Results for 'Kleene’s recursion theorem'

965 found
Order:
  1. Recursive predicates and quantifiers.S. C. Kleene - 1943 - Transactions of the American Mathematical Society 53:41-73.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  2. A Machine That Knows Its Own Code.Samuel A. Alexander - 2014 - Studia Logica 102 (3):567-576.
    We construct a machine that knows its own code, at the price of not knowing its own factivity.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3. (1 other version)Implications of computer science theory for the simulation hypothesis.David Wolpert - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  4. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  5. Arrow's theorem, ultrafilters, and reverse mathematics.Benedict Eastaugh - forthcoming - Review of Symbolic Logic.
    This paper initiates the reverse mathematics of social choice theory, studying Arrow's impossibility theorem and related results including Fishburn's possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in RCA0. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in RCA0. This approach yields a proof of Arrow's (...) in RCA0, and thus in PRA, since Arrow's theorem can be formalised as a Π01 sentence. Finally we show that Fishburn's possibility theorem for countable societies is equivalent to ACA0 over RCA0. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. On the weak Kleene scheme in Kripke's theory of truth.James Cain & Zlatan Damnjanovic - 1991 - Journal of Symbolic Logic 56 (4):1452-1468.
    It is well known that the following features hold of AR + T under the strong Kleene scheme, regardless of the way the language is Gödel numbered: 1. There exist sentences that are neither paradoxical nor grounded. 2. There are 2ℵ0 fixed points. 3. In the minimal fixed point the weakly definable sets (i.e., sets definable as {n∣ A(n) is true in the minimal fixed point where A(x) is a formula of AR + T) are precisely the Π1 1 sets. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  8. On Rudimentarity, Primitive Recursivity and Representability.Saeed Salehi - 2020 - Reports on Mathematical Logic 55:73–85.
    It is quite well-known from Kurt G¨odel’s (1931) ground-breaking Incompleteness Theorem that rudimentary relations (i.e., those definable by bounded formulae) are primitive recursive, and that primitive recursive functions are representable in sufficiently strong arithmetical theories. It is also known, though perhaps not as well-known as the former one, that some primitive recursive relations are not rudimentary. We present a simple and elementary proof of this fact in the first part of the paper. In the second part, we review some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Natural Deduction for Three-Valued Regular Logics.Yaroslav Petrukhin - 2017 - Logic and Logical Philosophy 26 (2):197–206.
    In this paper, I consider a family of three-valued regular logics: the well-known strong and weak S.C. Kleene’s logics and two intermedi- ate logics, where one was discovered by M. Fitting and the other one by E. Komendantskaya. All these systems were originally presented in the semantical way and based on the theory of recursion. However, the proof theory of them still is not fully developed. Thus, natural deduction sys- tems are built only for strong Kleene’s logic (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  10. Hilbert's 10th Problem for solutions in a subring of Q.Agnieszka Peszek & Apoloniusz Tyszka - 2019 - Scientific Annals of Computer Science 29 (1):101-111.
    Yuri Matiyasevich's theorem states that the set of all Diophantine equations which have a solution in non-negative integers is not recursive. Craig Smoryński's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. Let R be a subring of Q with or without 1. By H_{10}(R), we denote the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. The ILLTP Library for Intuitionistic Linear Logic.Carlos Olarte, Valeria Correa Vaz De Paiva, Elaine Pimentel & Giselle Reis - manuscript
    Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-established method for measuring their performance. However, the availability of such libraries for non-classical logics is very limited. In this work we propose a library for benchmarking Girard's (propositional) intuitionistic linear logic. For a quick bootstrapping of the collection of problems, and for discussing the selection of relevant problems and understanding their meaning as linear logic theorems, we use translations of the collection of Kleene's intuitionistic theorems in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Arrow’s impossibility theorem and the national security state.S. M. Amadae - 2005 - Studies in History and Philosophy of Science Part A 36 (4):734-743.
