Results for 'logic and mathematics'

954 found
Order:
  1. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Arbitrary Reference in Logic and Mathematics.Massimiliano Carrara & Enrico Martino - 2024 - Springer Cham (Synthese Library 490).
    This book develops a new approach to plural arbitrary reference and examines mereology, including considering four theses on the alleged innocence of mereology. The authors have advanced the notion of plural arbitrary reference in terms of idealized plural acts of choice, performed by a suitable team of agents. In the first part of the book, readers will discover a revision of Boolosʼ interpretation of second order logic in terms of plural quantification and a sketched structuralist reconstruction of second-order arithmetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Why Metaphysics Needs Logic and Mathematics Doesn't: Mathematics, Logic, and Metaphysics in Peirce's Classification of the Sciences.Cornelis de Waal - 2005 - Transactions of the Charles S. Peirce Society 41 (2):283-297.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  4. Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. (2 other versions)Making Sense of Questions in Logic and Mathematics: Mill vs. Carnap.Esther Ramharter - 2006 - Prolegomena 5 (2):209-218.
    Whether mathematical truths are syntactical (as Rudolf Carnap claimed) or empirical (as Mill actually never claimed, though Carnap claimed that he did) might seem merely an academic topic. However, it becomes a practical concern as soon as we consider the role of questions. For if we inquire as to the truth of a mathematical statement, this question must be (in a certain respect) meaningless for Carnap, as its truth or falsity is certain in advance due to its purely syntactical (or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Review of: Hilary Putnam on Logic and Mathematics, by Geoffrey Hellman and Roy T. Cook (eds.). [REVIEW]Tim Button - 2019 - Mind 129 (516):1327-1337.
    Putnam’s most famous contribution to mathematical logic was his role in investigating Hilbert’s Tenth Problem; Putnam is the ‘P’ in the MRDP Theorem. This volume, though, focusses mostly on Putnam’s work on the philosophy of logic and mathematics. It is a somewhat bumpy ride. Of the twelve papers, two scarcely mention Putnam. Three others focus primarily on Putnam’s ‘Mathematics without foundations’ (1967), but with no interplay between them. The remaining seven papers apparently tackle unrelated themes. Some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Many-valued logics. A mathematical and computational introduction.Luis M. Augusto - 2020 - London: College Publications.
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2021 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work as computational (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  9. Intermediate Logics and the de Jongh property.Dick Jongh, Rineke Verbrugge & Albert Visser - 2011 - Archive for Mathematical Logic 50 (1-2):197-213.
    We prove that all extensions of Heyting Arithmetic with a logic that has the finite frame property possess the de Jongh property.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  10. Logic and the Concept of God.Stanisław Krajewski & Ricardo Sousa Silvestre - 2019 - Journal of Applied Logics 6 (6):999-1005.
    This paper introduces the special issue on the Concept of God of the Journal of Applied Logics (College Publications). The issue contains the following articles: Logic and the Concept of God, by Stanisław Krajewski and Ricardo Silvestre; Mathematical Models in Theology. A Buber-inspired Model of God and its Application to “Shema Israel”, by Stanisław Krajewski; Gödel’s God-like Essence, by Talia Leven; A Logical Solution to the Paradox of the Stone, by Héctor Hernández Ortiz and Victor Cantero; No New Solutions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Debunking Arguments: Mathematics, Logic, and Modal Security.Justin Clarke-Doane - 2017 - In Michael Ruse & Robert J. Richards (eds.), The Cambridge Handbook of Evolutionary Ethics. New York: Cambridge University Press.
    I discuss the structure of genealogical debunking arguments. I argue that they undermine our mathematical beliefs if they undermine our moral beliefs. The contrary appearance stems from a confusion of arithmetic truths with (first-order) logical truths, or from a confusion of reliability with justification. I conclude with a discussion of the cogency of debunking arguments, in light of the above. Their cogency depends on whether information can undermine all of our beliefs of a kind, F, without giving us direct reason (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  13. (1 other version)Book Review: Luck, logic, and white lies: the mathematics of games, second edition. [REVIEW]Catalin Barboianu - 2021 - International Gambling Studies 21.
    Book Review Luck, logic, and white lies: the mathematics of games, second edition by Jörg Bewersdorff, New York, Taylor & Francis, CRC Press, 2021, 568 pp., GBP 42.99 (paperback), ISBN 9780367548414, Number of chapters 51.
