Results for 'Infinite sets'

999 found
Order:
  1.  23
    Infinite Sets: The Appearance of an Infinite Set Depends on the Perspective of the Observer.Roger Granet - manuscript
    Given an infinite set of finite-sized spheres extending in all directions forever, a finite-sized (relative to the spheres inside the set) observer within the set would view the set as a space composed of discrete, finite-sized objects. A hypothetical infinite-sized (relative to the spheres inside the set) observer would view the set as a continuous space and would see no distinct elements within the set. Using this analogy, the mathematics of infinities, such as the assignment of a cardinality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2.  28
    Do Abstract Mathematical Axioms About Infinite Sets Apply To The Real, Physical Universe?Roger Granet - manuscript
    In mathematics, if one starts with the infinite set of positive integers, P, and want to compare the size of the subset of odd positives, O, with P, this is done by pairing off each odd with a positive, using a function such as P=2O+1. This puts the odds in a one-to-one correspondence with the positives, thereby, showing that the subset of odds and the set of positives are the same size, or have the same cardinality. This counter-intuitive result (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  82
    On Accuracy and Coherence with Infinite Opinion Sets.Mikayla Kelley - forthcoming - Philosophy of Science.
    There is a well-known equivalence between avoiding accuracy dominance and having probabilistically coherent credences (see, e.g., de Finetti 1974, Joyce 2009, Predd et al. 2009, Pettigrew 2016). However, this equivalence has been established only when the set of propositions on which credence functions are defined is finite. In this paper, I establish connections between accuracy dominance and coherence when credence functions are defined on an infinite set of propositions. In particular, I establish the necessary results to extend the classic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Wide Sets, ZFCU, and the Iterative Conception.Christopher Menzel - 2014 - Journal of Philosophy 111 (2):57-83.
    The iterative conception of set is typically considered to provide the intuitive underpinnings for ZFCU (ZFC+Urelements). It is an easy theorem of ZFCU that all sets have a definite cardinality. But the iterative conception seems to be entirely consistent with the existence of “wide” sets, sets (of, in particular, urelements) that are larger than any cardinal. This paper diagnoses the source of the apparent disconnect here and proposes modifications of the Replacement and Powerset axioms so as to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  5.  72
    Aggregation in an Infinite, Relativistic Universe.Hayden Wilkinson - manuscript
    Aggregative moral theories face a series of devastating problems when we apply them in a physically realistic setting. According to current physics, our universe is likely _infinitely large_, and will contain infinitely many morally valuable events. But standard aggregative theories are ill-equipped to compare outcomes containing infinite total value so, applied in a realistic setting, they cannot compare any outcomes a real-world agent must ever choose between. This problem has been discussed extensively, and non-standard aggregative theories proposed to overcome (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Infinite Numbers Are Large Finite Numbers.Jeremy Gwiazda - unknown
    In this paper, I suggest that infinite numbers are large finite numbers, and that infinite numbers, properly understood, are 1) of the structure omega + (omega* + omega)Ө + omega*, and 2) the part is smaller than the whole. I present an explanation of these claims in terms of epistemic limitations. I then consider the importance, part of which is demonstrating the contradiction that lies at the heart of Cantorian set theory: the natural numbers are too large to (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  7. A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.
    A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   5 citations  
  8. The Finite and the Infinite in Frege's Grundgesetze der Arithmetik.Richard Heck - 1998 - In Matthias Schirn (ed.), Philosophy of Mathematics Today. Oxford University Press.
    Discusses Frege's formal definitions and characterizations of infinite and finite sets. Speculates that Frege might have discovered the "oddity" in Dedekind's famous proof that all infinite sets are Dedekind infinite and, in doing so, stumbled across an axiom of countable choice.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  9. Foundationalism with Infinite Regresses of Probabilistic Support.William Roche - 2018 - Synthese 195 (9):3899-3917.
    There is a long-standing debate in epistemology on the structure of justification. Some recent work in formal epistemology promises to shed some new light on that debate. I have in mind here some recent work by David Atkinson and Jeanne Peijnenburg, hereafter “A&P”, on infinite regresses of probabilistic support. A&P show that there are probability distributions defined over an infinite set of propositions {\ such that \ is probabilistically supported by \ for all i and \ has a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The Paradox of Infinite Given Magnitude: Why Kantian Epistemology Needs Metaphysical Space.Lydia Patton - 2011 - Kant-Studien 102 (3):273-289.
