Cantor’s proof that the powerset of the set of all natural numbers is uncountable yields a version of Richard’s paradox when restricted to the full definable universe, that is, to the universe containing all objects that can be defined not just in one formal language but by means of the full expressive power of natural language: this universe seems to be countable on one account and uncountable on another. We argue that the claim that definitional contexts impose restrictions on (...) the scope of quantifiers reveals a natural way out. (shrink)
The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and sets. Cantor’s “actualism” went against the Aristotelian tradition in metaphysics and mathematics. Under the pressures to defend his theory, his metaphysics changed from Spinozistic monism to Leibnizian voluntarist dualism. The factor motivating this change was two-fold: the desire to avoid antinomies associated with the notion of a universal collection and the desire to avoid the heresy of necessitarian pantheism. We document the changes in (...) class='Hi'>Cantor’s thought with reference to his main philosophical-mathematical treatise, the Grundlagen (1883) as well as with reference to his article, “Über die verschiedenen Standpunkte in bezug auf das aktuelle Unendliche” (“Concerning Various Perspectives on the Actual Infinite”) (1885). (shrink)
I argue that Composition as Identity blocks the plural version of Cantor's Theorem, and that therefore the plural version of Cantor's Theorem can no longer be uncritically appealed to. As an example, I show how this result blocks a recent argument by Hawthorne and Uzquiano.
In Zettel, Wittgenstein considered a modified version of Cantor’s diagonal argument. According to Wittgenstein, Cantor’s number, different with other numbers, is defined based on a countable set. If Cantor’s number belongs to the countable set, the definition of Cantor’s number become incomplete. Therefore, Cantor’s number is not a number at all in this context. We can see some examples in the form of recursive functions. The definition "f(a)=f(a)" can not decide anything about the value of (...) f(a). The definiton is incomplete. The definition of "f(a)=1+f(a)" can not decide anything about the value of f(a) too. The definiton is incomplete.<br><br>According to Wittgenstein, the contradiction, in Cantor's proof, originates from the hidden presumption that the definition of Cantor’s number is complete. The contradiction shows that the definition of Cantor’s number is incomplete. <br><br>According to Wittgenstein’s analysis, Cantor’s diagonal argument is invalid. But different with Intuitionistic analysis, Wittgenstein did not reject other parts of classical mathematics. Wittgenstein did not reject definitions using self-reference, but showed that this kind of definitions is incomplete.<br><br>Based on Thomson’s diagonal lemma, there is a close relation between a majority of paradoxes and Cantor’s diagonal argument. Therefore, Wittgenstein’s analysis on Cantor’s diagonal argument can be applied to provide a unified solution to paradoxes. (shrink)
By drawing attention to these facts and to the relationship between Cantor’s and Husserl's ideas, I have tried to contribute to putting Frege's attack on Husserl "in the proper light" by providing some insight into some of the issues underling criticisms which Frege himself suggested were not purely aimed at Husserl's book. I have tried to undermine the popular idea that Frege's review of the Philosophy of Arithmetic is a straightforward, objective assessment of Husserl’s book, and to give some (...) specific reasons for thinking that the uncritical reading of Frege's review has unfairly distorted philosophers' perception of a work they do not know very well. (shrink)
Ortega y Gasset is known for his philosophy of life and his effort to propose an alternative to both realism and idealism. The goal of this article is to focus on an unfamiliar aspect of his thought. The focus will be given to Ortega’s interpretation of the advancements in modern mathematics in general and Cantor’s theory of transfinite numbers in particular. The main argument is that Ortega acknowledged the historical importance of the Cantor’s Set Theory, analyzed it and (...) articulated a response to it. In his writings he referred many times to the advancements in modern mathematics and argued that mathematics should be based on the intuition of counting. In response to Cantor’s mathematics Ortega presented what he defined as an ‘absolute positivism’. In this theory he did not mean to naturalize cognition or to follow the guidelines of the Comte’s positivism, on the contrary. His aim was to present an alternative to Cantor’s mathematics by claiming that mathematicians are allowed to deal only with objects that are immediately present and observable to intuition. Ortega argued that the infinite set cannot be present to the intuition and therefore there is no use to differentiate between cardinals of different infinite sets. (shrink)
The purpose of this paper is to examine in detail a particularly interesting pair of first-order theories. In addition to clarifying the overall geography of notions of equivalence between theories, this simple example yields two surprising conclusions about the relationships that theories might bear to one another. In brief, we see that theories lack both the Cantor-Bernstein and co-Cantor-Bernstein properties.