    Download  
     
    Export citation  
     
    Bookmark  
  14. Unpacking the logic of mathematical statements.Annie Selden - 1995 - Educational Studies in Mathematics 29:123-151.
    This study focuses on undergraduate students' ability to unpack informally written mathematical statements into the language of predicate calculus. Data were collected between 1989 and 1993 from 61students in six small sections of a “bridge" course designed to introduce proofs and mathematical reasoning. We discuss this data from a perspective that extends the notion of concept image to that of statement image and introduces the notion of proof framework to indicate the top-level logical structure of a proof. For simplified informal (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  15. Paraconsistency: Logic and Applications.Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.) - 2013 - Dordrecht, Netherland: Springer.
    A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  16. Logic and Gambling.Stephen Spielman - manuscript
    This paper outlines a formal recursive wager resolution calculus (WRC) that provides a novel conceptual framework for sentential logic via bridge rules that link wager resolution with truth values. When paired with a traditional truth-centric criterion of logical soundness WRC generates a sentential logic that is broadly truth-conditional but not truth-functional, supports the rules of proof employed in standard mathematics, and is immune to the most vexing features of their traditional implementation. WRC also supports a novel probabilistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Ancient logic and its modern interpretations.John Corcoran (ed.) - 1974 - Boston,: Reidel.
    This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematical logic did not take it seriously enough to study the ancient (...) texts. A renaissance in ancient logic studies occurred in the early 1950s with the publication of the landmark Aristotle’s Syllogistic by Jan Łukasiewicz, Oxford UP 1951, 2nd ed. 1957. Despite its title, it treats the logic of the Stoics as well as that of Aristotle. Łukasiewicz was a distinguished mathematical logician. He had created many-valued logic and the parenthesis-free prefix notation known as Polish notation. He co-authored with Alfred Tarski’s an important paper on metatheory of propositional logic and he was one of Tarski’s the three main teachers at the University of Warsaw. Łukasiewicz’s stature was just short of that of the giants: Aristotle, Boole, Frege, Tarski and Gödel. No mathematical logician of his caliber had ever before quoted the actual teachings of ancient logicians. -/- Not only did Łukasiewicz inject fresh hypotheses, new concepts, and imaginative modern perspectives into the field, his enormous prestige and that of the Warsaw School of Logic reflected on the whole field of ancient logic studies. Suddenly, this previously somewhat dormant and obscure field became active and gained in respectability and importance in the eyes of logicians, mathematicians, linguists, analytic philosophers, and historians. Next to Aristotle himself and perhaps the Stoic logician Chrysippus, Łukasiewicz is the most prominent figure in ancient logic studies. A huge literature traces its origins to Łukasiewicz. -/- This Ancient Logic and Its Modern Interpretations, is based on the 1973 Buffalo Symposium on Modernist Interpretations of Ancient Logic, the first conference devoted entirely to critical assessment of the state of ancient logic studies. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  18. Intermediate Logics and the de Jongh property.Dick de Jongh, Rineke Verbrugge & Albert Visser - 2011 - Archive for Mathematical Logic 50 (1-2):197-213.
    We prove that all extensions of Heyting Arithmetic with a logic that has the finite frame property possess the de Jongh property.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  19. Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. On Logical and Scientific Strength.Luca Incurvati & Carlo Nicolai - forthcoming - Erkenntnis:1-23.
    The notion of strength has featured prominently in recent debates about abductivism in the epistemology of logic. Following Williamson and Russell, we distinguish between logical and scientific strength and discuss the limits of the characterizations they employ. We then suggest understanding logical strength in terms of interpretability strength and scientific strength as a special case of logical strength. We present applications of the resulting notions to comparisons between logics in the traditional sense and mathematical theories.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Computability. Computable functions, logic, and the foundations of mathematics[REVIEW]R. Zach - 2002 - History and Philosophy of Logic 23 (1):67-69.
    Epstein and Carnielli's fine textbook on logic and computability is now in its second edition. The readers of this journal might be particularly interested in the timeline `Computability and Undecidability' added in this edition, and the included wall-poster of the same title. The text itself, however, has some aspects which are worth commenting on.
    Download  
     
    Export citation  
     
    Bookmark  
  22. God, Logic, and Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-10.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time is what generates choices (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. The Identity of Logic and the World in Terms of Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (21):1-4.
    One can construct a mapping between Hilbert space and the class of all logic if the latter is defined as the set of all well-orderings of some relevant set (or class). That mapping can be further interpreted as a mapping of all states of all quantum systems, on the one hand, and all logic, on the other hand. The collection of all states of all quantum systems is equivalent to the world (the universe) as a whole. Thus that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Quantile regression model on how logical and rewarding is learning mathematics in the new normal.Leomarich Casinillo - 2024 - Palawan Scientist 16 (1):48-57.
