A number of authors have objected to the application of non-classicallogic to problems in philosophy on the basis that these non-classical logics are usually characterised by a classical metatheory. In many cases the problem amounts to more than just a discrepancy; the very phenomena responsible for non-classicality occur in the field of semantics as much as they do elsewhere. The phenomena of higher order vagueness and the revenge liar are just two such examples. The aim of (...) this paper is to show that a large class of non-classical logics are strong enough to formulate their own model theory in a corresponding non-classical set theory. Specifically I show that adequate definitions of validity can be given for the propositional calculus in such a way that the metatheory proves, in the specified logic, that every theorem of the propositional fragment of that logic is validated. It is shown that in some cases it may fail to be a classical matter whether a given sentence is valid or not. One surprising conclusion for non-classical accounts of vagueness is drawn: there can be no axiomatic, and therefore precise, system which is determinately sound and complete. (shrink)
This work contributes to the theory of judgement aggregation by discussing a number of significant non-classical logics. After adapting the standard framework of judgement aggregation to cope with non-classical logics, we discuss in particular results for the case of Intuitionistic Logic, the Lambek calculus, Linear Logic and Relevant Logics. The motivation for studying judgement aggregation in non-classical logics is that they offer a number of modelling choices to represent agents’ reasoning in aggregation problems. By studying (...) judgement aggregation in logics that are weaker than classical logic, we investigate whether some well-known impossibility results, that were tailored for classical logic, still apply to those weak systems. (shrink)
The thesis that the two-valued system of classical logic is insufficient to explanation the various intermediate situations in the entity, has led to the development of many-valued and fuzzy logic systems. These systems suggest that this limitation is incorrect. They oppose the law of excluded middle (tertium non datur) which is one of the basic principles of classical logic, and even principle of non-contradiction and argue that is not an obstacle for things both to exist and to (...) not exist at the same time. However, contrary to these claims, there is no inadequacy in the two-valued system of classical logic in explanation the intermediate situations in existence. The law of exclusion and the intermediate situations in the external world are separate things. The law of excluded middle has been inevitably accepted by other logic systems which are considered to reject this principle. The many-valued and the fuzzy logic systems do not transcend the classical logic. Misconceptions from incomplete information and incomplete research are effective in these criticisms. In addition, it is also effective to move the discussion about the intellectual conception (tasawwur) into the field of judgmental assent (tasdiq) and confusion of the mawhum (imaginable) with the ma‘kûl (intellegible). (shrink)
This is the first of a two-volume work combining two fundamental components of contemporary computing into classical deductive computing, a powerful form of computation, highly adequate for programming and automated theorem proving, which, in turn, have fundamental applications in areas of high complexity and/or high security such as mathematical proof, software specification and verification, and expert systems. Deductive computation is concerned with truth-preservation: This is the essence of the satisfiability problem, or SAT, the central computational problem in computability and complexity (...) theory. The Turing machine provides the classical version of this theory—classical computing—with its standard model, which is physically concretized—and thus spatial-temporally limited and restricted—in the von Neumann, or digital, computer. Although a number of new technological applications require classical deductive computation with non-classical logics, many key technologies still do well—or exclusively, for that matter—with classical logic. In this first volume, we elaborate on classical deductive computing with classical logic. The objective of the main text is to provide the reader with a thorough elaboration on both classical computing and classical deduction with the classical first-order predicate calculus with a view to computational implementations. As a complement to the mathematical-based exposition of the topics we offer the reader a very large selection of exercises. This selection aims at not only practice of discussed material, but also creative approaches to problems, for both discussed and novel contents, as well as at research into further relevant topics. (shrink)
This article presents modal versions of resource-conscious logics. We concentrate on extensions of variants of linear logic with one minimal non-normal modality. In earlier work, where we investigated agency in multi-agent systems, we have shown that the results scale up to logics with multiple non-minimal modalities. Here, we start with the language of propositional intuitionistic linear logic without the additive disjunction, to which we add a modality. We provide an interpretation of this language on a class of Kripke (...) resource models extended with a neighbourhood function: modal Kripke resource models. We propose a Hilbert-style axiomatisation and a Gentzen-style sequent calculus. We show that the proof theories are sound and complete with respect to the class of modal Kripke resource models. We show that the sequent calculus admits cut elimination and that proof-search is in PSPACE. We then show how to extend the results when non-commutative connectives are added to the language. Finally, we put the l.. (shrink)