The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). These (...) ontological issues are interesting in their own right. And if and only if in case ontological considerations make a strong case for something like (BLV) we have to trouble us with inconsistency and paraconsistency. These ontological issues also lead to a renewed methodological reflection what to assume or recognize as an axiom. (shrink)
Georg Cantor was the genuine discoverer of the Mathematical Infinity, and whatever he claimed, suggested, or even surmised should be taken seriously -- albeit not necessary at its face value. Because alongside his exquisite in beauty ordinal construction and his fundamental powerset description of the continuum, Cantor has also left to us his obsessive presumption that the universe of sets should be subjected to laws similar to those governing the set of natural numbers, including the universal principles of (...) cardinal comparability and well-ordering -- and implying an ordinal re-creation of the continuum. During the last hundred years, the mainstream set-theoretical research -- all insights and adjustments due to Kurt G\"odel's revolutionary insights and discoveries notwithstanding -- has compliantly centered its efforts on ad hoc axiomatizations of Cantor's intuitive transfinite design. We demonstrate here that the ontological and epistemic sustainability} of this design has been irremediably compromised by the underlying peremptory, Reductionist mindset of the XIXth century's ideology of science. (shrink)
The original purpose of the present study, 2011, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from the transfinite deadlock of (...) higher set theory the jewel of mathematical Continuum -- this genuine, even if mostly forgotten today raison d'etre of all set-theoretical enterprises to Infinity and beyond, from Georg Cantor to W. Hugh Woodin to Buzz Lightyear, by simultaneously exhibiting the limits and pitfalls of all old and new reductionist foundational approaches to mathematical truth: be it Cantor's or post-Cantorian Idealism, Brouwer's or post-Brouwerian Constructivism, Hilbert's or post-Hilbertian Formalism, Goedel's or post-Goedelian Platonism. -/- In the spirit of Zeno's paradoxes, but with the enormous historical advantage of hindsight, we claim that Cantor's set-theoretical methodology, powerful and reach in proof-theoretic and similar applications as it might be, is inherently limited by its epistemological framework of transfinite local causality, and neither can be held accountable for the properties of the Continuum already acquired through geometrical, analytical, and arithmetical studies, nor can it be used for an adequate, conceptually sensible, operationally workable, and axiomatically sustainable re-creation of the Continuum. -/- From a strictly mathematical point of view, this intrinsic limitation of the constative and explicative power of higher set theory finds its explanation in the identified in this study ultimate phenomenological obstacle to Cantor's transfinite construction, similar to topological obstacles in homotopy theory and theoretical physics: the entanglement capacity of the mathematical Continuum. (shrink)
Are there different sizes of infinity? That is, are there infinite sets of different sizes? This is one of the most natural questions that one can ask about the infinite. But it is of course generally taken to be settled by mathematical results, such as Cantor’s theorem, to the effect that there are infinite sets without bijections between them. These results settle the question, given an almost universally accepted principle relating size to the existence of functions. The principle is: (...) for any sets A and B, if A is the same size as B, then there is a bijection from A to B. The aim of the paper, however, is to argue that this question is in fact wide open: to argue that we are not in a position to know the answer, because we are not in one to know the principle. The aim, that is, is to argue that for all we know there is only one size of infinity. (shrink)
We seek to elucidate the philosophical context in which one of the most important conceptual transformations of modern mathematics took place, namely the so-called revolution in rigor in infinitesimal calculus and mathematical analysis. Some of the protagonists of the said revolution were Cauchy, Cantor, Dedekind,and Weierstrass. The dominant current of philosophy in Germany at the time was neo-Kantianism. Among its various currents, the Marburg school (Cohen, Natorp, Cassirer, and others) was the one most interested in matters scientific and mathematical. (...) Our main thesis is that Marburg neo-Kantian philosophy formulated a sophisticated position towards the problems raised by the concepts of limits and infinitesimals. The Marburg school neither clung to the traditional approach of logically and metaphysically dubious infinitesimals, nor whiggishly subscribed to the new orthodoxy of the “great triumvirate” of Cantor, Dedekind, and Weierstrass that declared infinitesimals conceptus nongrati in mathematical discourse. Rather, following Cohen’s lead, the Marburg philosophers sought to clarify Leibniz’s principle of continuity, and to exploit it in making sense of infinitesimals and related concepts. (shrink)