    Learning mathematics through distance education can be challenging, with the “logical” and “rewarding” nature proving difficult to measure. This article aimed to articulate an argument explaining the “logical” and “rewarding” nature of online mathematics learning, elucidating their causal factors. Existing data from the literature that involving students at Visayas State University, Philippines, were utilized in this study. The study used statistical measures to capture descriptions from the data, and quantile regression analysis was employed to forecast the predictors of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Bertrand Russell’s Philosophical Logic and its Logical Forms.Nikolay Milkov - 2023 - Athens Journal of Philosophy 2 (3):193-210.
    From 1901 till, at least, 1919, Russell persistently maintained that there are two kinds of logic, between which he sharply discriminated: mathematical logic and philosophical logic. In this paper, we discuss the concept of philosophical logic, as used by Russell. This was only a tentative program that Russell did not clarify in detail, so our task will be to make it explicit. We shall show that there are three (-and-a-half) kinds of Russellian philosophical logic: (i) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Astronomy, Geometry, and Logic, Rev. 1c: An ontological proof of the natural principles that enable and sustain reality and mathematics.Michael Lucas Monterey & Michael Lucas-Monterey - manuscript
    The latest draft (posted 05/14/22) of this short, concise work of proof, theory, and metatheory provides summary meta-proofs and verification of the work and results presented in the Theory and Metatheory of Atemporal Primacy and Riemann, Metatheory, and Proof. In this version, several new and revised definitions of terms were added to subsection SS.1; and many corrected equations, theorems, metatheorems, proofs, and explanations are included in the main text. The body of the text is approximately 18 pages, with 3 sections; (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27.  71
    Intuitionism, Justification Logic, and Doxastic Reasoning.Vincent Alexis Peluce - 2024 - Dissertation, The Graduate Center, City University of New York
    In this Dissertation, we examine a handful of related themes in the philosophy of logic and mathematics. We take as a starting point the deeply philosophical, and—as we argue, deeply Kantian—views of L.E.J. Brouwer, the founder of intuitionism. We examine his famous first act of intuitionism. Therein, he put forth both a critical and a constructive idea. This critical idea involved digging a philosophical rift between what he thought of himself as doing and what he thought of his (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Normativity and Mathematics: A Wittgensteinian Approach to the Study of Number.J. Robert Loftis - 1999 - Dissertation, Northwestern University
    I argue for the Wittgensteinian thesis that mathematical statements are expressions of norms, rather than descriptions of the world. An expression of a norm is a statement like a promise or a New Year's resolution, which says that someone is committed or entitled to a certain line of action. A expression of a norm is not a mere description of a regularity of human behavior, nor is it merely a descriptive statement which happens to entail a norms. The view can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. World and Logic.Jens Lemanski - 2021 - London, Vereinigtes Königreich: College Publications.
    What is the relationship between the world and logic, between intuition and language, between objects and their quantitative determinations? Rationalists, on the one hand, hold that the world is structured in a rational way. Representationalists, on the other hand, assume that language, logic, and mathematics are only the means to order and describe the intuitively given world. In World and Logic, Jens Lemanski takes up three surprising arguments from Arthur Schopenhauer’s hitherto undiscovered Berlin Lectures, which concern (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  30. Logic, Logicism, and Intuitions in Mathematics.Besim Karakadılar - 2001 - Dissertation, Middle East Technical University
    In this work I study the main tenets of the logicist philosophy of mathematics. I deal, basically, with two problems: (1) To what extent can one dispense with intuition in mathematics? (2) What is the appropriate logic for the purposes of logicism? By means of my considerations I try to determine the pros and cons of logicism. My standpoint favors the logicist line of thought. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  31. Natural Cybernetics and Mathematical History: The Principle of Least Choice in History.Vasil Penchev - 2020 - Cultural Anthropology (Elsevier: SSRN) 5 (23):1-44.
    The paper follows the track of a previous paper “Natural cybernetics of time” in relation to history in a research of the ways to be mathematized regardless of being a descriptive humanitarian science withal investigating unique events and thus rejecting any repeatability. The pathway of classical experimental science to be mathematized gradually and smoothly by more and more relevant mathematical models seems to be inapplicable. Anyway quantum mechanics suggests another pathway for mathematization; considering the historical reality as dual or “complimentary” (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. A Modal Logic and Hyperintensional Semantics for Gödelian Intuition.David Elohim - manuscript
    This essay aims to provide a modal logic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the modal $\mu$-calculus. Via correspondence results between fixed point modal propositional logic and the bisimulation-invariant fragment of monadic second-order logic, a precise translation can then be provided between the notion of 'intuition-of', i.e., the cognitive phenomenal properties of thoughts, and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Walter Dubislav’s Philosophy of Science and Mathematics.Nikolay Milkov - 2016 - Hopos: The Journal of the International Society for the History of Philosophy of Science 6 (1):96-116.
