Results for 'Foundations of mathematics'

1000+ found
Order:
  1. Categorical Foundations of Mathematics or How to Provide Foundations for Abstract Mathematics.Jean-Pierre Marquis - 2013 - Review of Symbolic Logic 6 (1):51-75.
    Fefermans argument is indeed convincing in a certain context, it can be dissolved entirely by modifying the context appropriately.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  46
    Physical Foundations of Mathematics (In Russian).Andrey Smirnov - manuscript
    The physical foundations of mathematics in the theory of emergent space-time-matter were considered. It is shown that mathematics, including logic, is a consequence of equation which describes the fundamental field. If the most fundamental level were described not by mathematics, but something else, then instead of mathematics there would be consequences of this something else.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  3. The Principles of Mathematics.Bertrand Russell - 1903 - Allen & Unwin.
    Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of (...)
    Download  
     
    Export citation  
     
    Bookmark   438 citations  
  4. Abstracta and Possibilia: Modal Foundations of Mathematical Platonism.Hasen Khudairi - manuscript
    This paper aims to provide modal foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  5. Marriages of Mathematics and Physics: A Challenge for Biology.Arezoo Islami & Giuseppe Longo - 2017 - Progress in Biophysics and Molecular Biology 131:179-192.
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6.  69
    The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  34
    Hilbert's Different Aims for the Foundations of Mathematics.Besim Karakadılar - manuscript
    The foundational ideas of David Hilbert have been generally misunderstood. In this dissertation prospectus, different aims of Hilbert are summarized and a new interpretation of Hilbert's work in the foundations of mathematics is roughly sketched out. Hilbert's view of the axiomatic method, his response to criticisms of set theory and intuitionist criticisms of the classical foundations of mathematics, and his view of the role of logical inference in mathematical reasoning are briefly outlined.
    Download  
     
    Export citation  
     
    Bookmark  
  8.  66
    A Pluralist Foundation of the Mathematics of the First Half of the Twentieth Century.Antonino Drago - 2017 - Journal of Indian Council of Philosophical Research 34 (2):343-363.
    MethodologyA new hypothesis on the basic features characterizing the Foundations of Mathematics is suggested.Application of the methodBy means of it, the several proposals, launched around the year 1900, for discovering the FoM are characterized. It is well known that the historical evolution of these proposals was marked by some notorious failures and conflicts. Particular attention is given to Cantor's programme and its improvements. Its merits and insufficiencies are characterized in the light of the new conception of the FoM. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Computability. Computable Functions, Logic, and the Foundations of Mathematics[REVIEW]R. Zach - 2002 - History and Philosophy of Logic 23 (1):67-69.
    Epstein and Carnielli's fine textbook on logic and computability is now in its second edition. The readers of this journal might be particularly interested in the timeline `Computability and Undecidability' added in this edition, and the included wall-poster of the same title. The text itself, however, has some aspects which are worth commenting on.
    Download  
     