The iterative conception of set is typically considered to provide the intuitive underpinnings for ZFCU (ZFC+Urelements). It is an easy theorem of ZFCU that all sets have a definite cardinality. But the iterative conception seems to be entirely consistent with the existence of “wide” sets, sets (of, in particular, urelements) that are larger than any cardinal. This paper diagnoses the source of the apparent disconnect here and proposes modifications of the Replacement and Powerset axioms so as to allow for the (...) existence of wide sets. Drawing upon Cantor’s notion of the absolute infinite, the paper argues that the modifications are warranted and preserve a robust iterative conception of set. The resulting theory is proved consistent relative to ZFC + “there exists an inaccessible cardinal number.”. (shrink)
In a recent article, Christopher Ormell argues against the traditional mathematical view that the real numbers form an uncountably infinite set. He rejects the conclusion of Cantor’s diagonal argument for the higher, non-denumerable infinity of the real numbers. He does so on the basis that the classical conception of a real number is mys- terious, ineffable, and epistemically suspect. Instead, he urges that mathematics should admit only ‘well-defined’ real numbers as proper objects of study. In practice, this means excluding (...) as inadmissible all those real numbers whose decimal expansions cannot be calculated in as much detail as one would like by some rule. We argue against Ormell that the classical realist account of the continuum has explanatory power in mathematics and should be accepted, much in the same way that "dark matter" is posited by physicists to explain observations in cosmology. In effect, the indefinable real numbers are like the "dark matter" of real analysis. (shrink)
This paper is on Aristotle's conception of the continuum. It is argued that although Aristotle did not have the modern conception of real numbers, his account of the continuum does mirror the topology of the real number continuum in modern mathematics especially as seen in the work of Georg Cantor. Some differences are noted, particularly as regards Aristotle's conception of number and the modern conception of real numbers. The issue of whether Aristotle had the notion of open versus closed (...) intervals is discussed. Finally, it is suggested that one reason there is a common structure between Aristotle's account of the continuum and that found in Cantor's definition of the real number continuum is that our intuitions about the continuum have their source in the experience of the real spatiotemporal world. A plea is made to consider Aristotle's abstractionist philosophy of mathematics anew. (shrink)
William Lane Craig has argued that there cannot be actual infinities because inverse operations are not well-defined for infinities. I point out that, in fact, there are mathematical systems in which inverse operations for infinities are well-defined. In particular, the theory introduced in John Conway's *On Numbers and Games* yields a well-defined field that includes all of Cantor's transfinite numbers.
In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the (...) concept of ‘denumerability’ as it is presented in set theory as well as his philosophic refutation of Cantor’s Diagonal Argument and the implications of such a refutation onto the problems of the Continuum Hypothesis and Cantor’s Theorem. Throughout, the discussion will be placed within the historical and philosophical framework of the Grundlagenkrise der Mathematik and Hilbert’s problems. (shrink)
This paper deploys a Cantor-style diagonal argument which indicates that there is more possible mathematical content than there are propositional functions in Russell and Whitehead's Principia Mathematica and similar formal systems. This technical result raises a historical question: "How did Russell, who was himself an expert in diagonal arguments, not see this coming?" It turns out that answering this question requires an appreciation of Russell's understanding of what logic is, and how he construed the relationship between logic and Principia (...) Mathematica. (shrink)
Gödel’s philosophical conceptions bear striking similarities to Cantor’s. Although there is no conclusive evidence that Gödel deliberately used or adhered to Cantor’s views, one can successfully reconstruct and see his “Cantorianism” at work in many parts of his thought. In this paper, I aim to describe the most prominent conceptual intersections between Cantor’s and Gödel’s thought, particularly on such matters as the nature and existence of mathematical entities (sets), concepts, Platonism, the Absolute Infinite, the progress and inexhaustibility (...) of mathematics. (shrink)
We will explicate Cantor’s principle of set existence using the Gödelian intensional notion of absolute provability and John Burgess’ plural logical concept of set formation. From this Cantorian Comprehension principle we will derive a conditional result about the question whether there are any absolutely unprovable mathematical truths. Finally, we will discuss the philosophical significance of the conditional result.
A topos version of Cantor’s back and forth theorem is established and used to prove that the ordered structure of the rational numbers (Q, <) is homogeneous in any topos with natural numbers object. The notion of effective homogeneity is introduced, and it is shown that (Q, <) is a minimal effectively homogeneous structure, that is, it can be embedded in every other effectively homogeneous ordered structure.