    Walter Dubislav (1895–1937) was a leading member of the Berlin Group for scientific philosophy. This “sister group” of the more famous Vienna Circle emerged around Hans Reichenbach’s seminars at the University of Berlin in 1927 and 1928. Dubislav was to collaborate with Reichenbach, an association that eventuated in their conjointly conducting university colloquia. Dubislav produced original work in philosophy of mathematics, logic, and science, consequently following David Hilbert’s axiomatic method. This brought him to defend formalism in these disciplines (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Traditional logic and the early history of sets, 1854-1908.José Ferreirós - 1996 - Archive for History of Exact Sciences 50 (1):5-71.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  36. Dialogue Types, Argumentation Schemes, and Mathematical Practice: Douglas Walton and Mathematics.Andrew Aberdein - 2021 - Journal of Applied Logics 8 (1):159-182.
    Douglas Walton’s multitudinous contributions to the study of argumentation seldom, if ever, directly engage with argumentation in mathematics. Nonetheless, several of the innovations with which he is most closely associated lend themselves to improving our understanding of mathematical arguments. I concentrate on two such innovations: dialogue types (§1) and argumentation schemes (§2). I argue that both devices are much more applicable to mathematical reasoning than may be commonly supposed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Remarks on Logic and Critical Thinking.Mudasir Ahmad Tantray - 2021 - Bilaspur, Chhattisgarh 495001, India: Rudra Publications.
    This work is compiled for the students, research scholars, academicians, who are interested in logic, philosophy, mathematics and critical thinking. The main objective of this book is to provide basics or fundamental knowledge for those who have chosen logic as their subject in order to develop analytical and critical ideas. It has been primarily developed to serve as an introductory piece of work which includes explanatory notes on different courses like Inductive logic, Deductive logic, propositional (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. (1 other version)Establishment of a Dialectical Logic Symbol System: Inspired by Hegel’s Logic and Buddhist Philosophy.Chia Jen Lin - manuscript
    This paper presents an original dialectical logic symbol system designed to transcend the limitations of traditional logical symbols in capturing subjectivity, qualitative aspects, and contradictions inherent in the human mind. By introducing new symbols, such as “ὄ” (being) and “⌀” (nothing), and arranging them based on principles of symmetry, the system’s operations capture complex dialectical relationships essential to both Hegelian philosophy and Buddhist thought. The operations of this system are primarily structured around the categories found in Hegel’s Logic, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Symmetry and Reformulation: On Intellectual Progress in Science and Mathematics.Josh Hunt - 2022 - Dissertation, University of Michigan
    Science and mathematics continually change in their tools, methods, and concepts. Many of these changes are not just modifications but progress---steps to be admired. But what constitutes progress? This dissertation addresses one central source of intellectual advancement in both disciplines: reformulating a problem-solving plan into a new, logically compatible one. For short, I call these cases of compatible problem-solving plans "reformulations." Two aspects of reformulations are puzzling. First, reformulating is often unnecessary. Given that we could already solve a problem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Animal Cognition, Species Invariantism, and Mathematical Realism.Helen De Cruz - 2019 - In Andrew Aberdein & Matthew Inglis (eds.), Advances in Experimental Philosophy of Logic and Mathematics. London: Bloomsbury Academic. pp. 39-61.
    What can we infer from numerical cognition about mathematical realism? In this paper, I will consider one aspect of numerical cognition that has received little attention in the literature: the remarkable similarities of numerical cognitive capacities across many animal species. This Invariantism in Numerical Cognition (INC) indicates that mathematics and morality are disanalogous in an important respect: proto-moral beliefs differ substantially between animal species, whereas proto-mathematical beliefs (at least in the animals studied) seem to show more similarities. This makes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Mathematics, Morality, and Self‐Effacement.Jack Woods - 2016 - Noûs 52 (1):47-68.
    I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are vulnerable (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  42. (1 other version)Invariance and Logicality in Perspective.Gila Sher - 2021 - In Gil Sagi & Jack Woods (eds.), The Semantic Conception of Logic : Essays on Consequence, Invariance, and Meaning. New York, NY: Cambridge University Press. pp. 13-34.