    Kant's account of space as an infinite given magnitude in the Critique of Pure Reason is paradoxical, since infinite magnitudes go beyond the limits of possible experience. Michael Friedman's and Charles Parsons's accounts make sense of geometrical construction, but I argue that they do not resolve the paradox. I argue that metaphysical space is based on the ability of the subject to generate distinctly oriented spatial magnitudes of invariant scalar quantity through translation or rotation. The set of determinately (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Infinitives Vs. Subjunctives: What Do We Learn From Obviation and From Exemptions From Obviation? (2010).Anna Szabolcsi - manuscript
    Ruwet observed that subjunctives indicate a discontinuity between action and will, typically resulting in a disjoint reference effect known as obviation (unacceptable "Je veux que je parte"). In a certain set of cases, however, the attitude-holder can felicitously bind the pronominal subject of the subjunctive clause (exemption from obviation). This seminar handout examines the phenomenon in Hungarian, with additional data from Russian, Polish, and Romanian.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  12. On the Infinite in Mereology with Plural Quantification.Massimiliano Carrara & Enrico Martino - 2011 - Review of Symbolic Logic 4 (1):54-62.
    In Lewis reconstructs set theory using mereology and plural quantification (MPQ). In his recontruction he assumes from the beginning that there is an infinite plurality of atoms, whose size is equivalent to that of the set theoretical universe. Since this assumption is far beyond the basic axioms of mereology, it might seem that MPQ do not play any role in order to guarantee the existence of a large infinity of objects. However, we intend to demonstrate that mereology and plural (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Overgeneration in the Higher Infinite.Salvatore Florio & Luca Incurvati - forthcoming - In Gil Sagi & Jack Woods (eds.), The Semantic Conception of Logic: Essays on Consequence, Invariance, and Meaning. Cambridge: Cambridge University Press.
    The Overgeneration Argument is a prominent objection against the model-theoretic account of logical consequence for second-order languages. In previous work we have offered a reconstruction of this argument which locates its source in the conflict between the neutrality of second-order logic and its alleged entanglement with mathematics. Some cases of this conflict concern small large cardinals. In this article, we show that in these cases the conflict can be resolved by moving from a set-theoretic implementation of the model-theoretic account to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. The Distinction Between Constructively Defined Algorithms and Algorithms Whose Existence is Provable in ZFC Inspires Theorems and Open Problems That Concern Decidable Sets X⊆N and Cannot Be Formalized in Mathematics Understood as an a Priori Science as They Refer to the Current Knowledge on X.Agnieszka Kozdęba & Apoloniusz Tyszka - manuscript
    Let f(1)=2, f(2)=4, and let f(n+1)=f(n)! for every integer n≥2. Edmund Landau's conjecture states that the set P(n^2+1) of primes of the form n^2+1 is infinite. Landau's conjecture implies the following unproven statement Φ: card(P(n^2+1))<ω ⇒ P(n^2+1)⊆[2,(((24!)!)!)!]. Let B denote the system of equations: {x_i!=x_k: i,k∈{1,...,9}}∪{x_i⋅x_j=x_k: i,j,k∈{1,...,9}}. We write some system U⊆B of 9 equations which has exactly two solutions in positive integers x_1,...,x_9, namely (1,...,1) and (f(1),...,f(9)). No known system S⊆B with a finite number of solutions in positive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15.  90
    UN SEMPLICE MODO PER TRATTARE LE GRANDEZZE INFINITE ED INFINITESIME.Yaroslav Sergeyev - 2015 - la Matematica Nella Società E Nella Cultura: Rivista Dell’Unione Matematica Italiana, Serie I 8:111-147.
    A new computational methodology allowing one to work in a new way with infinities and infinitesimals is presented in this paper. The new approach, among other things, gives the possibility to calculate the number of elements of certain infinite sets, avoids indeterminate forms and various kinds of divergences. This methodology has been used by the author as a starting point in developing a new kind of computer – the Infinity Computer – able to execute computations and to store (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   3 citations  
  16. Persistent Disagreement and Polarization in a Bayesian Setting.Michael Nielsen & Rush T. Stewart - 2021 - British Journal for the Philosophy of Science 72 (1):51-78.