These remarks take up the reflexive problematics of Being and Nothingness and related texts from a metalogical perspective. A mutually illuminating translation is posited between, on the one hand, Sartre’s theory of pure reflection, the linchpin of the works of Sartre’s early period and the site of their greatest difficulties, and, on the other hand, the quasi-formalism of diagonalization, the engine of the classical theorems of Cantor, Godel, Tarski, Turing, etc. Surprisingly, the dialectic of mathematical logic from its inception (...) through the discovery of the diagonal theorems can be recognized as a particularly clear instance of the drama of reflection according to Sartre, especially in the positing and overcoming of its proper value-ideal, viz. the synthesis of consistency and completeness. Conversely, this translation solves a number of systematic problems about pure reflection’s relations to accessory reflection, phenomenological reflection, pre-reflective self-consciousness, conversion, and value. Negative foundations, the metaphysical position emerging from this translation between existential philosophy and metalogic, concurs by different paths with Badiou’s Being and Event in rejecting both ontotheological foundationalisms and constructivist antifoundationalisms. (shrink)
I present and discuss three previously unpublished manuscripts written by Bertrand Russell in 1903, not included with similar manuscripts in Volume 4 of his Collected Papers. One is a one-page list of basic principles for his “functional theory” of May 1903, in which Russell partly anticipated the later Lambda Calculus. The next, catalogued under the title “Proof That No Function Takes All Values”, largely explores the status of Cantor’s proof that there is no greatest cardinal number in the variation (...) of the functional theory holding that only some but not all complexes can be analyzed into function and argument. The final manuscript, “Meaning and Denotation”, examines how his pre-1905 distinction between meaning and denotation is to be understood with respect to functions and their arguments. In them, Russell seems to endorse an extensional view of functions not endorsed in other works prior to the 1920s. All three manuscripts illustrate the close connection between his work on the logical paradoxes and his work on the theory of meaning. (shrink)
The seventeenth century was an important period in the conceptual development of the notion of the infinite. In 1643, Evangelista Torricelli (1608-1647)—Galileo’s successor in the chair of mathematics in Florence—communicated his proof of a solid of infinite length but finite volume. Many of the leading metaphysicians of the time, notably Spinoza and Leibniz, came out in defense of actual infinity, rejecting the Aristotelian ban on it, which had been almost universally accepted for two millennia. Though it would be another two (...) centuries before the notion of the actually infinite was rehabilitated in mathematics by Dedekind and Cantor (Cauchy and Weierstrass still considered it mere paradox), their impenitent advocacy of the concept had significant reverberations in both philosophy and mathematics. In this essay, I will attempt to clarify one thread in the development of the notion of the infinite. In the first part, I study Spinoza’s discussion and endorsement, in the Letter on the Infinite (Ep. 12), of Hasdai Crescas’ (c. 1340-1410/11) crucial amendment to a traditional proof of the existence of God (“the cosmological proof” ), in which he insightfully points out that the proof does not require the Aristotelian ban on actual infinity. In the second and last part, I examine the claim, advanced by Crescas and Spinoza, that God has infinitely many attributes, and explore the reasoning that motivated both philosophers to make such a claim. Similarities between Spinoza and Crescas, which suggest the latter’s influence on the former, can be discerned in several other important issues, such as necessitarianism, the view that we are compelled to assert or reject a belief by its representational content, the enigmatic notion of amor Dei intellectualis, and the view of punishment as a natural consequent of sin. Here, I will restrict myself to the issue of the infinite, clearly a substantial topic in itself. (shrink)
In this paper, I suggest that infinite numbers are large finite numbers, and that infinite numbers, properly understood, are 1) of the structure omega + (omega* + omega)Ө + omega*, and 2) the part is smaller than the whole. I present an explanation of these claims in terms of epistemic limitations. I then consider the importance, part of which is demonstrating the contradiction that lies at the heart of Cantorian set theory: the natural numbers are too large to be counted (...) by any finite number, but too small to be counted by any infinite number – there is no number of natural numbers. (shrink)
The purpose of this note is to contrast a Cantorian outlook with a non-Cantorian one and to present a picture that provides support for the latter. In particular, I suggest that: i) infinite hyperreal numbers are the (actual, determined) infinite numbers, ii) ω is merely potentially infinite, and iii) infinitesimals should not be used in the di Finetti lottery. Though most Cantorians will likely maintain a Cantorian outlook, the picture is meant to motivate the obvious nature of the non-Cantorian outlook.
Could space consist entirely of extended regions, without any regions shaped like points, lines, or surfaces? Peter Forrest and Frank Arntzenius have independently raised a paradox of size for space like this, drawing on a construction of Cantor’s. I present a new version of this argument and explore possible lines of response.