The Knower paradox purports to place surprising a priori limitations on what we can know. According to orthodoxy, it shows that we need to abandon one of three plausible and widely-held ideas: that knowledge is factive, that we can know that knowledge is factive, and that we can use logical/mathematical reasoning to extend our knowledge via very weak single-premise closure principles. I argue that classical logic, not any of these epistemic principles, is the culprit. I develop a consistent theory (...) validating all these principles by combining Hartry Field's theory of truth with a modal enrichment developed for a different purpose by Michael Caie. The only casualty is classical logic: the theory avoids paradox by using a weaker-than-classical K3 logic. I then assess the philosophical merits of this approach. I argue that, unlike the traditional semantic paradoxes involving extensional notions like truth, its plausibility depends on the way in which sentences are referred to--whether in natural languages via direct sentential reference, or in mathematical theories via indirect sentential reference by Gödel coding. In particular, I argue that from the perspective of natural language, my non-classical treatment of knowledge as a predicate is plausible, while from the perspective of mathematical theories, its plausibility depends on unresolved questions about the limits of our idealized deductive capacities. (shrink)
Every countable language which conforms to classical logic is shown to have an extension which has a consistent definitional theory of truth. That extension has a consistent semantical theory of truth, if every sentence of the object language is valuated by its meaning either as true or as false. These theories contain both a truth predicate and a non-truth predicate. Theories are equivalent when sentences of the object lqanguage are valuated by their meanings.
Max Cresswell and Hilary Putnam seem to hold the view, often shared by classical logicians, that paraconsistent logic has not been made sense of, despite its well-developed mathematics. In this paper, I examine the nature of logic in order to understand what it means to make sense of logic. I then show that, just as one can make sense of non-normal modal logics (as Cresswell demonstrates), we can make `sense' of paraconsistent logic. Finally, I turn the (...) tables on classical logicians and ask what sense can be made of explosive reasoning. While I acknowledge a bias on this issue, it is not clear that even classical logicians can answer this question. (shrink)
In recent years there has been a revitalised interest in non-classical solutions to the semantic paradoxes. In this paper I show that a number of logics are susceptible to a strengthened version of Curry's paradox. This can be adapted to provide a proof theoretic analysis of the omega-inconsistency in Lukasiewicz's continuum valued logic, allowing us to better evaluate which logics are suitable for a naïve truth theory. On this basis I identify two natural subsystems of Lukasiewicz logic (...) which individually, but not jointly, lack the problematic feature. (shrink)
*These notes were folded into the published paper "Probability and nonclassical logic*. Revising semantics and logic has consequences for the theory of mind. Standard formal treatments of rational belief and desire make classical assumptions. If we are to challenge the presuppositions, we indicate what is kind of theory is going to take their place. Consider probability theory interpreted as an account of ideal partial belief. But if some propositions are neither true nor false, or are half true, or (...) whatever—then it’s far from clear that our degrees of belief in it and its negation should sum to 1, as classical probability theory requires (?, cf.). There are extant proposals in the literature for generalizing (categorical) probability theory to a non-classical setting, and we will use these below. But subjective probabilities themselves stand in functional relations to other mental states, and we need to trace the knock-on consequences of revisionism for this interrelationship (arguably, degrees of belief only count as kinds of belief in virtue of standing in these functional relationships). (shrink)
I present a paradoxical combination of desires. I show why it's paradoxical, and consider ways of responding. The paradox saddles us with an unappealing trilemma: either we reject the possibility of the case by placing surprising restrictions on what we can desire, or we deny plausibly constitutive principles linking desires to the conditions under which they are satisfied, or we revise some bit of classical logic. I argue that denying the possibility of the case is unmotivated on any reasonable (...) way of thinking about mental content, and rejecting those desire-satisfaction principles leads to revenge paradoxes. So the best response is a non-classical one, according to which certain desires are neither determinately satisfied nor determinately not satisfied. Thus, theorizing about paradoxical propositional attitudes helps constrain the space of possibilities for adequate solutions to semantic paradoxes more generally. (shrink)
We study a new formal logic LD introduced by Prof. Grzegorczyk. The logic is based on so-called descriptive equivalence, corresponding to the idea of shared meaning rather than shared truth value. We construct a semantics for LD based on a new type of algebras and prove its soundness and completeness. We further show several examples of classical laws that hold for LD as well as laws that fail. Finally, we list a number of open problems. -/- .
