Results for 'Gentzen calculi'

88 found
Order:
  1. A Gentzen Calculus for Nothing but the Truth.Stefan Wintein & Reinhard Muskens - 2016 - Journal of Philosophical Logic 45 (4):451-465.
    In their paper Nothing but the Truth Andreas Pietz and Umberto Rivieccio present Exactly True Logic, an interesting variation upon the four-valued logic for first-degree entailment FDE that was given by Belnap and Dunn in the 1970s. Pietz & Rivieccio provide this logic with a Hilbert-style axiomatisation and write that finding a nice sequent calculus for the logic will presumably not be easy. But a sequent calculus can be given and in this paper we will show that a calculus for (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  2. Topics in the Proof Theory of Non-classical Logics. Philosophy and Applications.Fabio De Martin Polo - 2023 - Dissertation, Ruhr-Universität Bochum
    Chapter 1 constitutes an introduction to Gentzen calculi from two perspectives, logical and philosophical. It introduces the notion of generalisations of Gentzen sequent calculus and the discussion on properties that characterize good inferential systems. Among the variety of Gentzen-style sequent calculi, I divide them in two groups: syntactic and semantic generalisations. In the context of such a discussion, the inferentialist philosophy of the meaning of logical constants is introduced, and some potential objections – mainly concerning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Stoic Sequent Logic and Proof Theory.Susanne Bobzien - 2019 - History and Philosophy of Logic 40 (3):234-265.
    This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary discussion. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  4. Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents.Tim Lyon, Alwen Tiu, Rajeev Gore & Ranald Clouston - 2020 - In Maribel Fernandez & Anca Muscholl (eds.), 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). pp. 1-16.
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  5. Theories of truth based on four-valued infectious logics.Damian Szmuc, Bruno Da Re & Federico Pailos - 2020 - Logic Journal of the IGPL 28 (5):712-746.
    Infectious logics are systems that have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated as a way to treat different pathological sentences differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps and as a way to treat the semantic pathology suffered by at least (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  6. An Epistemic Interpretation of Paraconsistent Weak Kleene Logic.Damian E. Szmuc - forthcoming - Logic and Logical Philosophy:1.
    This paper extends Fitting's epistemic interpretation of some Kleene logics, to also account for Paraconsistent Weak Kleene logic. To achieve this goal, a dualization of Fitting's "cut-down" operator is discussed, rendering a "track-down" operator later used to represent the idea that no consistent opinion can arise from a set including an inconsistent opinion. It is shown that, if some reasonable assumptions are made, the truth-functions of Paraconsistent Weak Kleene coincide with certain operations defined in this track-down fashion. Finally, further reflections (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  7. Characterizing generics are material inference tickets: a proof-theoretic analysis.Preston Stovall - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy (5):668-704.
    An adequate semantics for generic sentences must stake out positions across a range of contested territory in philosophy and linguistics. For this reason the study of generic sentences is a venue for investigating different frameworks for understanding human rationality as manifested in linguistic phenomena such as quantification, classification of individuals under kinds, defeasible reasoning, and intensionality. Despite the wide variety of semantic theories developed for generic sentences, to date these theories have been almost universally model-theoretic and representational. This essay outlines (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  8. Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by quantum neo-Pythagoreanism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Labeled calculi and finite-valued logics.Matthias Baaz, Christian G. Fermüller, Gernot Salzer & Richard Zach - 1998 - Studia Logica 61 (1):7-33.
    A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite -valued logic if the labels are interpreted as sets of truth values. Furthermore, it is shown that any finite -valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is logarithmic in (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  10. Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics.Tim Lyon & Kees van Berkel - 2019 - In M. Baldoni, M. Dastani, B. Liao, Y. Sakurai & R. Zalila Wenkstern (eds.), PRIMA 2019: Principles and Practice of Multi-Agent Systems. Springer. pp. 202-218.
    This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. The Basics of Display Calculi.Tim Lyon, Christian Ittner, Timo Eckhardt & Norbert Gratzl - 2017 - Kriterion - Journal of Philosophy 31 (2):55-100.
    The aim of this paper is to introduce and explain display calculi for a variety of logics. We provide a survey of key results concerning such calculi, though we focus mainly on the global cut elimination theorem. Propositional, first-order, and modal display calculi are considered and their properties detailed.