    This paper critically engages Philip Mirowki's essay, "The scientific dimensions of social knowledge and their distant echoes in 20th-century American philosophy of science." It argues that although the cold war context of anti-democratic elitism best suited for making decisions about engaging in nuclear war may seem to be politically and ideologically motivated, in fact we need to carefully consider the arguments underlying the new rational choice based political philosophies of the post-WWII era typified by Arrow's impossibility theorem. A distrust (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Říká logicismus něco, co se říkat nemá?Vojtěch Kolman - 2010 - Teorie Vědy / Theory of Science 32 (1):37-57.
    The objective of this paper is to analyze the broader significance of Frege’s logicist project against the background of Wittgenstein’s philosophy from both Tractatus and Philosophical Investigations. The article draws on two basic observations, namely that Frege’s project aims at saying something that was only implicit in everyday arithmetical practice, as the so-called recursion theorem demonstrates, and that the explicitness involved in logicism does not concern the arithmetical operations themselves, but rather the way they are defined. It thus (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Self-graphing equations.Samuel Alexander - manuscript
    Can you find an xy-equation that, when graphed, writes itself on the plane? This idea became internet-famous when a Wikipedia article on Tupper’s self-referential formula went viral in 2012. Under scrutiny, the question has two flaws: it is meaningless (it depends on fonts) and it is trivial. We fix these flaws by formalizing the problem.
    Download  
     
    Export citation  
     
    Bookmark  
  15. Fermat’s Last Theorem Proved by Induction (and Accompanied by a Philosophical Comment).Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (8):1-8.
    A proof of Fermat’s last theorem is demonstrated. It is very brief, simple, elementary, and absolutely arithmetical. The necessary premises for the proof are only: the three definitive properties of the relation of equality (identity, symmetry, and transitivity), modus tollens, axiom of induction, the proof of Fermat’s last theorem in the case of n = 3 as well as the premises necessary for the formulation of the theorem itself. It involves a modification of Fermat’s approach of infinite (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Condorcet's Jury Theorem and Democracy.Wes Siscoe - 2022 - 1000-Word Philosophy: An Introductory Anthology 1.
    Suppose that a majority of jurors decide that a defendant is guilty (or not), and we want to know the likelihood that they reached the correct verdict. The French philosopher Marquis de Condorcet (1743-1794) showed that we can get a mathematically precise answer, a result known as the “Condorcet Jury Theorem.” Condorcet’s theorem isn’t just about juries, though; it’s about collective decision-making in general. As a result, some philosophers have used his theorem to argue for democratic forms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Gödel's incompleteness theorems, free will and mathematical thought.Solomon Feferman - 2011 - In Richard Swinburne (ed.), Free Will and Modern Science. New York: OUP/British Academy.
    The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological, and logical character. This chapter focuses on two arguments from logic. First, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to which every proposition is either true or false, no matter whether the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  21. Condorcet’s jury theorem: General will and epistemic democracy.Miljan Vasić - 2018 - Theoria: Beograd 61 (4):147-170.
    My aim in this paper is to explain what Condorcet’s jury theorem is, and to examine its central assumptions, its significance to the epistemic theory of democracy and its connection with Rousseau’s theory of general will. In the first part of the paper I will analyze an epistemic theory of democracy and explain how its connection with Condorcet’s jury theorem is twofold: the theorem is at the same time a contributing historical source, and the model used by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Gödel's Incomplete Theorem: a sequel to Logic and Analytic Philosophy.Yusuke Kaneko - 2021 - The Basis : The Annual Bulletin of Research Center for Liberal Education 11:81-107.
    Although written in Japanese, this article handles historical and technical survey of Gödel's incompleteness theorem thoroughly.
    Download  
     
    Export citation  
     
    Bookmark  
  23. On interpreting Chaitin's incompleteness theorem.Panu Raatikainen - 1998 - Journal of Philosophical Logic 27 (6):569-586.
    The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin's famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number to have Kolmogorov complexity larger than c. The received interpretation of theorem claims that the limiting constant is determined by the complexity of the theory itself, which is assumed to be good (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  24. The Premises of Condorcet’s Jury Theorem Are Not Simultaneously Justified.Franz Dietrich - 2008 - Episteme 5 (1):56-73.