    Export citation  
     
    Bookmark  
  10. Logic. Of Descriptions. A New Approach to the Foundations of Mathematics and Science.Joanna Golińska-Pilarek & Taneli Huuskonen - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40):63-94.
    We study a new formal logic LD introduced by Prof. Grzegorczyk. The logic is based on so-called descriptive equivalence, corresponding to the idea of shared meaning rather than shared truth value. We construct a semantics for LD based on a new type of algebras and prove its soundness and completeness. We further show several examples of classical laws that hold for LD as well as laws that fail. Finally, we list a number of open problems. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  11.  62
    WHAT IS THE "X" WHICH OCCURS IN "Sin X"? Being an Essay Towards a Conceptual Foundations of Mathematics.Mohamed Amer - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  12.  80
    Introduction to Special Issue on the Foundations of Mathematics.Carolin Antos, Neil Barton, Sy-David Friedman, Claudio Ternullo & John Wigglesworth - 2020 - Synthese 197.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  13. The Axiom of Choice in Quine's New Foundations for Mathematical Logic.Ernst P. Specker - 1954 - Journal of Symbolic Logic 19 (2):127-128.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  14.  83
    Foundations of Intensional Logic.David Kaplan - 1964 - Dissertation, UCLA
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  15.  75
    The "Unreasonable" Effectiveness of Mathematics: The Foundational Approach of the Theoretic Alternatives.Catalin Barboianu - 2015 - Revista de Filosofie 62 (1):58-71.
    The attempts of theoretically solving the famous puzzle-dictum of physicist Eugene Wigner regarding the “unreasonable” effectiveness of mathematics as a problem of analytical philosophy, started at the end of the 19th century, are yet far from coming out with an acceptable theoretical solution. The theories developed for explaining the empirical “miracle” of applied mathematics vary in nature, foundation and solution, from denying the existence of a genuine problem to structural theories with an advanced level of mathematical formalism. Despite (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  16.  11
    A NEW PHILOSOPHICAL FOUNDATION OF CONSTRUCTIVE MATHEMATICS.Antonino Drago - manuscript
    The current definition of Constructive mathematics as “mathematics within intuitionist logic” ignores two fundamental issues. First, the kind of organization of the theory at issue. I show that intuitionist logic governs a problem-based organization, whose model is alternative to that of the deductive-axiomatic organization, governed by classical logic. Moreover, this dichotomy is independent of that of the kind of infinity, either potential or actual, to which respectively correspond constructive mathematical and classical mathematical tools. According to this view a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Artificial Evil and the Foundation of Computer Ethics.Luciano Floridi & J. W. Sanders - 2001 - Springer Netherlands.
    Moral reasoning traditionally distinguishes two types of evil:moral (ME) and natural (NE). The standard view is that ME is the product of human agency and so includes phenomena such as war,torture and psychological cruelty; that NE is the product of nonhuman agency, and so includes natural disasters such as earthquakes, floods, disease and famine; and finally, that more complex cases are appropriately analysed as a combination of ME and NE. Recently, as a result of developments in autonomous agents in cyberspace, (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  18.  20
    Artificial Evil and the Foundation of Computer Ethics.L. Floridi & J. Sanders - 2000 - Etica E Politica 2 (2).
    Moral reasoning traditionally distinguishes two types of evil: moral and natural. The standard view is that ME is the product of human agency and so includes phenomena such as war, torture and psychological cruelty; that NE is the product of nonhuman agency, and so includes natural disasters such as earthquakes, floods, disease and famine; and finally, that more complex cases are appropriately analysed as a combination of ME and NE. Recently, as a result of developments in autonomous agents in cyberspace, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  19. The Mereological Foundation of Megethology.Massimiliano Carrara & Enrico Martino - 2016 - Journal of Philosophical Logic 45 (2):227-235.
    In Mathematics is megethology. Philosophia Mathematica, 1, 3–23) David K. Lewis proposes a structuralist reconstruction of classical set theory based on mereology. In order to formulate suitable hypotheses about the size of the universe of individuals without the help of set-theoretical notions, he uses the device of Boolos’ plural quantification for treating second order logic without commitment to set-theoretical entities. In this paper we show how, assuming the existence of a pairing function on atoms, as the unique assumption non (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20.  35