    Download  
     
    Export citation  
     
    Bookmark  
  12. On Deriving Nested Calculi for Intuitionistic Logics from Semantic Systems.Tim Lyon - 2013 - In Sergei Artemov & Anil Nerode (eds.), Logical Foundations of Computer Science (Lecture Notes in Computer Science 7734). Springer. pp. 177-194.
    This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Cut-free Calculi and Relational Semantics for Temporal STIT Logics.Tim Lyon & Kees van Berkel - 2019 - In Francesco Calimeri, Nicola Leone & Marco Manna (eds.), Logics in Artificial Intelligence. Springer. pp. 803 - 819.
    We present cut-free labelled sequent calculi for a central formalism in logics of agency: STIT logics with temporal operators. These include sequent systems for Ldm , Tstit and Xstit. All calculi presented possess essential structural properties such as contraction- and cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown sound and complete relative to irreflexive temporal frames. Additionally, we extend current results by showing that also Xstit can be characterized through relational frames, omitting the use of BT+AC (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Beyond semantic pollution: Towards a practice-based philosophical analysis of labelled calculi.Fabio De Martin Polo - 2024 - Erkenntnis:1-30.
    This paper challenges the negative attitudes towards labelled proof systems, usually referred to as semantic pollution, by arguing that such critiques overlook the full potential of labelled calculi. The overarching objective is to develop a practice-based philosophical analysis of labelled calculi to provide insightful considerations regarding their proof-theoretic and philosophical value. To achieve this, successful applications of labelled calculi and related results will be showcased, and comparisons with other relevant works will be discussed. The paper ends by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Translating Metainferences Into Formulae: Satisfaction Operators and Sequent Calculi.Ariel Jonathan Roffé & Federico Pailos - 2021 - Australasian Journal of Logic 3.
    In this paper, we present a way to translate the metainferences of a mixed metainferential system into formulae of an extended-language system, called its associated σ-system. To do this, the σ-system will contain new operators (one for each standard), called the σ operators, which represent the notions of "belonging to a (given) standard". We first prove, in a model-theoretic way, that these translations preserve (in)validity. That is, that a metainference is valid in the base system if and only if its (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. On the Correspondence between Nested Calculi and Semantic Systems for Intuitionistic Logics.Tim Lyon - 2021 - Journal of Logic and Computation 31 (1):213-265.
    This paper studies the relationship between labelled and nested calculi for propositional intuitionistic logic, first-order intuitionistic logic with non-constant domains and first-order intuitionistic logic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from their associated (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  17. A Road Map of Interval Temporal Logics and Duration Calculi.Valentin Goranko, Angelo Montanari & Guido Sciavicco - 2004 - Journal of Applied Non-Classical Logics 14 (1-2):9-54.
    We survey main developments, results, and open problems on interval temporal logics and duration calculi. We present various formal systems studied in the literature and discuss their distinctive features, emphasizing on expressiveness, axiomatic systems, and (un)decidability results.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  18. Modular labelled calculi for relevant logics.Fabio De Martin Polo - 2023 - Australasian Journal of Logic 20 (1):47-87.
    In this article, we perform a detailed proof theoretic investigation of a wide number of relevant logics by employing the well-established methodology of labelled sequent calculi to build our intended systems. At the semantic level, we will characterise relevant logics by employing reduced Routley-Meyer models, namely, relational structures with a ternary relation between worlds along with a unique distinct element considered as the real (or actual) world. This paper realizes the idea of building a variety of modular labelled (...) by reflecting, at the syntactic level, semantic informations taken from reduced Routley-Meyer models. Central results include proofs of soundness and completeness, as well as a proof of cut- admissibility. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  19. On the Curious Calculi of Wittgenstein and Spencer Brown.Gregory Landini - 2018 - Journal for the History of Analytical Philosophy 6 (10).
    In his Tractatus, Wittgenstein sets out what he calls his N-operator notation which can be used to calculate whether an expression is a tautology. In his Laws of Form, George Spencer Brown offers what he calls a “primary algebra” for such calculation. Both systems are perplexing. But comparing two blurry images can reduce noise, producing a focus. This paper reveals that Spencer Brown independently rediscovered the quantifier-free part of the N-operator calculus. The comparison sheds a flood light on each and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Significance Tests, Belief Calculi, and Burden of Proof in Legal and Scientific Discourse.Julio Michael Stern - 2003 - Frontiers in Artificial Intelligence and Applications 101:139-147.