    Condorcet's famous jury theorem reaches an optimistic conclusion on the correctness of majority decisions, based on two controversial premises about voters: they are competent and vote independently, in a technical sense. I carefully analyse these premises and show that: whether a premise is justi…ed depends on the notion of probability considered; none of the notions renders both premises simultaneously justi…ed. Under the perhaps most interesting notions, the independence assumption should be weakened.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  25. Does Gödel's Incompleteness Theorem Prove that Truth Transcends Proof?Joseph Vidal-Rosset - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 51--73.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. A Categorical Characterization of Accessible Domains.Patrick Walsh - 2019 - Dissertation, Carnegie Mellon University
    Inductively defined structures are ubiquitous in mathematics; their specification is unambiguous and their properties are powerful. All fields of mathematical logic feature these structures prominently: the formula of a language, the set of theorems, the natural numbers, the primitive recursive functions, the constructive number classes and segments of the cumulative hierarchy of sets. -/- This dissertation gives a mathematical characterization of a species of inductively defined structures, called accessible domains, which include all of the above examples except the set of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. The Unusual Logic of Hurka's Recursive Account.Avram Hiller - 2012 - Journal of Ethics and Social Philosophy 6 (1):1-6.
    Thomas Hurka, in his book Virtue, Vice, and Value, and elsewhere, develops a recursive analysis of higher-order pleasures and pains. The account leads Hurka to some potentially controversial conclusions. For instance, Hurka argues on its basis that some states are both good and evil and also that the view he calls the conditionality view is false. In this paper, I argue that Hurka’s formulation of the recursive account is unusual and inelegant, and that Hurka reaches his conclusions only because of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Kurt Gödel and Computability Theory.Richard Zach - 2006 - In Beckmann Arnold, Berger Ulrich, Löwe Benedikt & Tucker John V. (eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Swansea. Proceedings. Springer. pp. 575--583.
    Although Kurt Gödel does not figure prominently in the history of computabilty theory, he exerted a significant influence on some of the founders of the field, both through his published work and through personal interaction. In particular, Gödel’s 1931 paper on incompleteness and the methods developed therein were important for the early development of recursive function theory and the lambda calculus at the hands of Church, Kleene, and Rosser. Church and his students studied Gödel 1931, and Gödel taught a seminar (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Opinion leaders, independence, and Condorcet's Jury Theorem.David M. Estlund - 1994 - Theory and Decision 36 (2):131-162.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  30. Variable Binding Term Operators.John Corcoran, William Hatcher & John Herring - 1972 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 18 (12):177-182.
    Chapin reviewed this 1972 ZEITSCHRIFT paper that proves the completeness theorem for the logic of variable-binding-term operators created by Corcoran and his student John Herring in the 1971 LOGIQUE ET ANALYSE paper in which the theorem was conjectured. This leveraging proof extends completeness of ordinary first-order logic to the extension with vbtos. Newton da Costa independently proved the same theorem about the same time using a Henkin-type proof. This 1972 paper builds on the 1971 “Notes on a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  31. Maximally Consistent Sets of Instances of Naive Comprehension.Luca Incurvati & Julien Murzi - 2017 - Mind 126 (502).
    Paul Horwich (1990) once suggested restricting the T-Schema to the maximally consistent set of its instances. But Vann McGee (1992) proved that there are multiple incompatible such sets, none of which, given minimal assumptions, is recursively axiomatizable. The analogous view for set theory---that Naïve Comprehension should be restricted according to consistency maxims---has recently been defended by Laurence Goldstein (2006; 2013). It can be traced back to W.V.O. Quine(1951), who held that Naïve Comprehension embodies the only really intuitive conception of set (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. On the philosophical relevance of Gödel's incompleteness theorems.Panu Raatikainen - 2005 - Revue Internationale de Philosophie 59 (4):513-534.
