defeaters are best treated as higher-order evidence—viz., evidence contesting the merits of the first-order evidence on which moral beliefs are based. This chapter first develops a theory of higher-order defeat in general, which it then applies to debunking in particular. The result: the challenge fails entirely on epistemic grounds—regardless of whether or not its empirical and metaphysical presuppositions are correct. An advantage of this purely epistemic defense over alternative strategies is that the former extends even to laypersons who themselves lack the expertise necessary to formulate an adequate response. However, this leaves open the prospects for non-epistemological interpretations of debunking (e.g., moral or ontological). The chapter therefore concludes with brief suggestions in that direction. (shrink)
The present essay examines and critically discusses Paul Benacerraf's antiplatonist argument of "What Numbers Could Not Be." In the course of defending platonism against Benacerraf's semantic skepticism, I develop a novel platonist analysis of the content of arithmetic on the basis of which the necessary existence of the natural numbers and the nature of numerical reference are explained.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.