Results for 'Godel's Incompleteness Theorem, Godel Sentences, Sound Theories, Peano's Arithmetic.'

995 found
Order:
  1. Soundness does not come for free (if at all).Kaave Lajevardi & Saeed Salehi - manuscript
    We respond to some of the points made by Bennet and Blanck (2022) concerning a previous publication of ours (2021).
    Download  
     
    Export citation  
     
    Bookmark  
  2. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3. Kurt Gödel, paper on the incompleteness theorems (1931).Richard Zach - 2004 - In Ivor Grattan-Guinness (ed.), Landmark Writings in Mathematics. North-Holland. pp. 917-925.
    This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of number (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. There May Be Many Arithmetical Gödel Sentences.Kaave Lajevardi & Saeed Salehi - 2021 - Philosophia Mathematica 29 (2):278–287.
    We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel’s First Incompleteness Theorem, one cannot, without impropriety, talk about *the* Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel’s theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. The gödel paradox and Wittgenstein's reasons.Francesco Berto - 2009 - Philosophia Mathematica 17 (2):208-219.
    An interpretation of Wittgenstein’s much criticized remarks on Gödel’s First Incompleteness Theorem is provided in the light of paraconsistent arithmetic: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was drawing the consequences of his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. It is shown that the features of paraconsistent arithmetics (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  9. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. On the Arithmetical Truth of Self‐Referential Sentences.Kaave Lajevardi & Saeed Salehi - 2019 - Theoria 85 (1):8-17.
    We take an argument of Gödel's from his ground‐breaking 1931 paper, generalize it, and examine its validity. The argument in question is this: "the sentence G says about itself that it is not provable, and G is indeed not provable; therefore, G is true".
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  13. Application of "A Thing Exists If It's A Grouping" to Russell's Paradox and Godel's First Incompletness Theorem.Roger Granet - manuscript
    A resolution to the Russell Paradox is presented that is similar to Russell's “theory of types” method but is instead based on the definition of why a thing exists as described in previous work by this author. In that work, it was proposed that a thing exists if it is a grouping tying "stuff" together into a new unit whole. In tying stuff together, this grouping defines what is contained within the new existent entity. A corollary is that a thing, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  16. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. Неразрешимост на първата теорема за непълнотата. Гьоделова и Хилбертова математика.Vasil Penchev - 2010 - Philosophical Alternatives 19 (5):104-119.
    Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18.  15
    Logical Akrasia.Frederik J. Andersen - forthcoming - Episteme.
    The aim of this paper is threefold. Firstly, §1 and §2 introduce the novel concept logical akrasia by analogy to epistemic akrasia. If successful, the initial sections will draw attention to an interesting akratic phenomenon which has not received much attention in the literature on akrasia (although it has been discussed by logicians in different terms). Secondly, §3 and §4 present a dilemma related to logical akrasia. From a case involving the consistency of Peano Arithmetic and Gödel’s Second Incompleteness (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 294-299.
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. On interpreting Chaitin's incompleteness theorem.Panu Raatikainen - 1998 - Journal of Philosophical Logic 27 (6):569-586.
    The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin's famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number to have Kolmogorov complexity larger than c. The received interpretation of theorem claims that the limiting constant is determined by the complexity of the theory itself, which is assumed to be good measure (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  21. Gödel's incompleteness theorems, free will and mathematical thought.Solomon Feferman - 2011 - In Richard Swinburne (ed.), Free Will and Modern Science. Oup/British Academy.
    The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological, and logical character. This chapter focuses on two arguments from logic. First, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to which every proposition is either true or false, no matter whether the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  22. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Gödel's Incomplete Theorem: a sequel to Logic and Analytic Philosophy.Yusuke Kaneko - 2021 - The Basis : The Annual Bulletin of Research Center for Liberal Education 11:81-107.
    Although written in Japanese, this article handles historical and technical survey of Gödel's incompleteness theorem thoroughly.
    Download  
     