I develop and defend a truthmaker semantics for the relevant logic R. The approach begins with a simple philosophical idea and develops it in various directions, so as to build a technically adequate relevant semantics. The central philosophical idea is that truths are true in virtue of specific states. Developing the idea formally results in a semantics on which truthmakers are relevant to what they make true. A very natural notion of conditionality is added, giving us relevant implication. I (...) then investigate ways to add conjunction, disjunction, and negation; and I discuss how to justify contraposition and excluded middle within a truthmaker semantics. (shrink)
Could there be a single logical system that would allow us to work simultaneously with classical, paraconsistent, and paracomplete negations? These three negations were separately studied in logics whose negations bear their names. Initially we will restrict our analysis to propositional logics by analyzing classical negation, ¬c, as treated by Classical Propositional Logic (LPC); the paraconsistent negation, ¬p, as treated through the hierarchy of Paraconsistent Propositional Calculi Cn (0 ≤ n ≤ ω); and the paracomplete negation, ¬q, as treated (...) by the hierarchy of Paracomplete Propositional Calculi Pn (0 ≤ n ≤ ω). In “Logics that are both paraconsistent and paracomplete” (1989), Newton da Costa proposed a system with approximate characteristics to what we are looking for. In the hierarchy of Non-Alethical Propositional Calculi Nn (0 ≤ n ≤ ω), only one negation is introduced (as primitive), called a “non-alethic” (¬n), whose operation preserves the properties of classical, or paraconsistent or paracomplete negation -- depending on the well or ill behavior of the formula connected to it. However, as we shall see, in the hierarchy Nn we can not reiterate negations with different behaviors in a same formula (e.g., ¬p¬cα or ¬q¬c¬p α), or even analyze a formula like ¬cα → ¬pα. In view of these problems, can we really say that the hierarchy Nn allows us to understand the relationships and interactions of the three types of negations? In order to deal with this, given the initial problem, we will present four axiomatic systems (KG) in which, unlike Nn, the three negations are directly introduced -- offering a semantics and a method of proofs by analytic tableaux. Through the KG Systems we will show how the negations interact, obtaining non-demonstrable theorems in LPC, Cn, Pn, and Nn (0 ≤ n ≤ ω). Finally, we will also offer a first-order extension for the KG Systems. (shrink)
Here are considered the conditions under which the method of diagrams is liable to include non-classical logics, among which the spatial representation of non-bivalent negation. This will be done with two intended purposes, namely: a review of the main concepts involved in the definition of logical negation; an explanation of the epistemological obstacles against the introduction of non-classical negations within diagrammatic logic.
An exact truthmaker for A is a state which, as well as guaranteeing A’s truth, is wholly relevant to it. States with parts irrelevant to whether A is true do not count as exact truthmakers for A. Giving semantics in this way produces a very unusual consequence relation, on which conjunctions do not entail their conjuncts. This feature makes the resulting logic highly unusual. In this paper, we set out formal semantics for exact truthmaking and characterise the resulting notion (...) of entailment, showing that it is compact and decidable. We then investigate the effect of various restrictions on the semantics. We also formulate a sequent-style proof system for exact entailment and give soundness and completeness results. (shrink)
While non-classical theories of truth that take truth to be transparent have some obvious advantages over any classical theory that evidently must take it as non-transparent, several authors have recently argued that there's also a big disadvantage of non-classical theories as compared to their “external” classical counterparts: proof-theoretic strength. While conceding the relevance of this, the paper argues that there is a natural way to beef up extant internal theories so as to remove their proof-theoretic disadvantage. It is (...) suggested that the resulting internal theories should seem preferable to their external counterparts. (shrink)
In this paper, by suggesting a formal representation of science based on recent advances in logic-based Artificial Intelligence (AI), we show how three serious concerns around the realisation of traditional scientific realism (the theory/observation distinction, over-determination of theories by data, and theory revision) can be overcome such that traditional realism is given a new guise as ‘naturalised’. We contend that such issues can be dealt with (in the context of scientific realism) by developing a formal representation of science based (...) on the application of the following tools from Knowledge Representation: the family of Description Logics, an enrichment of classical logics via defeasible statements, and an application of the preferential interpretation of the approach to Belief Revision. (shrink)
A dialectical contradiction can be appropriately described within the framework of classical formal logic. It is in harmony with the law of noncontradiction. According to our definition, two theories make up a dialectical contradiction if each of them is consistent and their union is inconsistent. It can happen that each of these two theories has an intended model. Plenty of examples are to be found in the history of science.