Recent work has defended “Euclidean” theories of set size, in which Cantor’s Principle (two sets have equally many elements if and only if there is a one-to-one correspondence between them) is abandoned in favor of the Part-Whole Principle (if A is a proper subset of B then A is smaller than B). It has also been suggested that Gödel’s argument for the unique correctness of Cantor’s Principle is inadequate. Here we see from simple examples, not that Euclidean theories (...) of set size are wrong, but that they must be either very weak and narrow or largely arbitrary and misleading. (shrink)
It is often alleged that Cantor’s views about how the set theoretic universe as a whole should be considered are fundamentally unclear. In this article we argue that Cantor’s views on this subject, at least up until around 1896, are relatively clear, coherent, and interesting. We then go on to argue that Cantor’s views about the set theoretic universe as a whole have implications for theology that have hitherto not been sufficiently recognised. However, the theological implications in (...) question, at least as articulated here, would not have satisfied Cantor himself. (shrink)
We here make preliminary investigations into the model theory of DeMorgan logics. We demonstrate that Łoś's Theorem holds with respect to these logics and make some remarks about standard model-theoretic properties in such contexts. More concretely, as a case study we examine the fate of Cantor's Theorem that the classical theory of dense linear orderings without endpoints is $\aleph_{0}$-categorical, and we show that the taking of ultraproducts commutes with respect to previously established methods of constructing nonclassical structures, namely, Priest's (...) Collapsing Lemma and Dunn's Theorem in 3-Valued Logic. (shrink)
This monograph contributes to the scientific misconduct debate from an oblique perspective, by analysing seven novels devoted to this issue, namely: Arrowsmith by Sinclair Lewis (1925), The affair by C.P. Snow (1960), Cantor’s Dilemma by Carl Djerassi (1989), Perlmann’s Silence by Pascal Mercier (1995), Intuition by Allegra Goodman (2006), Solar by Ian McEwan (2010) and Derailment by Diederik Stapel (2012). Scientific misconduct, i.e. fabrication, falsification, plagiarism, but also other questionable research practices, have become a focus of concern for academic (...) communities worldwide, but also for managers, funders and publishers of research. The aforementioned novels offer intriguing windows into integrity challenges emerging in contemporary research practices. They are analysed from a continental philosophical perspective, providing a stage where various voices, positions and modes of discourse are mutually exposed to one another, so that they critically address and question one another. They force us to start from the admission that we do not really know what misconduct is. Subsequently, by providing case histories of misconduct, they address integrity challenges not only in terms of individual deviance but also in terms of systemic crisis, due to current transformations in the ways in which knowledge is produced. Rather than functioning as moral vignettes, the author argues that misconduct novels challenge us to reconsider some of the basic conceptual building blocks of integrity discourse. (shrink)
A possible world is a junky world if and only if each thing in it is a proper part. The possibility of junky worlds contradicts the principle of general fusion. Bohn (2009) argues for the possibility of junky worlds, Watson (2010) suggests that Bohn‘s arguments are flawed. This paper shows that the arguments of both authors leave much to be desired. First, relying on the classical results of Cantor, Zermelo, Fraenkel, and von Neumann, this paper proves the possibility of (...) junky worlds for certain weak set theories. Second, the paradox of Burali-Forti shows that according to the Zermelo-Fraenkel set theory ZF, junky worlds are possible. Finally, it is shown that set theories are not the only sources for designing plausible models of junky worlds: Topology (and possibly other "algebraic" mathematical theories) may be used to construct models of junky worlds. In sum, junkyness is a relatively widespread feature among possible worlds. (shrink)
A computational methodology called Grossone Infinity Computing introduced with the intention to allow one to work with infinities and infinitesimals numerically has been applied recently to a number of problems in numerical mathematics (optimization, numerical differentiation, numerical algorithms for solving ODEs, etc.). The possibility to use a specially developed computational device called the Infinity Computer (patented in USA and EU) for working with infinite and infinitesimal numbers numerically gives an additional advantage to this approach in comparison with traditional methodologies studying (...) infinities and infinitesimals only symbolically. The grossone methodology uses the Euclid’s Common Notion no. 5 ‘The whole is greater than the part’ and applies it to finite, infinite, and infinitesimal quantities and to finite and infinite sets and processes. It does not contradict Cantor’s and non-standard analysis views on infinity and can be considered as an applied development of their ideas. In this paper we consider infinite series and a particular attention is dedicated to divergent series with alternate signs. The Riemann series theorem states that conditionally convergent series can be rearranged in such a way that they either diverge or converge to an arbitrary real number. It is shown here that Riemann’s result is a consequence of the fact that symbol ∞ used traditionally does not allow us to express quantitatively the number of addends in the series, in other words, it just shows that the number of summands is infinite and does not allows us to count them. The usage of the grossone methodology allows us to see that (as it happens in the case where the number of addends is finite) rearrangements do not change the result for any sum with a fixed infinite number of summands. There are considered some traditional summation techniques such as Ramanujan summation producing results where to divergent series containing infinitely many positive integers negative results are assigned. It is shown that the careful counting of the number of addends in infinite series allows us to avoid this kind of results if grossone-based numerals are used. (shrink)
"The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925).