    A survey of more philosophical applications of Gödel's incompleteness results.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  33. Diagonal arguments and fixed points.Saeed Salehi - 2017 - Bulletin of the Iranian Mathematical Society 43 (5):1073-1088.
    ‎A universal schema for diagonalization was popularized by N. S‎. ‎Yanofsky (2003)‎, ‎based on a pioneering work of F.W‎. ‎Lawvere (1969)‎, ‎in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function‎. ‎It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema‎. ‎Here‎, ‎we fit more theorems in the universal‎ ‎schema of diagonalization‎, ‎such as Euclid's proof for the infinitude of the primes and new proofs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Arrow's theorem in judgment aggregation.Franz Dietrich & Christian List - 2007 - Social Choice and Welfare 29 (1):19-33.
    In response to recent work on the aggregation of individual judgments on logically connected propositions into collective judgments, it is often asked whether judgment aggregation is a special case of Arrowian preference aggregation. We argue for the converse claim. After proving two impossibility theorems on judgment aggregation (using "systematicity" and "independence" conditions, respectively), we construct an embedding of preference aggregation into judgment aggregation and prove Arrow’s theorem (stated for strict preferences) as a corollary of our second result. Although we (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  35. Bell’s Theorem, Quantum Probabilities, and Superdeterminism.Eddy Keming Chen - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  36. Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Arithmetic logical Irreversibility and the Halting Problem (Revised and Fixed version).Yair Lapin - manuscript
    The Turing machine halting problem can be explained by several factors, including arithmetic logic irreversibility and memory erasure, which contribute to computational uncertainty due to information loss during computation. Essentially, this means that an algorithm can only preserve information about an input, rather than generate new information. This uncertainty arises from characteristics such as arithmetic logical irreversibility, Landauer's principle, and memory erasure, which ultimately lead to a loss of information and an increase in entropy. To measure this uncertainty and loss (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Why Arrow's Theorem Matters for Political Theory Even If Preference Cycles Never Occur.Sean Ingham - forthcoming - Public Choice.
    Riker (1982) famously argued that Arrow’s impossibility theorem undermined the logical foundations of “populism”, the view that in a democracy, laws and policies ought to express “the will of the people”. In response, his critics have questioned the use of Arrow’s theorem on the grounds that not all configurations of preferences are likely to occur in practice; the critics allege, in particular, that majority preference cycles, whose possibility the theorem exploits, rarely happen. In this essay, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Escaping Arrow's Theorem: The Advantage-Standard Model.Wesley Holliday & Mikayla Kelley - forthcoming - Theory and Decision.
    There is an extensive literature in social choice theory studying the consequences of weakening the assumptions of Arrow's Impossibility Theorem. Much of this literature suggests that there is no escape from Arrow-style impossibility theorems unless one drastically violates the Independence of Irrelevant Alternatives (IIA). In this paper, we present a more positive outlook. We propose a model of comparing candidates in elections, which we call the Advantage-Standard (AS) model. The requirement that a collective choice rule (CCR) be rationalizable by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Bell's Theorem Begs the Question.Joy Christian - manuscript
    I demonstrate that Bell's theorem is based on circular reasoning and thus a fundamentally flawed argument. It unjustifiably assumes the additivity of expectation values for dispersion-free states of contextual hidden variable theories for non-commuting observables involved in Bell-test experiments, which is tautologous to assuming the bounds of ±2 on the Bell-CHSH sum of expectation values. Its premises thus assume in a different guise the bounds of ±2 it sets out to prove. Once this oversight is ameliorated from Bell's argument (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Note on Fractional Triple Aboodh Transform and Its Properties.S. Alfaqeih & T.ÖZIS - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (5):34-37.
    Abstract: In this paper, the definition of triple Aboodh transform of fractional order α, where α ϵ [0, 1], is introduced for functions which are fractional differentiable. We also present several properties of this transform. Furthermore, some main theorems and their proofs are discussed.
    Download  
     
    Export citation  
     
    Bookmark  
  42. Making Sense of Bell’s Theorem and Quantum Nonlocality.Stephen Boughn - 2017 - Foundations of Physics 47 (5):640-657.