    For two ideally rational agents, does learning a finite amount of shared evidence necessitate agreement? No. But does it at least guard against belief polarization, the case in which their opinions get further apart? No. OK, but are rational agents guaranteed to avoid polarization if they have access to an infinite, increasing stream of shared evidence? No.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  17.  91
    Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Cognitive Set Theory.Alec Rogers (ed.) - 2011 - ArborRhythms.
    Cognitive Set Theory is a mathematical model of cognition which equates sets with concepts, and uses mereological elements. It has a holistic emphasis, as opposed to a reductionistic emphasis, and it therefore begins with a single universe (as opposed to an infinite collection of infinitesimal points).
    Download  
     
    Export citation  
     
    Bookmark  
  19. Conceptions of Infinity and Set in Lorenzen’s Operationist System.Carolin Antos - forthcoming - In Logic, Epistemology and the Unity of Science. Springer.
    In the late 1940s and early 1950s Lorenzen developed his operative logic and mathematics, a form of constructive mathematics. Nowadays this is mostly seen as the precursor to the more well-known dialogical logic and one could assumed that the same philosophical motivations were present in both works. However we want to show that this is not always the case. In particular, we claim, that Lorenzen’s well-known rejection of the actual infinite as stated in Lorenzen (1957) was not a major (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20.  46
    The Entanglement of Logic and Set Theory, Constructively.Laura Crosilla - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21.  44
    Quantum Information as the Information of Infinite Collections or Series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22.  45
    Paraconsistent First-Order Logic with Infinite Hierarchy Levels of Contradiction.Jaykov Foukzon - manuscript
    In this paper paraconsistent first-order logic LP^{#} with infinite hierarchy levels of contradiction is proposed. Corresponding paraconsistent set theory KSth^{#} is discussed.Axiomatical system HST^{#}as paraconsistent generalization of Hrbacek set theory HST is considered.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Wittgenstein And Labyrinth Of ‘Actual Infinity’: The Critique Of Transfinite Set Theory.Valérie Lynn Therrien - 2012 - Ithaque 10:43-65.
    In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24. Ortega y Gasset on Georg Cantor’s Theory of Transfinite Numbers.Lior Rabi - 2016 - Kairos (15):46-70.
    Ortega y Gasset is known for his philosophy of life and his effort to propose an alternative to both realism and idealism. The goal of this article is to focus on an unfamiliar aspect of his thought. The focus will be given to Ortega’s interpretation of the advancements in modern mathematics in general and Cantor’s theory of transfinite numbers in particular. The main argument is that Ortega acknowledged the historical importance of the Cantor’s Set Theory, analyzed it and articulated a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Size and Function.Bruno Whittle - 2018 - Erkenntnis 83 (4):853-873.
    Are there different sizes of infinity? That is, are there infinite sets of different sizes? This is one of the most natural questions that one can ask about the infinite. But it is of course generally taken to be settled by mathematical results, such as Cantor’s theorem, to the effect that there are infinite sets without bijections between them. These results settle the question, given an almost universally accepted principle relating size to the existence of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  26. Metaphysics of the Principle of Least Action.Vladislav Terekhovich - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:189-201.
    Despite the importance of the variational principles of physics, there have been relatively few attempts to consider them for a realistic framework. In addition to the old teleological question, this paper continues the recent discussion regarding the modal involvement of the principle of least action and its relations with the Humean view of the laws of nature. The reality of possible paths in the principle of least action is examined from the perspectives of the contemporary metaphysics of modality and Leibniz's (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  27. First-Order Modal Logic in the Necessary Framework of Objects.Peter Fritz - 2016 - Canadian Journal of Philosophy 46 (4-5):584-609.
    I consider the first-order modal logic which counts as valid those sentences which are true on every interpretation of the non-logical constants. Based on the assumptions that it is necessary what individuals there are and that it is necessary which propositions are necessary, Timothy Williamson has tentatively suggested an argument for the claim that this logic is determined by a possible world structure consisting of an infinite set of individuals and an infinite set of worlds. He notes that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  28. Three Laws of Qualia: What Neurology Tells Us About the Biological Functions of Consciousness.Vilayanur S. Ramachandran & William Hirstein - 1997 - Journal of Consciousness Studies 4 (5-6):429-457.