Notions such as Sunyata, Catuskoti, and Indra's Net, which figure prominently in Buddhist philosophy, are difficult to readily accommodate within our ordinary thinking about everyday objects. Famous Buddhist scholar Nagarjuna considered two levels of reality: one called conventional reality and the other ultimate reality. Within this framework, Sunyata refers to the claim that at the ultimate level objects are devoid of essence or "intrinsic properties", but are interdependent by virtue of their relations to other objects. Catuskoti refers to the claim (...) that four truth values, along with contradiction, are admissible in reasoning. Indra's Net refers to the claim that every part of a whole is reflective of the whole. Here we present category theoretic constructions which are reminiscent of these Buddhist concepts. The universal mapping property definition of mathematical objects, wherein objects of a universe of discourse are defined not in terms of their content, but in terms of their relations to all objects of the universe is reminiscent of Sunyata. The objective logic of perception, with perception modeled as [a category of] two sequential processes (sensation followed by interpretation), and with its truth value object of four truth values, is reminiscent of the Buddhist logic of Catuskoti. The category of categories, wherein every category has a subcategory of sets with zero structure within which every category can be modeled, is reminiscent of Indra's Net. Our thorough elaboration of the parallels between Buddhist philosophy and category theory can facilitate better understanding of Buddhist philosophy, and bring out the broader philosophical import of category theory beyond mathematics. (shrink)
In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than (...) the part” applied to all quantities (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). The methodology uses a computational device called the Infinity Computer (patented in USA and EU) working numerically (recall that traditional theories work with infinities and infinitesimals only symbolically) with infinite and infinitesimal numbers that can be written in a positional numeral system with an infinite radix. It is argued that numeral systems involved in computations limit our capabilities to compute and lead to ambiguities in theoretical assertions, as well. The introduced methodology gives the possibility to use the same numeral system for measuring infinite sets, working with divergent series, probability, fractals, optimization problems, numerical differentiation, ODEs, etc. (recall that traditionally different numerals lemniscate; Aleph zero, etc. are used in different situations related to infinity). Numerous numerical examples and theoretical illustrations are given. The accuracy of the achieved results is continuously compared with those obtained by traditional tools used to work with infinities and infinitesimals. In particular, it is shown that the new approach allows one to observe mathematical objects involved in the Hypotheses of Continuum and the Riemann zeta function with a higher accuracy than it is done by traditional tools. It is stressed that the hardness of both problems is not related to their nature but is a consequence of the weakness of traditional numeral systems used to study them. It is shown that the introduced methodology and numeral system change our perception of the mathematical objects studied in the two problems. (shrink)
A multiverse is comprised of many universes, which quickly leads to the question: How many universes? There are either finitely many or infinitely many universes. The purpose of this paper is to discuss two conceptions of infinite number and their relationship to multiverses. The first conception is the standard Cantorian view. But recent work has suggested a second conception of infinite number, on which infinite numbers behave very much like finite numbers. I will argue that that this second conception of (...) infinite number is the correct one, and analyze what this means for multiverses. (shrink)
Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...) verifiably. We consider a constructive interpretation of classical, Tarskian, truth, and of Goedel's reasoning, under which any formal system of Peano Arithmetic---classically accepted as the foundation of all our mathematical Languages---is verifiably complete in the above sense. We show how some paradoxical concepts of Quantum mechanics can, then, be expressed, and interpreted, naturally under a constructive definition of mathematical truth. (shrink)
In this paper, a number of traditional models related to the percolation theory has been considered by means of new computational methodology that does not use Cantor’s ideas and describes infinite and infinitesimal numbers in accordance with the principle ‘The part is less than the whole’. It gives a possibility to work with finite, infinite, and infinitesimal quantities numerically by using a new kind of a compute - the Infinity Computer – introduced recently in [18]. The new approach does (...) not contradict Cantor. In contrast, it can be viewed as an evolution of his deep ideas regarding the existence of different infinite numbers in a more applied way. Site percolation and gradient percolation have been studied by applying the new computational tools. It has been established that in an infinite system the phase transition point is not really a point as with respect of traditional approach. In light of new arithmetic it appears as a critical interval, rather than a critical point. Depending on “microscope” we use this interval could be regarded as finite, infinite and infinitesimal short interval. Using new approach we observed that in vicinity of percolation threshold we have many different infinite clusters instead of one infinite cluster that appears in traditional consideration. (shrink)