A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems (...) to change this situation. The book includes almost every major author currently working in the field. The papers are on the cutting edge of the literature some of which discuss current debates and others present important new ideas. The editors have avoided papers about technical details of paraconsistent logic, but instead concentrated upon works that discuss more 'big picture' ideas. Different treatments of paradoxes takes centre stage in many of the papers, but also there are several papers on how to interpret paraconistent logic and some on how it can be applied to philosophy of mathematics, the philosophy of language, and metaphysics. (shrink)
JOHN CORCORAN AND WAGNER SANZ, Disbelief Logic Complements Belief Logic. Philosophy, University at Buffalo, Buffalo, NY 14260-4150 USA E-mail: corcoran@buffalo.edu Filosofia, Universidade Federal de Goiás, Goiás, GO 74001-970 Brazil E-mail: sanz@fchf.ufg.br -/- Consider two doxastic states belief and disbelief. Belief is taking a proposition to be true and disbelief taking it to be false. Judging also dichotomizes: accepting a proposition results in belief and rejecting in disbelief. Stating follows suit: asserting a proposition conveys belief and denying conveys disbelief. (...) Traditional logic implicitly focused on logical relations and processes needed in expanding and organizing systems of beliefs. Deducing a conclusion from beliefs results in belief of the conclusion. Deduction presupposes consequence: one proposition is a consequence of a set of a propositions if the latter logically implies the former. The role of consequence depends on its being truth-preserving: every consequence of a set of truths is true. This paper, which builds on previous work by the second author, explores roles of logic in expanding and organizing systems of disbeliefs. Aducing a conclusion from disbeliefs results in disbelief of the conclusion. Aduction presupposes contrequence: one proposition is a contrequence of a set of propositions if the set of negations or contradictory opposites of the latter logically implies that of the former. The role of contrequence depends on its being falsity-preserving: every contrequence of a set of falsehoods is false. A system of aductions that includes, for every contrequence of a given set, an aduction of the contrequence from the set is said to be complete. Historical and philosophical discussion is illustrated and enriched by presenting complete systems of aductions constructed by the second author. One such, a natural aduction system for Aristotelian categorical propositions, is based on a natural deduction system attributed to Aristotle by the first author and others. ADDED NOTE: Wagner Sanz reconstructed Aristotle’s logic the way it would have been had Aristole focused on constructing “anti-sciences” instead of sciences: more generally, on systems of disbeliefs. (shrink)
This book has three main parts. The first, longer, part is a reprint of the author's Deviant Logic, which initially appeared as a book by itself in 1974. The second and third parts include reprints of five papers originally published between 1973 and 1980. Three of them focus on the nature and justification of deductive reasoning, which are also a major concern of Deviant Logic. The other two are on fuzzy logic, and make up for a major (...) omission of Deviant Logic. (shrink)
This is a review of: Newton C.A. da Costa, Logiques Classiques et Non Classiques. Essai sur les Fondements de la Logique. Translated from the Portuguese by Jean-Yves Béziau (with two appendices by the translator) Culture Scientifique, Masson, Paris, 1997, 276p. ISBN 2-225-85247-2.