    We review the definition of the Full Bayesian Significance Test (FBST), and summarize its main statistical and epistemological characteristics. We review also the Abstract Belief Calculus (ABC) of Darwiche and Ginsberg, and use it to analyze the FBST’s value of evidence. This analysis helps us understand the FBST properties and interpretation. The definition of value of evidence against a sharp hypothesis, in the FBST setup, was motivated by applications of Bayesian statistical reasoning to legal matters where the sharp hypotheses were (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  21. Commentary and Illocutionary Expressions in Linear Calculi of Natural Deduction.Moritz Cordes & Friedrich Reinmuth - 2017 - Logic and Logical Philosophy 26 (2).
    We argue that the need for commentary in commonly used linear calculi of natural deduction is connected to the “deletion” of illocutionary expressions that express the role of propositions as reasons, assumptions, or inferred propositions. We first analyze the formalization of an informal proof in some common calculi which do not formalize natural language illocutionary expressions, and show that in these calculi the formalizations of the example proof rely on commentary devices that have no counterpart in the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  22. Approximating Propositional Calculi by Finite-valued Logics.Matthias Baaz & Richard Zach - 1994 - In Baaz Matthias & Zach Richard (eds.), 24th International Symposium on Multiple-valued Logic, 1994. Proceedings. IEEE Press. pp. 257–263.
    The problem of approximating a propositional calculus is to find many-valued logics which are sound for the calculus (i.e., all theorems of the calculus are tautologies) with as few tautologies as possible. This has potential applications for representing (computationally complex) logics used in AI by (computationally easy) many-valued logics. It is investigated how far this method can be carried using (1) one or (2) an infinite sequence of many-valued logics. It is shown that the optimal candidate matrices for (1) can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. On Minimal Models for Pure Calculi of Names.Piotr Kulicki - 2013 - Logic and Logical Philosophy 22 (4):429–443.
    By pure calculus of names we mean a quantifier-free theory, based on the classical propositional calculus, which defines predicates known from Aristotle’s syllogistic and Leśniewski’s Ontology. For a large fragment of the theory decision procedures, defined by a combination of simple syntactic operations and models in two-membered domains, can be used. We compare the system which employs `ε’ as the only specific term with the system enriched with functors of Syllogistic. In the former, we do not need an empty name (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Fusion, fission, and Ackermann’s truth constant in relevant logics: A proof-theoretic investigation.Fabio De Martin Polo - 2024 - In Andrew Tedder, Shawn Standefer & Igor Sedlar (eds.), New Directions in Relevant Logic. Springer.
    The aim of this paper is to provide a proof-theoretic characterization of relevant logics including fusion and fission connectives, as well as Ackermann’s truth constant. We achieve this by employing the well-established methodology of labelled sequent calculi. After having introduced several systems, we will conduct a detailed proof-theoretic analysis, show a cut-admissibility theorem, and establish soundness and completeness. The paper ends with a discussion that contextualizes our current work within the broader landscape of the proof theory of relevant logics.
    Download  
     
    Export citation  
     
    Bookmark  
  26. New Logic and the Seeds of Analytic Philosophy.Kevin C. Klement - 2019 - In John Shand (ed.), A Companion to Nineteenth Century Philosophy (Blackwell Companions to Philosophy). Hoboken: Wiley-Blackwell. pp. 454–479.
    Analytic philosophy has been perhaps the most successful philosophical movement of the twentieth century. While there is no one doctrine that defines it, one of the most salient features of analytic philosophy is its reliance on contemporary logic, the logic that had its origin in the works of George Boole and Gottlob Frege and others in the mid‐to‐late nineteenth century. Boolean algebra, the heart of Boole's contributions to logic, has also come to represent a cornerstone of modern computing. Frege had (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Takeuti's well-ordering proofs revisited.Andrew Arana & Ryota Akiyoshi - 2021 - Mita Philosophy Society 3 (146):83-110.