MethodologyA new hypothesis on the basic features characterizing the Foundations of Mathematics is suggested.Application of the methodBy means of it, the several proposals, launched around the year 1900, for discovering the FoM are characterized. It is well known that the historical evolution of these proposals was marked by some notorious failures and conflicts. Particular attention is given to Cantor's programme and its improvements. Its merits and insufficiencies are characterized in the light of the new conception of the FoM. After (...) the failures of Frege's and Cantor's programmes owing to the discoveries of an antinomy and internal contradictions, respectively, the two remaining, more radical programmes, i.e. Hilbert's and Brouwer's, generated a great debate; the explanation given here is their mutual incommensurability, defined by means of the differences in their foundational features.ResultsThe ignorance of this phenomenon explains the inconclusiveness of a century-long debate between the advocates of these two proposals. Which however have been so greatly improved as to closely approach or even recognize some basic features of the FoM.Discussion on the resultsYet, no proposal has recognized the alternative basic feature to Hilbert's main one, the deductive organization of a theory, although already half a century before the births of all the programmes this alternative was substantially instantiated by Lobachevsky's theory on parallel lines. Some conclusive considerations of a historical and philosophical nature are offered. In particular, the conclusive birth of a pluralism in the FoM is stressed. (shrink)
A universal schema for diagonalization was popularized by N. S. Yanofsky (2003), based on a pioneering work of F.W. Lawvere (1969), in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function. It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema. Here, we fit more theorems in the universal schema of diagonalization, such as Euclid's proof for the infinitude of the primes and new proofs (...) of G. Boolos (1997) for Cantor's theorem on the non-equinumerosity of a set with its powerset. Then, in Linear Temporal Logic, we show the non-existence of a fixed-point in this logic whose proof resembles the argument of Yablo's paradox (1985, 1993). Thus, Yablo's paradox turns for the first time into a genuine mathematico-logical theorem in the framework of Linear Temporal Logic. Again the diagonal schema of the paper is used in this proof; and it is also shown that G. Priest's inclosure schema (1997) can fit in our universal diagonal / fixed-point schema. We also show the existence of dominating (Ackermann-like) functions (which dominate a given countable set of functions, such as primitive recursive functions) in the schema. (shrink)
L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle (...) ragioni fondamentali per la ricerca di nuovi assiomi in matematica. L’articolo fornisce un quadro generale dei risultati matematici fondamentali, e un’analisi di alcune delle questioni filosofiche connesse al Problema del Continuo. (shrink)
This paper presents a simple example of first-order theories T1 and T2 such that i) T1 can be embedded in T2 and vice versa, ii) T1 posits all of the structure of T2 and vice versa, but iii) T1 and T2 are not equivalent. This shows that theories lack both the Cantor-Bernstein and co-Cantor-Bernstein properties and are neither partially ordered by the relation 'is embeddable in' nor by 'posits all of the structure of'. In addition, these results clarify (...) the overall geography of notions of equivalence between theories and yield two philosophical payoffs related to the recent discussions of structure and equivalence. (shrink)
From my ongoing "Metalogical Plato" project. The aim of the diagram is to make reasonably intuitive how the Socratic elenchos (the logic of refutation applied to candidate formulations of virtues or ruling knowledges) looks and works as a whole structure. This is my starting point in the project, in part because of its great familiarity and arguable claim to being the inauguration of western philosophy; getting this point less wrong would have broad and deep consequences, including for philosophy’s self-understanding. -/- (...) (i.) is the first pass at elenchos in which the Socratic interlocutor does not reflect on knowledge being the crux of the problem. (ii.) is the second, rarer, reflective pass in which they are, making the investigation explicitly about knowledge. Its centrality in the Charmides makes that neglected dialogue of superlative importance. This structure is also the gateway through which the discussion/dialectic crosses into the Agathology (discussion of the form of the good) at Republic 505. -/- The problem of elenchos, then, grasped as a whole structure, is that it seems that knowledge can neither satisfactorily be included in nor excluded from its own scope. The development of the ti esti (“what is ---?”) question leads to the introduction of knowledge into its own scope (i. implicitly, as goodness contrasted with blind rule-following ii. explicitly qua knowledge) while the development of the dual peri tinos (“----about what?) question leads to K’s elimination from its own scope. The introductions are motivated to avoid contradiction, but produce regress; the eliminations are motivated to avoid regress, but produce contradiction. In scholarship, and in the history of philosophy, the ti esti question is universally recognized, to the point of being identified with philosophy’s origin and essence; the peri tinos question is neglected textually and never recognized as the equal dual to the ti esti. This, I claim, has