    Neurological syndromes in which consciousness seems to malfunction, such as temporal lobe epilepsy, visual scotomas, Charles Bonnet syndrome, and synesthesia offer valuable clues about the normal functions of consciousness and ‘qualia’. An investigation into these syndromes reveals, we argue, that qualia are different from other brain states in that they possess three functional characteristics, which we state in the form of ‘three laws of qualia’. First, they are irrevocable: I cannot simply decide to start seeing the sunset as green, or (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  29. What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
    The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave function describing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Отвъд машината на Тюринг: квантовият компютър.Vasil Penchev - 2014 - Sofia: BAS: ISSK (IPS).
    Quantum computer is considered as a generalization of Turing machine. The bits are substituted by qubits. In turn, a "qubit" is the generalization of "bit" referring to infinite sets or series. It extends the consept of calculation from finite processes and algorithms to infinite ones, impossible as to any Turing machines (such as our computers). However, the concept of quantum computer mets all paradoxes of infinity such as Gödel's incompletness theorems (1931), etc. A philosophical reflection on how (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  31. The Quantity of Quantum Information and Its Metaphysics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (18):1-6.
    The quantum information introduced by quantum mechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Numerical Infinities and Infinitesimals: Methodology, Applications, and Repercussions on Two Hilbert Problems.Yaroslav Sergeyev - 2017 - EMS Surveys in Mathematical Sciences 4 (2):219–320.
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Chaos, Add Infinitum.Hayden Wilkinson - manuscript
    Our universe is both chaotic and (most likely) infinite in space and time. But it is within this setting that we must make moral decisions. This presents problems. The first: due to our universe's chaotic nature, our actions often have long-lasting, unpredictable effects; and this means we typically cannot say which of two actions will turn out best in the long run. The second problem: due to the universe's infinite dimensions, and infinite population therein, we cannot compare (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  34. A Uniform Account of Regress Problems.David Löwenstein - 2017 - Acta Analytica 32 (3).
    This paper presents a uniform general account of regress problems in the form of a pentalemma—i.e., a set of five mutually inconsistent claims. Specific regress problems can be analyzed as instances of such a general schema, and this Regress Pentalemma Schema can be employed to generate deductively valid arguments from the truth of a subset of four claims to the falsity of the fifth. Thus, a uniform account of the nature of regress problems allows for an improved understanding of specific (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  35. Compact Propositional Gödel Logics.Matthias Baaz & Richard Zach - 1998 - In 28th IEEE International Symposium on Multiple-Valued Logic, 1998. Proceedings. Los Alamitos: IEEE Press. pp. 108-113.
    Entailment in propositional Gödel logics can be defined in a natural way. While all infinite sets of truth values yield the same sets of tautologies, the entailment relations differ. It is shown that there is a rich structure of infinite-valued Gödel logics, only one of which is compact. It is also shown that the compact infinite-valued Gödel logic is the only one which interpolates, and the only one with an r.e. entailment relation.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  36. The Frontier of Time: The Concept of Quantum Information.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (17):1-5.
    The concept of formal transcendentalism is utilized. The fundamental and definitive property of the totality suggests for “the totality to be all”, thus, its externality (unlike any other entity) is contained within it. This generates a fundamental (or philosophical) “doubling” of anything being referred to the totality, i.e. considered philosophically. Thus, that doubling as well as transcendentalism underlying it can be interpreted formally as an elementary choice such as a bit of information and a quantity corresponding to the number of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. God, Logic, and Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-10.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time is what generates choices (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Main Concepts in Philosophy of Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (31):1-4.
    Quantum mechanics involves a generalized form of information, that of quantum information. It is the transfinite generalization of information and re-presentable by transfinite ordinals. The physical world being in the current of time shares the quality of “choice”. Thus quantum information can be seen as the universal substance of the world serving to describe uniformly future, past, and thus the present as the frontier of time. Future is represented as a coherent whole, present as a choice among infinitely many alternatives, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39.  98
    Representation and Reality by Language: How to Make a Home Quantum Computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40.  66
    Problem of the Direct Quantum-Information Transformation of Chemical Substance.Vasil Penchev - 2020 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 3 (26):1-15.
    Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41.  64
    Парадоксът на Скулем и квантовата информация. Относителност на пълнота по Гьодел.Vasil Penchev - 2011 - Philosophical Alternatives 20 (2):131-147.
    In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum out to (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  42.  52
    Is Mass at Rest One and the Same? A Philosophical Comment: On the Quantum Information Theory of Mass in General Relativity and the Standard Model.Vasil Penchev - 2014 - Journal of SibFU. Humanities and Social Sciences 7 (4):704-720.