    Gaisi Takeuti extended Gentzen's work to higher-order case in 1950's–1960's and proved the consistency of impredicative subsystems of analysis. He has been chiefly known as a successor of Hilbert's school, but we pointed out in the previous paper that Takeuti's aimed to investigate the relationships between "minds" by carrying out his proof-theoretic project rather than proving the "reliability" of such impredicative subsystems of analysis. Moreover, as briefly explained there, his philosophical ideas can be traced back to Nishida's philosophy in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. A Completenesss Theorem for a 3-Valued Semantics for a First-order Language.Christopher Gauker - manuscript
    This document presents a Gentzen-style deductive calculus and proves that it is complete with respect to a 3-valued semantics for a language with quantifiers. The semantics resembles the strong Kleene semantics with respect to conjunction, disjunction and negation. The completeness proof for the sentential fragment fills in the details of a proof sketched in Arnon Avron (2003). The extension to quantifiers is original but uses standard techniques.
    Download  
     
    Export citation  
     
    Bookmark  
  29. Refining Labelled Systems for Modal and Constructive Logics with Applications.Tim Lyon - 2021 - Dissertation, Technischen Universität Wien
    This thesis introduces the "method of structural refinement", which serves as a means of transforming the relational semantics of a modal and/or constructive logic into an 'economical' proof system by connecting two proof-theoretic paradigms: labelled and nested sequent calculi. The formalism of labelled sequents has been successful in that cut-free calculi in possession of desirable proof-theoretic properties can be automatically generated for large classes of logics. Despite these qualities, labelled systems make use of a complicated syntax that explicitly (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  30. Stable Harmony.Nils Kurbis - 2008 - In Peliš Michal (ed.), Logica Yearbook 2007.
    In this paper, I'll present a general way of "reading off" introduction/elimination rules from elimination/introduction rules, and define notions of harmony and stability on the basis of it.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  31. The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework).Damian E. Szmuc - 2021 - Bulletin of the Section of Logic 50 (4):421-453.
    We examine the set of formula-to-formula valid inferences of Classical Logic, where the premise and the conclusion share at least a propositional variable in common. We review the fact, already proved in the literature, that such a system is identical to the first-degree entailment fragment of R. Epstein's Relatedness Logic, and that it is a non-transitive logic of the sort investigated by S. Frankowski and others. Furthermore, we provide a semantics and a calculus for this logic. The semantics is defined (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. A Note on Harmony.Nissim Francez & Roy Dyckhoff - 2012 - Journal of Philosophical Logic 41 (3):613-628.
    In the proof-theoretic semantics approach to meaning, harmony , requiring a balance between introduction-rules (I-rules) and elimination rules (E-rules) within a meaning conferring natural-deduction proof-system, is a central notion. In this paper, we consider two notions of harmony that were proposed in the literature: 1. GE-harmony , requiring a certain form of the E-rules, given the form of the I-rules. 2. Local intrinsic harmony : imposes the existence of certain transformations of derivations, known as reduction and expansion . We propose (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  33. Reasons for Logic, Logic for Reasons: Pragmatics, Semantics, and Conceptual Roles.Ulf Hlobil & Robert Brandom - 2024 - New York: Routledge. Edited by Robert Brandom.
    This book presents a philosophical conception of logic -- "logical expressivism"-- according to which the role of logic is to make explicit reason relations, which are often neither monotonic nor transitive. It reveals new perspectives on inferential roles, sequent calculi, representation, truthmakers, and many extant logical theories.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Analytic Tableaux for all of SIXTEEN 3.Stefan Wintein & Reinhard Muskens - 2015 - Journal of Philosophical Logic 44 (5):473-487.
    In this paper we give an analytic tableau calculus P L 1 6 for a functionally complete extension of Shramko and Wansing’s logic. The calculus is based on signed formulas and a single set of tableau rules is involved in axiomatising each of the four entailment relations ⊧ t, ⊧ f, ⊧ i, and ⊧ under consideration—the differences only residing in initial assignments of signs to formulas. Proving that two sets of formulas are in one of the first three entailment (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. Logics Based on Linear Orders of Contaminating Values.Roberto Ciuni, Thomas Macaulay Ferguson & Damian Szmuc - 2019 - Journal of Logic and Computation 29 (5):631–663.