blocked the development of a nontrivial logical appreciation of what Plato's Socrates is up to. (One rather disastrous effect of this neglect is taking Aristotle as the beginning of the development of logic, rather than, correctly, for the beginning of logic’s fatal separation from mathematics and dialectic.) -/- Further, because of this monopticism of the ti esti, the function of consistency in the elenchos has not been understood, even with respect to the ti esti. The ti esti is actually in search of completeness, given a norm of consistency; the peri tinos is in search of consistency, given a norm of completeness. Only appreciating the two questions as dual allows space in the structure to clarify these different orientations relative to consistency. (And, dually, to completeness, whose function in the elenchos is generally entirely missed by scholars and relegated to discussions of eros; it's not out of place there, of course, but its significance is secured here.) Recognizing the duality of the ti esti and peri tinos questions is thus the royal road, in the Socratic-Platonic context, to catching sight of what we post-Cantorians can recognize as the metalogical duality of consistency and completeness. (The salutary disruptive effects of this Plato-Cantor proximity have, of course, been traced in complementary ways by Badiou.) -/- Note that the diagram is supposed to provide a relatively accessible orientation, not to stand on its own, and certainly not to be the last word on any subject. An important qualification (telegraphed in the previous paragraph) is that what elenchos shows is not finally circular or paradoxical, though the problem first presents as such (stubbornly, obdurately, as "difficult" Plato's Socrates always says with characteristic understatement). What is depicted here is meant, at a first pass, to be the shape of that first presentation, the form of the problem of elenchos, rather than of its solution. It's not an accident that this problem strongly resembles "Russell's paradox" (not Russell's not a paradox.) Problem is to solution as RP is to the diagonal theorems. (shrink)
In philosophical logic, a certain family of model constructions has received particular attention. Prominent examples are the cumulative hierarchy of well-founded sets, and Kripke's least fixed point models of grounded truth. I develop a general formal theory of groundedness and explain how the well-founded sets, Cantor's extended number-sequence and Kripke's concepts of semantic groundedness are all instances of the general concept, and how the general framework illuminates these cases. Then, I develop a new approach to a grounded theory of (...) proper classes. -/- However, the general concept of groundedness does not account for the philosophical significance of its paradigm instances. Instead, I argue, the philosophical content of the cumulative hierarchy of sets is best understood in terms of a primitive notion of ontological priority. -/- Then, I develop an analogous account of Kripke's models. I show that they exemplify the in-virtue-of relation much discussed in contemporary metaphysics, and thus are philosophically significant. I defend my proposal against a challenge from Kripke's “ghost of the hierarchy”. (shrink)
This article draws on several crucial and unpublished manuscripts from the Scholem Archive in exploration of Gershom Scholem's youthful statements on mathematics and its relation to extra-mathematical facts and, more broadly, to a concept of history that would prove to be consequential for Walter Benjamin's own thinking on "messianism" and a "futuristic politics." In context of critiquing the German Youth Movement's subsumption of active life to the nationalistic conditions of the "earth" during the First World War, Scholem turns to mathematics (...) for a genuine and self-consistent theory of action. In the concept of actual infinity (in Cantor and Bolzano) he finds an explanation of how mathematics relates to "the physical" without reducing the former to an "image" of the latter, and without relying on the concept of geometric intuition. This explanation, insofar as it relies on the notion of actual infinity, provides Scholem with a conception of mathematics (and the history of mathematics) that reconciles freedom and necessity—remarks on which he outlines in his diaries and communicates to Benjamin in early March 1916. (shrink)
In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum out to bе (...) also «relative» in Skolem 's sense. Skolem 's «relativity» argumentation of that kind сan bе applied to а vету wide range of problems and one сan spoke of the relativity of discreteness and continuity or, of finiiteness and infinity, or, of Cantor 's kinds of infinities, etc. The relativity of Skolemian type helps us for generaIizing Einstein 's principle of relativity from the invariance of the physical laws toward diffeomorphisms to their invariance toward anу morphisms (including and especiaIly the discrete ones). Such а kind of generalization from diffeomorphisms (then, the notion of velocity always makes sense) to anу kind of morphism (when 'velocity' mау оr maу not make sense) is an extension of the general Skolemian type оГ relativity between discreteness and continuity от between finiteness and infinity. Particularly, the Lorentz invariance is not valid in general because the notion of velocity is limited to diffeomorphisms. [п the case of entanglement, the physical interaction is discrete0. 'Velocity" and consequently, the 'Lorentz invariance'"do not make sense. Тhat is the simplest explanation ofthe argurnent EPR, which tums into а paradox оnJу if the universal validity of 'velocity' and 'Lогелtz invariance' is implicitly accepted. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.