Abstract Hybrid languages are introduced in order to evaluate the strength of “minimal” mereologies with relatively strong frame definability properties. Appealing to a robust form of nominalism, I claim that one investigated language Hm is maximally acceptable for nominalistic mereology. In an extension Hgem of Hm, a modal analog for the classical systems of Leonard and Goodman (J Symb Log 5:45–55, 1940) and Lesniewski (1916) is introduced and shown to be complete with respect to 0- deleted Boolean algebras. We characterize (...) the formulas of first-order logic invariant for Hgem-bisimulations. (shrink)
There is widespread agreement that while on a Dummettian theory of meaning the justified logic is intuitionist, as its constants are governed by harmonious rules of inference, the situation is reversed on Huw Price's bilateralist account, where meanings are specified in terms of primitive speech acts assertion and denial. In bilateral logics, the rules for classical negation are in harmony. However, as it is possible to construct an intuitionist bilateral logic with harmonious rules, there is no formal argument (...) against intuitionism from the bilateralist perspective. Price gives an informal argument for classical negation based on a pragmatic notion of belief, characterised in terms of the differences they make to speakers' actions. The main part of this paper puts Price's argument under close scrutiny by regimenting it and isolating principles Price is committed to. It is shown that Price should draw a distinction between A or ¬A making a difference. According to Price, if A makes a difference to us, we treat it as decidable. This material allows the intuitionist to block Price's argument. Abandoning classical logic also brings advantages, as within intuitionist logic there is a precise meaning to what it might mean to treat A as decidable: it is to assume A ∨ ¬A. (shrink)
This is the 2nd edition of Computational logic. Vol. 1: Classical deductive computing with classical logic. This edition has a wholly new chapter on Datalog, a hard nut to crack from the viewpoint of semantics when negation is included.
Paraconsistent logics are logical systems that reject the classical principle, usually dubbed Explosion, that a contradiction implies everything. However, the received view about paraconsistency focuses only the inferential version of Explosion, which is concerned with formulae, thereby overlooking other possible accounts. In this paper, we propose to focus, additionally, on a meta-inferential version of Explosion, i.e. which is concerned with inferences or sequents. In doing so, we will offer a new characterization of paraconsistency by means of which a logic (...) is paraconsistent if it invalidates either the inferential or the meta-inferential notion of Explosion. We show the non-triviality of this criterion by discussing a number of logics. On the one hand, logics which validate and invalidate both versions of Explosion, such as classical logic and Asenjo–Priest’s 3-valued logic LP. On the other hand, logics which validate one version of Explosion but not the other, such as the substructural logics TS and ST, introduced by Malinowski and Cobreros, Egré, Ripley and van Rooij, which are obtained via Malinowski’s and Frankowski’s q- and p-matrices, respectively. (shrink)
This paper discusses a dualization of Fitting's notion of a "cut-down" operation on a bilattice, rendering a "track-down" operation, later used to represent the idea that a consistent opinion cannot arise from a set including an inconsistent opinion. The logic of track-down operations on bilattices is proved equivalent to the logic d_Sfde, dual to Deutsch's system S_fde. Furthermore, track-down operations are employed to provide an epistemic interpretation for paraconsistent weak Kleene logic. Finally, two logics of sequential combinations (...) of cut-and track-down operations allow settling positively the question of whether bilattice-based semantics are available for subsystems of S_fde. (shrink)
Abstract. As a general theory of reasoning—and as a general theory of what holds true under every possible circumstance—logic is supposed to be ontologically neutral. It ought to have nothing to do with questions concerning what there is, or whether there is anything at all. It is for this reason that traditional Aristotelian logic, with its tacit existential presuppositions, was eventually deemed inadequate as a canon of pure logic. And it is for this reason that modern quantification (...) theory, too, with its residue of existentially loaded theorems and patterns of inference, has been claimed to suffer from a defect of logical purity. The law of non-contradiction rules out certain circumstances as impossible—circumstances in which a statement is both true and false, or perhaps circumstances where something both is and is not the case. Is this to be regarded as a further ontological bias? (shrink)
My first section considers Walter J. Ong’s influential analyses of the logical method of Peter Ramus, on whose system Milton based his Art of Logic. The upshot of Ong’s work is that philosophical logic has become a kind monarch over all other discourses, the allegedly timeless and universal method of mapping and diagramming all concepts. To show how Milton nevertheless resists this tyrannical result in his non-Logic writings, my second section offers new readings of Milton’s poems Il (...) Penseroso and Sonnet 16: “On His Blindness”, along with his prose epilogue to his elegies (and thereby the entire collection entitled Poems). These readings attempt to show (1) the original admixing of philosophy and poetry (under the heading of “thoughtfulness”), (2) the shadow-hidden superiority of poetry in connection to the effeminising disability of blindness, and (3) the potential irony of an apology that arguably suggests poetry’s superiority to philosophy. Finally, I rest my case for Milton’s rebellion by offering an interpretation of Paradise Lost which affirms the character of Satan qua dark, queer, poetic figure of classical republicanism. (shrink)
I investigate syntactic notions of theoretical equivalence between logical theories and a recent objection thereto. I show that this recent criticism of syntactic accounts, as extensionally inadequate, is unwarranted by developing an account which is plausibly extensionally adequate and more philosophically motivated. This is important for recent anti-exceptionalist treatments of logic since syntactic accounts require less theoretical baggage than semantic accounts.