    A wide family of many-valued logics—for instance, those based on the weak Kleene algebra—includes a non-classical truth-value that is ‘contaminating’ in the sense that whenever the value is assigned to a formula φ⁠, any complex formula in which φ appears is assigned that value as well. In such systems, the contaminating value enjoys a wide range of interpretations, suggesting scenarios in which more than one of these interpretations are called for. This calls for an evaluation of systems with multiple contaminating (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  36. Derivability and Metainferential Validity.Bruno Da Ré, Damian Szmuc & Paula Teijeiro - 2021 - Journal of Philosophical Logic 51 (6):1521-1547.
    The aim of this article is to study the notion of derivability and its semantic counterpart in the context of non-transitive and non-reflexive substructural logics. For this purpose we focus on the study cases of the logics _S__T_ and _T__S_. In this respect, we show that this notion doesn’t coincide, in general, with a nowadays broadly used semantic approach towards metainferential validity: the notion of local validity. Following this, and building on some previous work by Humberstone, we prove that in (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  37. The logic of distributive bilattices.Félix Bou & Umberto Rivieccio - 2011 - Logic Journal of the IGPL 19 (1):183-216.
    Bilattices, introduced by Ginsberg as a uniform framework for inference in artificial intelligence, are algebraic structures that proved useful in many fields. In recent years, Arieli and Avron developed a logical system based on a class of bilattice-based matrices, called logical bilattices, and provided a Gentzen-style calculus for it. This logic is essentially an expansion of the well-known Belnap–Dunn four-valued logic to the standard language of bilattices. Our aim is to study Arieli and Avron’s logic from the perspective of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  38. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can search for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Bilateralism, coherence, and incoherence.Rea Golan - forthcoming - Philosophy and Phenomenological Research.
    Bilateralism is the view that the speech act of denial is as primitive as that of assertion. Bilateralism has proved helpful in providing an intuitive interpretation of formalisms that, prima facie, look counterintuitive, namely, multiple-conclusion sequent calculi. Under this interpretation, a sequent of the form $\Gamma \vdash \Delta$ is regarded as the statement that it is incoherent, according to our conversational norms, to occupy the position of asserting all the sentences in $\Gamma$ and denying all the sentences in $\Delta$. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. A Simple Logical Matrix and Sequent Calculus for Parry’s Logic of Analytic Implication.Damian E. Szmuc - 2021 - Studia Logica 109 (4):791-828.
    We provide a logical matrix semantics and a Gentzen-style sequent calculus for the first-degree entailments valid in W. T. Parry’s logic of Analytic Implication. We achieve the former by introducing a logical matrix closely related to that inducing paracomplete weak Kleene logic, and the latter by presenting a calculus where the initial sequents and the left and right rules for negation are subject to linguistic constraints.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. LP, K3, and FDE as Substructural Logics.Lionel Shapiro - 2017 - In Arazim Pavel & Lávička Tomáš (eds.), The Logica Yearbook 2016. College Publications.
    Building on recent work, I present sequent systems for the non-classical logics LP, K3, and FDE with two main virtues. First, derivations closely resemble those in standard Gentzen-style systems. Second, the systems can be obtained by reformulating a classical system using nonstandard sequent structure and simply removing certain structural rules (relatives of exchange and contraction). I clarify two senses in which these logics count as “substructural.”.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  42. Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ - (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Aristotle’s Syllogistic and Core Logic.Neil Tennant - 2014 - History and Philosophy of Logic 35 (2):120-147.
    I use the Corcoran–Smiley interpretation of Aristotle's syllogistic as my starting point for an examination of the syllogistic from the vantage point of modern proof theory. I aim to show that fresh logical insights are afforded by a proof-theoretically more systematic account of all four figures. First I regiment the syllogisms in the Gentzen–Prawitz system of natural deduction, using the universal and existential quantifiers of standard first-order logic, and the usual formalizations of Aristotle's sentence-forms. I explain how the syllogistic (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  44. Relevant Logics Obeying Component Homogeneity.Roberto Ciuni, Damian Szmuc & Thomas Macaulay Ferguson - 2018 - Australasian Journal of Logic 15 (2):301-361.