    Although the invariance criterion of logicality first emerged as a criterion of a purely mathematical interest, it has developed into a criterion of considerable linguistic and philosophical interest. In this paper I compare two different perspectives on this criterion. The first is the perspective of natural language. Here, the invariance criterion is measured by its success in capturing our linguistic intuitions about logicality and explaining our logical behavior in natural-linguistic settings. The second perspective is more theoretical. Here, the invariance criterion (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. The Importance of Teaching Logic to Computer Scientists and Electrical Engineers.Paul Mayer - forthcoming - IEEE.
    It is argued that logic, and in particular mathematical logic, should play a key role in the undergraduate curriculum for students in the computing fields, which include electrical engineering (EE), computer engineering (CE), and computer science (CS). This is based on 1) the history of the field of computing and its close ties with logic, 2) empirical results showing that students with better logical thinking skills perform better in tasks such as programming and mathematics, and 3) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Making Sense of Paraconsistent Logic: The Nature of Logic, Classical Logic and Paraconsistent Logic.Koji Tanaka - 2013 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 15--25.
    Max Cresswell and Hilary Putnam seem to hold the view, often shared by classical logicians, that paraconsistent logic has not been made sense of, despite its well-developed mathematics. In this paper, I examine the nature of logic in order to understand what it means to make sense of logic. I then show that, just as one can make sense of non-normal modal logics (as Cresswell demonstrates), we can make `sense' of paraconsistent logic. Finally, I turn (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  45. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Maths, Logic and Language.Tetsuaki Iwamoto - 2018 - Geneva: Logic Forum.
    A work on the philosophy of mathematics (2017) -/- ‘Number’, such a simple idea, and yet it fascinated and absorbed the greatest proportion of human geniuses over centuries, not to mention the likes of Pythagoras, Euclid, Newton, Leibniz, Descartes and countless maths giants like Euler, Gauss and Hilbert, etc.. Einstein thought of pure maths as the poetry of logical ideas, the exactitude of which, although independent of experience, strangely seems to benefit the study of the objects of reality. And, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Wittgenstein on Gödelian 'Incompleteness', Proofs and Mathematical Practice: Reading Remarks on the Foundations of Mathematics, Part I, Appendix III, Carefully.Wolfgang Kienzler & Sebastian Sunday Grève - 2016 - In Sebastian Sunday Grève & Jakub Mácha (eds.), Wittgenstein and the Creativity of Language. Palgrave Macmillan. pp. 76-116.
    We argue that Wittgenstein’s philosophical perspective on Gödel’s most famous theorem is even more radical than has commonly been assumed. Wittgenstein shows in detail that there is no way that the Gödelian construct of a string of signs could be assigned a useful function within (ordinary) mathematics. — The focus is on Appendix III to Part I of Remarks on the Foundations of Mathematics. The present reading highlights the exceptional importance of this particular set of remarks and, more (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  48. Formal and Transcendental Logic- Husserl's most mature reflection on mathematics and logic.Mirja Helena Hartimo - 2021 - In Hanne Jacobs (ed.), The Husserlian Mind. New Yor, NY: Routledge. pp. 50-59.
    This essay presents Husserl’s Formal and Transcendental Logic (1929) in three main sections following the layout of the work itself. The first section focuses on Husserl’s introduction where he explains the method and the aim of the essay. The method used in FTL is radical Besinnung and with it an intentional explication of proper sense of formal logic is sought for. The second section is on formal logic. The third section focuses on Husserl’s “transcendental logic,” which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. How Mathematics Isn’t Logic.Roger Wertheimer - 1999 - Ratio 12 (3):279-295.
    View more Abstract If logical truth is necessitated by sheer syntax, mathematics is categorially unlike logic even if all mathematics derives from definitions and logical principles. This contrast gets obscured by the plausibility of the Synonym Substitution Principle implicit in conceptions of analyticity: synonym substitution cannot alter sentence sense. The Principle obviously fails with intercepting: nonuniform term substitution in logical sentences. ‘Televisions are televisions’ and ‘TVs are televisions’ neither sound alike nor are used interchangeably. Interception synonymy gets (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Parfit on Moral Disagreement and The Analogy Between Morality and Mathematics.Adam Greif - 2021 - Filozofia 9 (76):688 - 703.
    In his book On What Matters, Derek Parfit defends a version of moral non-naturalism, a view according to which there are objective normative truths, some of which are moral truths, and we have a reliable way of discovering them. These moral truths do not exist, however, as parts of the natural universe nor in Plato’s heaven. While explaining in what way these truths exist and how we discover them, Parfit makes analogies between morality on the one hand, and mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 954