The traditional Lewis–Stalnaker semantics treats all counterfactuals with an impossible antecedent as trivially or vacuously true. Many have regarded this as a serious defect of the semantics. For intuitively, it seems, counterfactuals with impossible antecedents—counterpossibles—can be non-trivially true and non-trivially false. Whereas the counterpossible "If Hobbes had squared the circle, then the mathematical community at the time would have been surprised" seems true, "If Hobbes had squared the circle, then sick children in the mountains of Afghanistan at the time would (...) have been thrilled" seems false. Many have proposed to extend the Lewis–Stalnaker semantics with impossible worlds to make room for a non-trivial or non-vacuous treatment of counterpossibles. Roughly, on the extended Lewis–Stalnaker semantics, we evaluate a counterfactual of the form "If A had been true, then C would have been true" by going to closest world—whether possible or impossible—in which A is true and check whether C is also true in that world. If the answer is "yes", the counterfactual is true; otherwise it is false. Since there are impossible worlds in which the mathematically impossible happens, there are impossible worlds in which Hobbes manages to square the circle. And intuitively, in the closest such impossible worlds, sick children in the mountains of Afghanistan are not thrilled—they remain sick and unmoved by the mathematical developments in Europe. If so, the counterpossible "If Hobbes had squared the circle, then sick children in the mountains of Afghanistan at the time would have been thrilled" comes out false, as desired. In this paper, I will critically investigate the extended Lewis–Stalnaker semantics for counterpossibles. I will argue that the standard version of the extended semantics, in which impossible worlds correspond to maximal, logically inconsistent entities, fails to give the correct semantic verdicts for many counterpossibles. In light of the negative arguments, I will then outline a new version of the extended Lewis–Stalnaker semantics that can avoid these problems. (shrink)
This paper considers Rumfitt’s bilateral classical logic (BCL), which is proposed to counter Dummett’s challenge to classical logic. First, agreeing with several authors, we argue that Rumfitt’s notion of harmony, used to justify logical rules by a purely proof theoretical manner, is not sufficient to justify coordination rules in BCL purely proof-theoretically. For the central part of this paper, we propose a notion of proof-theoretical validity similar to Prawitz for BCL and proves that BCL is sound and complete (...) respect to this notion of validity. The major difficulty in defining validity for BCL is that validity of positive +A appears to depend on negative −A, and vice versa. Thus, the straightforward inductive definition does not work because of this circular dependance. However, Knaster-Tarski’s fixed point theorem can resolve this circularity. Finally, we discuss the philosophical relevance of our work, in particular, the impact of the use of fixed point theorem and the issue of decidability. (shrink)
This paper shows how to conservatively extend classical logic with a transparent truth predicate, in the face of the paradoxes that arise as a consequence. All classical inferences are preserved, and indeed extended to the full (truth—involving) vocabulary. However, not all classical metainferences are preserved; in particular, the resulting logical system is nontransitive. Some limits on this nontransitivity are adumbrated, and two proof systems are presented and shown to be sound and complete. (One proof system allows for Cut—elimination, but (...) the other does not.). (shrink)
Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...) or non-deductive logic), and some detailed examples of its use in mathematics surveyed. Examples of inductive reasoning in experimental mathematics are given and it is argued that the problem of induction is best appreciated in the mathematical case. (shrink)
We present a philosophical motivation for the logics of formal inconsistency, a family of paraconsistent logics whose distinctive feature is that of having resources for expressing the notion of consistency within the object language. We shall defend the view according to which logics of formal inconsistency are theories of logical consequence of normative and epistemic character. This approach not only allows us to make inferences in the presence of contradictions, but offers a philosophically acceptable account of paraconsistency.
The relationship between the Russell's 'Western' philosophy, which remains for the most part the philosophy of the modern university department, and the 'Perennial' or 'non-dual' philosophy of Plotinus, the Buddha and Lao Tsu is not widely understood. We examine this relationship by reference to the Noble Nagarjuna and his explanation of the antinomies of metaphysics. We suggest that in respect of logical analysis the relationship is a simple one since all clear-thinking philosophers must converge on the same results.