    This paper discusses three relevant logics that obey Component Homogeneity - a principle that Goddard and Routley introduce in their project of a logic of significance. The paper establishes two main results. First, it establishes a general characterization result for two families of logic that obey Component Homogeneity - that is, we provide a set of necessary and sufficient conditions for their consequence relations. From this, we derive characterization results for S*fde, dS*fde, crossS*fde. Second, the paper establishes complete sequent (...) for S*fde, dS*fde, crossS*fde. Among the other accomplishments of the paper, we generalize the semantics from Bochvar, Hallden, Deutsch and Daniels, we provide a general recipe to define containment logics, we explore the single-premise/single-conclusion fragment of S*fde, dS*fde, crossS*fdeand the connections between crossS*fde and the logic Eq of equality by Epstein. Also, we present S*fde as a relevant logic of meaninglessness that follows the main philosophical tenets of Goddard and Routley, and we briefly examine three further systems that are closely related to our main logics. Finally, we discuss Routley's criticism to containment logic in light of our results, and overview some open issues. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  45. Substitutional Validity for Modal Logic.Marco Grossi - 2023 - Notre Dame Journal of Formal Logic 64 (3):291-316.
    In the substitutional framework, validity is truth under all substitutions of the nonlogical vocabulary. I develop a theory where □ is interpreted as substitutional validity. I show how to prove soundness and completeness for common modal calculi using this definition.
    Download  
     
    Export citation  
     
    Bookmark  
  46. Logics of Formal Inconsistency Enriched with Replacement: An Algebraic and Modal Account.Walter Carnielli, Marcelo E. Coniglio & David Fuenmayor - 2022 - Review of Symbolic Logic 15 (3):771-806.
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  47. Inferential Quantification and the ω-rule.Constantin C. Brîncuş - 2024 - In Antonio Piccolomini D'Aragona (ed.), Perspectives on Deduction: Contemporary Studies in the Philosophy, History and Formal Theories of Deduction. Springer Verlag. pp. 345--372.
    Logical inferentialism maintains that the formal rules of inference fix the meanings of the logical terms. The categoricity problem points out to the fact that the standard formalizations of classical logic do not uniquely determine the intended meanings of its logical terms, i.e., these formalizations are not categorical. This means that there are different interpretations of the logical terms that are consistent with the relation of logical derivability in a logical calculus. In the case of the quantificational logic, the categoricity (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Wittgenstein and the Status of Contradictions.Louis Caruana - 2004 - In Annalisa Coliva & Eva Picardi (eds.), Wittgenstein Today. Il poligrafo. pp. 223-232.
    Ludwig Wittgenstein, in the "Remarks on the Foundation of Mathematics", often refers to contradictions as deserving special study. He is said to have predicted that there will be mathematical investigations of calculi containing contradictions and that people will pride themselves on having emancipated themselves from consistency. This paper examines a way of taking this prediction seriously. It starts by demonstrating that the easy way of understanding the role of contradictions in a discourse, namely in terms of pure convention within (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. A cut-free sequent calculus for the bi-intuitionistic logic 2Int.Sara Ayhan - manuscript
    The purpose of this paper is to introduce a bi-intuitionistic sequent calculus and to give proofs of admissibility for its structural rules. The calculus I will present, called SC2Int, is a sequent calculus for the bi-intuitionistic logic 2Int, which Wansing presents in [2016a]. There he also gives a natural deduction system for this logic, N2Int, to which SC2Int is equivalent in terms of what is derivable. What is important is that these calculi represent a kind of bilateralist reasoning, since (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Proofnets for S5: sequents and circuits for modal logic.Greg Restall - 2007 - In C. Dimitracopoulos, L. Newelski & D. Normann (eds.), Logic Colloquium 2005: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005. Cambridge: Cambridge University Press. pp. 151-172.
    In this paper I introduce a sequent system for the propositional modal logic S5. Derivations of valid sequents in the system are shown to correspond to proofs in a novel natural deduction system of circuit proofs (reminiscient of proofnets in linear logic, or multiple-conclusion calculi for classical logic). -/- The sequent derivations and proofnets are both simple extensions of sequents and proofnets for classical propositional logic, in which the new machinery—to take account of the modal vocabulary—is directly motivated in (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
1 — 50 / 88