    Bell’s theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell’s theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system. Einstein was repulsed by such “spooky action at a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  43. Natural Topology.Frank Waaldijk - 2012 - Brouwer Society.
    We develop a simple framework called ‘natural topology’, which can serve as a theoretical and applicable basis for dealing with real-world phenomena.Natural topology is tailored to make pointwise and pointfree notions go together naturally. As a constructive theory in BISH, it gives a classical mathematician a faithful idea of important concepts and results in intuitionism. -/- Natural topology is well-suited for practical and computational purposes. We give several examples relevant for applied mathematics, such as the decision-support system Hawk-Eye, and various (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Frege's Basic Law V and Cantor's Theorem.Manuel Bremer - manuscript
    The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). These (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Fermat's Least Time Principle Violates Ptolemy's Theorem.Radhakrishnamurty Padyala - manuscript
    Fermat’s Least Time Principle has a long history. World’s foremost academies of the day championed by their most prestigious philosophers competed for the glory and prestige that went with the solution of the refraction problem of light. The controversy, known as Descartes - Fermat controversy was due to the contradictory views held by Descartes and Fermat regarding the relative speeds of light in different media. Descartes with his mechanical philosophy insisted that every natural phenomenon must be explained by mechanical principles. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Theoremizing Yablo's Paradox.Ahmad Karimi & Saeed Salehi - manuscript
    To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self--reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided self--reference. We turn Yablo's paradox, the most challenging paradox in the recent years, into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo's paradox comes in several varieties; and he showed in 2004 that there are other versions that are equally paradoxical. Formalizing these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Updating Data Semantics.Anthony S. Gillies - 2020 - Mind 129 (513):1-41.
    This paper has three main goals. First, to motivate a puzzle about how ignorance-expressing terms like maybe and if interact: they iterate, and when they do they exhibit scopelessness. Second, to argue that there is an ambiguity in our theoretical toolbox, and that exposing that opens the door to a solution to the puzzle. And third, to explore the reach of that solution. Along the way, the paper highlights a number of pleasing properties of two elegant semantic theories, explores some (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  48. Georg Cantor’s Ordinals, Absolute Infinity & Transparent Proof of the Well-Ordering Theorem.Hermann G. W. Burchard - 2019 - Philosophy Study 9 (8).
    Georg Cantor's absolute infinity, the paradoxical Burali-Forti class Ω of all ordinals, is a monstrous non-entity for which being called a "class" is an undeserved dignity. This must be the ultimate vexation for mathematical philosophers who hold on to some residual sense of realism in set theory. By careful use of Ω, we can rescue Georg Cantor's 1899 "proof" sketch of the Well-Ordering Theorem––being generous, considering his declining health. We take the contrapositive of Cantor's suggestion and add Zermelo's choice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Leibniz's Calculus Proof of Snell's Laws Violates Ptolemy's Theorem. Radhakrishanamurty - manuscript
    Leibniz proposed the ‘Most Determined Path Principle’ in seventeenth century. According to it, ‘ease’ of travel is the end purpose of motion. Using this principle and his calculus method he demonstrated Snell’s Laws of reflection and refraction. This method shows that light follows extremal (local minimum or maximum) time path in going from one point to another, either directly along a straight line path or along a broken line path when it undergoes reflection or refraction at plane or spherical (concave (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Von Neumann's Methodology of Science: From Incompleteness Theorems to Later foundational Reflections.Giambattista Formica - 2010 - Perspectives on Science 18 (4):480-499.
    In spite of the many efforts made to clarify von Neumann’s methodology of science, one crucial point seems to have been disregarded in recent literature: his closeness to Hilbert’s spirit. In this paper I shall claim that the scientific methodology adopted by von Neumann in his later foundational reflections originates in the attempt to revaluate Hilbert’s axiomatics in the light of Gödel’s incompleteness theorems. Indeed, axiomatics continues to be pursued by the Hungarian mathematician in the spirit of Hilbert’s school. I (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 965