As the journal is effectively defunct, I am uploading a full-text copy, but only of my abstract and article, and some journal front matter. -/- Note that the pagination in the PDF version differs from the official pagination because A4 and 8.5" x 11" differ. -/- Traditionally, imperatives have been handled with deontic logics, not the logic of propositions which bear truth values. Yet, an imperative is issued by the speaker to cause (stay) actions which change the state of (...) affairs, which is, in turn, described by propositions that bear truth values. Thus, ultimately, imperatives affect truth values. In this paper, we put forward an idea that allows us to reason with imperatives using classical logic by constructing a one-to-one correspondence between imperatives and a particular class of declaratives. (shrink)
Formal ontologies are nowadays widely considered a standard tool for knowledge representation and reasoning in the Semantic Web. In this context, they are expected to play an important role in helping automated processes to access information. Namely: they are expected to provide a formal structure able to explicate the relationships between different concepts/terms, thus allowing intelligent agents to interpret, correctly, the semantics of the web resources improving the performances of the search technologies. Here we take into account a problem regarding (...) Knowledge Representation in general, and ontology based representations in particular; namely: the fact that knowledge modeling seems to be constrained between conflicting requirements, such as compositionality, on the one hand and the need to represent prototypical information on the other. In particular, most common sense concepts seem not to be captured by the stringent semantics expressed by such formalisms as, for example, Description Logics (which are the formalisms on which the ontology languages have been built). The aim of this work is to analyse this problem, suggesting a possible solution suitable for formal ontologies and semantic web representations. The questions guiding this research, in fact, have been: is it possible to provide a formal representational framework which, for the same concept, combines both the classical modelling view (accounting for compositional information) and defeasible, prototypical knowledge ? Is it possible to propose a modelling architecture able to provide different type of reasoning (e.g. classical deductive reasoning for the compositional component and a non monotonic reasoning for the prototypical one)? We suggest a possible answer to these questions proposing a modelling framework able to represent, within the semantic web languages, a multilevel representation of conceptual information, integrating both classical and non classical (typicality based) information. Within this framework we hypothesise, at least in principle, the coexistence of multiple reasoning processes involving the different levels of representation. (shrink)
We generalize the Kolmogorov axioms for probability calculus to obtain conditions defining, for any given logic, a class of probability functions relative to that logic, coinciding with the standard probability functions in the special case of classical logic but allowing consideration of other classes of "essentially Kolmogorovian" probability functions relative to other logics. We take a broad view of the Bayesian approach as dictating inter alia that from the perspective of a given logic, rational degrees of (...) belief are those representable by probability functions from the class appropriate to that logic. Classical Bayesianism, which fixes the logic as classical logic, is only one version of this general approach. Another, which we call Intuitionistic Bayesianism, selects intuitionistic logic as the preferred logic and the associated class of probability functions as the right class of candidate representions of epistemic states (rational allocations of degrees of belief). Various objections to classical Bayesianism are, we argue, best met by passing to intuitionistic Bayesianism—in which the probability functions are taken relative to intuitionistic logic—rather than by adopting a radically non-Kolmogorovian, for example, nonadditive, conception of (or substitute for) probability functions, in spite of the popularity of the latter response among those who have raised these objections. The interest of intuitionistic Bayesianism is further enhanced by the availability of a Dutch Book argument justifying the selection of intuitionistic probability functions as guides to rational betting behavior when due consideration is paid to the fact that bets are settled only when/if the outcome bet on becomes known. (shrink)
The purpose of this paper is to explore the question of how truthmaker theorists ought to think about their subject in relation to logic. Regarding logic and truthmaking, I defend the view that considerations drawn from advances in modal logic have little bearing on the legitimacy of truthmaker theory. To do so, I respond to objections Timothy Williamson has lodged against truthmaker theory. As for the logic of truthmaking, I show how the project of understanding the (...) logical features of the truthmaking relation has led to an apparent impasse. I offer a new perspective on the logic of truthmaking that both explains the problem and offers a way out. (shrink)