    Export citation  
     
    Bookmark  
  24. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Does Gödel's Incompleteness Theorem Prove that Truth Transcends Proof?Joseph Vidal-Rosset - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics. Springer. pp. 51--73.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by quantum neo-Pythagoreanism links (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. The inexpressibility of validity.Julien Murzi - 2014 - Analysis 74 (1):65-81.
    Tarski's Undefinability of Truth Theorem comes in two versions: that no consistent theory which interprets Robinson's Arithmetic (Q) can prove all instances of the T-Scheme and hence define truth; and that no such theory, if sound, can even express truth. In this note, I prove corresponding limitative results for validity. While Peano Arithmetic already has the resources to define a predicate expressing logical validity, as Jeff Ketland has recently pointed out (2012, Validity as a primitive. Analysis 72: 421-30), no (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  29. On the philosophical relevance of Gödel's incompleteness theorems.Panu Raatikainen - 2005 - Revue Internationale de Philosophie 59 (4):513-534.
    A survey of more philosophical applications of Gödel's incompleteness results.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  30. Hilbert's program then and now.Richard Zach - 2006 - In Dale Jacquette (ed.), Philosophy of Logic. North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  31. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Neo-Logicism and Gödelian Incompleteness.Fabian Pregel - 2023 - Mind 131 (524):1055-1082.
    There is a long-standing gap in the literature as to whether Gödelian incompleteness constitutes a challenge for Neo-Logicism, and if so how serious it is. In this paper, I articulate and address the challenge in detail. The Neo-Logicist project is to demonstrate the analyticity of arithmetic by deriving all its truths from logical principles and suitable definitions. The specific concern raised by Gödel’s first incompleteness theorem is that no single sound system of logic syntactically implies all arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the limits of computation, theism and the universe as computer-the ultimate Turing Theorem.Michael Starks - 2017 - Philosophy, Human Nature and the Collapse of Civilization Michael Starks 3rd Ed. (2017).
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elseviers: SSRN) 12 (10):1-33.
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the present such as Fermat’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Logical Foundations of Local Gauge Symmetry and Symmetry Breaking.Yingrui Yang - 2022 - Journal of Human Cognition 6 (1):18-23.
    The present paper intends to report two results. It is shown that the formula P(x)=∀y∀z[¬G(x, y)→¬M(z)] provides the logic underlying gauge symmetry, where M denotes the predicate of being massive. For the logic of spontaneous symmetry breaking, by Higgs mechanism, we have P(x)=∀y∀z[G(x, y)→M(z)]. Notice that the above two formulas are not logically equivalent. The results are obtained by integrating four components, namely, gauge symmetry and Higgs mechanism in quantum field theory, and Gödel's incompleteness theorem and Tarski's indefinability theorem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Deepening the Automated Search for Gödel's Proofs.Adam Conkey - unknown
    Gödel's incompleteness theorems establish the stunning result that mathematics cannot be fully formalized and, further, that any formal system containing a modicum of number or set theory cannot establish its own consistency. Wilfried Sieg and Clinton Field, in their paper Automated Search for Gödel's Proofs, presented automated proofs of Gödel's theorems at an abstract axiomatic level; they used an appropriate expansion of the strategic considerations that guide the search of the automated theorem prover AProS. The representability conditions that allow (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Gödelova věta a relace logického důsledku.Jaroslav Zouhar - 2010 - Teorie Vědy / Theory of Science 32 (1):59-95.
    In his proof of the first incompleteness theorem, Kurt Gödel provided a method of showing the truth of specific arithmetical statements on the condition that all the axioms of a certain formal theory of arithmetic are true. Furthermore, the statement whose truth is shown in this way cannot be proved in the theory in question. Thus it may seem that the relation of logical consequence is wider than the relation of derivability by a pre-defined set of rules. The aim (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Парадоксът на Скулем и квантовата информация. Относителност на пълнота по Гьодел.Vasil Penchev - 2011 - Philosophical Alternatives 20 (2):131-147.
    In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum out (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can search for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Defining Gödel Incompleteness Away.P. Olcott - manuscript
    We can simply define Gödel 1931 Incompleteness away by redefining the meaning of the standard definition of Incompleteness: A theory T is incomplete if and only if there is some sentence φ such that (T ⊬ φ) and (T ⊬ ¬φ). This definition construes the existence of self-contradictory expressions in a formal system as proof that this formal system is incomplete because self-contradictory expressions are neither provable nor disprovable in this formal system. Since self-contradictory expressions are neither provable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Automated Theorem Proving and Its Prospects. [REVIEW]Desmond Fearnley-Sander - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2.
    REVIEW OF: Automated Development of Fundamental Mathematical Theories by Art Quaife. (1992: Kluwer Academic Publishers) 271pp. Using the theorem prover OTTER Art Quaife has proved four hundred theorems of von Neumann-Bernays-Gödel set theory; twelve hundred theorems and definitions of elementary number theory; dozens of Euclidean geometry theorems; and Gödel's incompleteness theorems. It is an impressive achievement. To gauge its significance and to see what prospects it offers this review looks closely at the book and the proofs it presents.
    Download  
     