    The way, in which quantum information can unify quantum mechanics (and therefore the standard model) and general relativity, is investigated. Quantum information is defined as the generalization of the concept of information as to the choice among infinite sets of alternatives. Relevantly, the axiom of choice is necessary in general. The unit of quantum information, a qubit is interpreted as a relevant elementary choice among an infinite set of alternatives generalizing that of a bit. The invariance to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43.  49
    Теоремата на Мартин Льоб във философска интерпретация.Vasil Penchev - 2011 - Philosophical Alternatives 20 (4):142-152.
    А necessary and sllmcient condilion that а given proposition (о Ье provable in such а theory that allows (о Ье assigned to the proposition а Gödеl пunbег fог containing Реanо arithmetic is that Gödеl number itself. This is tlle sense о[ Martin LöЬ's theorem (1955). Now wе сan рut several philosophpllical questions. Is the Gödеl numbег of а propositional formula necessarily finite or onthe contrary? What would the Gödel number of а theorem be containing Реanо arithmetic itself? That is the (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  44.  50
    Matter as Information. Quantum Information as Matter.Vasil Penchev - 2016 - Nodi. Collana di Storia Della Filosofia 2016 (2):127-138.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time is what generates choices (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45.  43
    The Completeness: From Henkin's Proposition to Quantum Computer.Vasil Penchev - 2018 - Логико-Философские Штудии 16 (1-2):134-135.
    The paper addresses Leon Hen.kin's proposition as a " lighthouse", which can elucidate a vast territory of knowledge uniformly: logic, set theory, information theory, and quantum mechanics: Two strategies to infinity are equally relevant for it is as universal and t hus complete as open and thus incomplete. Henkin's, Godel's, Robert Jeroslow's, and Hartley Rogers' proposition are reformulated so that both completeness and incompleteness to be unified and thus reduced as a joint property of infinity and of all infinite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. In Defense of Countabilism.David Builes & Jessica M. Wilson - forthcoming - Philosophical Studies:1-38.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Hilbert's 10th Problem for Solutions in a Subring of Q.Agnieszka Peszek & Apoloniusz Tyszka - 2019 - Scientific Annals of Computer Science 29 (1):101-111.
    Yuri Matiyasevich's theorem states that the set of all Diophantine equations which have a solution in non-negative integers is not recursive. Craig Smoryński's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. Let R be a subring of Q with or without 1. By H_{10}(R), we denote the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can decide whether (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. A Semantic Approach to Nonmonotonic Reasoning: Inference Operations and Choice, Uppsala Prints and Preprints in Philosophy, 1994, No 10.Sten Lindström - manuscript
    This paper presents a uniform semantic treatment of nonmonotonic inference operations that allow for inferences from infinite sets of premises. The semantics is formulated in terms of selection functions and is a generalization of the preferential semantics of Shoham (1987), (1988), Kraus, Lehman, and Magidor (1990) and Makinson (1989), (1993). A selection function picks out from a given set of possible states (worlds, situations, models) a subset consisting of those states that are, in some sense, the most preferred (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Gödel’s Cantorianism.Claudio Ternullo - 2015 - In Eva-Maria Engelen & Gabriella Crocco (eds.), Kurt Gödel: Philosopher-Scientist. Presses Universitaires de Provence. pp. 417-446.
    Gödel’s philosophical conceptions bear striking similarities to Cantor’s. Although there is no conclusive evidence that Gödel deliberately used or adhered to Cantor’s views, one can successfully reconstruct and see his “Cantorianism” at work in many parts of his thought. In this paper, I aim to describe the most prominent conceptual intersections between Cantor’s and Gödel’s thought, particularly on such matters as the nature and existence of mathematical entities (sets), concepts, Platonism, the Absolute Infinite, the progress and inexhaustibility of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Pursuit of Wisdom and Quantum Ontology.P. Kleinert - 2011 - arXiv 3:1111.0749.
    In his late work (De venatione sapientiae), Cusanus unfolded basic ideas of his brilliant theology. After a long period, this ingenious teaching became clearly recognizable especially in our time. Forward with his face to the back, modern scientific theory adopts nowadays a course to which Cusanus had already pointed centuries ago. Modern thought revolves with unexpected precision and unexpected mysteriousness around two issues of his doctrine of wisdom: (i) The possibility-of-being-made is not a figment of the human brain by which (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
1 — 50 / 999