In ancient philosophy, there is no discipline called “logic” in the contemporary sense of “the study of formally valid arguments.” Rather, once a subfield of philosophy comes to be called “logic,” namely in Hellenistic philosophy, the field includes (among other things) epistemology, normative epistemology, philosophy of language, the theory of truth, and what we call logic today. This entry aims to examine ancient theorizing that makes contact with the contemporary conception. Thus, we will here emphasize the theories (...) of the “syllogism” in the Aristotelian and Stoic traditions. However, because the context in which these theories were developed and discussed were deeply epistemological in nature, we will also include references to the areas of epistemological theorizing that bear directly on theories of the syllogism, particularly concerning “demonstration.” Similarly, we will include literature that discusses the principles governing logic and the components that make up arguments, which are topics that might now fall under the headings of philosophy of logic or non-classicallogic. This includes discussions of problems and paradoxes that connect to contemporary logic and which historically spurred developments of logical method. For example, there is great interest among ancient philosophers in the question of whether all statements have truth-values. Relevant themes here include future contingents, paradoxes of vagueness, and semantic paradoxes like the liar. We also include discussion of the paradoxes of the infinite for similar reasons, since solutions have introduced sophisticated tools of logical analysis and there are a range of related, modern philosophical concerns about the application of some logical principles in infinite domains. Our criterion excludes, however, many of the themes that Hellenistic philosophers consider part of logic, in particular, it excludes epistemology and metaphysical questions about truth. Ancient philosophers do not write treatises “On Logic,” where the topic would be what today counts as logic. Instead, arguments and theories that count as “logic” by our criterion are found in a wide range of texts. For the most part, our entry follows chronology, tracing ancient logic from its beginnings to Late Antiquity. However, some themes are discussed in several eras of ancient logic; ancient logicians engage closely with each other’s views. Accordingly, relevant publications address several authors and periods in conjunction. These contributions are listed in three thematic sections at the end of our entry. (shrink)
In this paper I am concerned with an analysis of negative existential sentences that contain proper names only by using negative or neutral free logic. I will compare different versions of neutral free logic with the standard system of negative free logic (Burge, Sainsbury) and aim to defend my version of neutral free logic that I have labeled non-standard neutral free logic.
The paper starts with some textual distinctions concerning the concept of God in the metaphysical framework of two classical schools of Hindu philosophy, Sāṃkhya and Yoga. Then the author focuses on the functional and pedagogical aspects of prayer as well as practical justification of “religious meditation” in both philosophical schools. A special attention is put on the practice called īśvarapraṇidhāna, recommended in Yoga school, which is interpreted by the author as a form of non-theistic devotion. The meaning of the central (...) object of this concentration, that is puruṣa-viśeṣa, is reconsidered in detail. The subject matter is discussed in the wider context of yogic self-discipline that enables a practitioner to overcome ignorance ( avidyā) and the narrowness of egotic perspective (asmitā), recognized in the Hindu darśanas as the root-cause of all suffering or never-fulfilled-satisfaction ( duḥkha). The non-theistic devotion and spiritual pragmatism assumed by the adherents of Sāṃkhya-Yoga redefines the concept of “God” ( īśvara) as primarily an object of meditative practice and a special tool convenient for spiritual pedagogy. (shrink)
We explore the view that Frege's puzzle is a source of straightforward counterexamples to Leibniz's law. Taking this seriously requires us to revise the classical logic of quantifiers and identity; we work out the options, in the context of higher-order logic. The logics we arrive at provide the resources for a straightforward semantics of attitude reports that is consistent with the Millian thesis that the meaning of a name is just the thing it stands for. We provide models (...) to show that some of these logics are non-degenerate. (shrink)
In this paper, we look at applying the techniques from analyzing superintuitionistic logics to extensions of the cointuitionistic Priest-da Costa logic daC (introduced by Graham Priest as “da Costa logic”). The relationship between the superintuitionistic axioms- definable in daC- and extensions of Priest-da Costa logic (sdc-logics) is analyzed and applied to exploring the gap between the maximal si-logic SmL and classical logic in the class of sdc-logics. A sequence of strengthenings of Priest-da Costa logic (...) is examined and employed to pinpoint the maximal non-classical extension of both daC and Heyting-Brouwer logic HB . Finally, the relationship between daC and Logics of Formal Inconsistency is examined. (shrink)
The master's thesis of Dr. Taraneh Javanbakht in philosophy that was published at the Université du Québec à Montréal in 2016 includes her innovations in logic and cognitive sciences as well as some parts of her philosophical system, netism.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.