    Export citation  
     
    Bookmark  
  43. How Hilbert’s attempt to unify gravitation and electromagnetism failed completely, and a plausible resolution.Victor Christianto, Florentin Smarandache & Robert N. Boyd - manuscript
    In the present paper, these authors argue on actual reasons why Hilbert’s axiomatic program to unify gravitation theory and electromagnetism failed completely. An outline of plausible resolution of this problem is given here, based on: a) Gödel’s incompleteness theorem, b) Newton’s aether stream model. And in another paper we will present our calculation of receding Moon from Earth based on such a matter creation hypothesis. More experiments and observations are called to verify this new hypothesis, albeit it is inspired (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Torkel Franzén, Gödel's Theorem: An Incomplete Guide to its Use and Abuse. [REVIEW]R. Zach - 2005 - History and Philosophy of Logic 26 (4):369-371.
    On the heels of Franzén's fine technical exposition of Gödel's incompleteness theorems and related topics (Franzén 2004) comes this survey of the incompleteness theorems aimed at a general audience. Gödel's Theorem: An Incomplete Guide to its Use and Abuse is an extended and self-contained exposition of the incompleteness theorems and a discussion of what informal consequences can, and in particular cannot, be drawn from them.
    Download  
     
    Export citation  
     
    Bookmark  
  45. Gödel's slingshot revisited: does russell's theory of descriptions really evade the slingshot.João Daniel Dantas - 2016 - Dissertation, Ufrn
    “Slingshot Arguments” are a family of arguments underlying the Fregean view that if sentences have reference at all, their references are their truth-values. Usually seen as a kind of collapsing argument, the slingshot consists in proving that, once you suppose that there are some items that are references of sentences (as facts or situations, for example), these items collapse into just two items: The True and The False. This dissertation treats of the slingshot dubbed “Gödel’s slingshot”. Gödel argued that there (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Categoricity, Open-Ended Schemas and Peano Arithmetic.Adrian Ludușan - 2015 - Logos and Episteme 6 (3):313-332.
    One of the philosophical uses of Dedekind’s categoricity theorem for Peano Arithmetic is to provide support for semantic realism. To this end, the logical framework in which the proof of the theorem is conducted becomes highly significant. I examine different proposals regarding these logical frameworks and focus on the philosophical benefits of adopting open-ended schemas in contrast to second order logic as the logical medium of the proof. I investigate Pederson and Rossberg’s critique of the ontological advantages of open-ended arithmetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. The Liar Syndrome.Albert A. Johnstone - 2002 - SATS 3 (1).
    This article examines the various Liar paradoxes and their near kin, Grelling’s paradox and Gödel’s Incompleteness Theorem with its self-referential Gödel sentence. It finds the family of paradoxes to be generated by circular definition–whether of statements, predicates, or sentences–a manoeuvre that generates pseudo-statements afflicted with the Liar syndrome: semantic vacuity, semantic incoherence, and predicative catalepsy. Such statements, e.g., the self-referential Liar statement, are meaningless, and hence fail to say anything, a point that invalidates the reasoning on which the various (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  48. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  50. Formal Background for the Incompleteness and Undefinability Theorems.Richard Kimberly Heck - manuscript
    A teaching document I've used in my courses on truth and on incompleteness. Aimed at students who have a good grasp of basic logic, and decent math skills, it attempts to give them the background they need to understand a proper statement of the classic results due to Gödel and Tarski, and sketches their proofs. Topics covered include the notions of language and theory, the basics of formal syntax and arithmetization, formal arithmetic (Q and PA), representability, diagonalization, and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 995