    Foundation of Paralogical Nonstandard Analysis and its Application to Some Famous Problems of Trigonometrical and Orthogonal Series.Jaykov Foukzon - manuscript
    FOURTH EUROPEAN CONGRESS OF MATHEMATICS STOCKHOLM,SWEDEN JUNE27 ­ - JULY 2, 2004 Contributed papers L. Carleson’s celebrated theorem of 1965 [1] asserts the pointwise convergence of the partial Fourier sums of square integrable functions. The Fourier transform has a formulation on each of the Euclidean groups R , Z and Τ .Carleson’s original proof worked on Τ . Fefferman’s proof translates very easily to R . M´at´e [2] extended Carleson’s proof to Z . Each of the statements of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. The Sensory Core and the Medieval Foundations of Early Modern Perceptual Theory.Gary Hatfield & William Epstein - 1979 - Isis 70 (3):363-384.
    This article seeks the origin, in the theories of Ibn al-Haytham (Alhazen), Descartes, and Berkeley, of two-stage theories of spatial perception, which hold that visual perception involves both an immediate representation of the proximal stimulus in a two-dimensional ‘‘sensory core’’ and also a subsequent perception of the three dimensional world. The works of Ibn al-Haytham, Descartes, and Berkeley already frame the major theoretical options that guided visual theory into the twentieth century. The field of visual perception was the first area (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  22. Univalent Foundations as a Foundation for Mathematical Practice.Harry Crane - 2018
    I prove that invoking the univalence axiom is equivalent to arguing 'without loss of generality' (WLOG) within Propositional Univalent Foundations (PropUF), the fragment of Univalent Foundations (UF) in which all homotopy types are mere propositions. As a consequence, I argue that practicing mathematicians, in accepting WLOG as a valid form of argument, implicitly accept the univalence axiom and that UF rightly serves as a Foundation for Mathematical Practice. By contrast, ZFC is inconsistent with WLOG as it is applied, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23.  36
    Anti-Realism and Anti-Revisionism in Wittgenstein’s Philosophy of Mathematics.Anderson Nakano - 2020 - Grazer Philosophische Studien 97 (3):451-474.
    Since the publication of the Remarks on the Foundations of Mathematics, Wittgenstein’s interpreters have endeavored to reconcile his general constructivist/anti-realist attitude towards mathematics with his confessed anti-revisionary philosophy. In this article, the author revisits the issue and presents a solution. The basic idea consists in exploring the fact that the so-called “non-constructive results” could be interpreted so that they do not appear non-constructive at all. The author substantiates this solution by showing how the translation of mathematical results, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Sociocultural Foundations of Modern Science.Rinat M. Nugayev - 2012 - Journal of Culture Studies 2 (8):1-16.
    It is argued that the origins of modern science can be revealed due to joint account of external and internal factors. The author tries to keep it in mind applying his scientific revolution model according to which the growth of knowledge consists in interaction, interpenetration and even unification of different scientific research programmes. Hence the Copernican Revolution as a matter of fact consisted in realization and elimination of the gap between the mathematical astronomy and Aristotelian qualitative physics in Ptolemaic cosmology. (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  25. Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science.Plamen L. Simeonov, Edwin Brezina, Ron Cottam, Andreé C. Ehresmann, Arran Gare, Ted Goranson, Jaime Gomez‐Ramirez, Brian D. Josephson, Bruno Marchal, Koichiro Matsuno, Robert S. Root-­Bernstein, Otto E. Rössler, Stanley N. Salthe, Marcin Schroeder, Bill Seaman & Pridi Siregar - 2012 - In Plamen L. Simeonov, Leslie S. Smith & Andreé C. Ehresmann (eds.), Integral Biomathics: Tracing the Road to Reality. Springer. pp. 328-427.
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. A Structuralist Proposal for the Foundations of the Natural Numbers.Desmond Alan Ford - manuscript
    This paper introduces a novel object that has less structure than, and is ontologically prior to the natural numbers. As such it is a candidate model of the foundation that lies beneath the natural numbers. The implications for the construction of mathematical objects built upon that foundation are discussed.
    Download  
     
    Export citation  
     
    Bookmark  
  27. Sofia A. Yanovskaya: The Marxist Pioneer of Mathematical Logic in the Soviet Union.Dimitris Kilakos - 2019 - Transversal: International Journal for the Historiography of Science 6:49-64.
    K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern (...) and their interpretation. Concomitantly, she was one of the pioneers of mathematical logic in the Soviet Union, in an era of fierce disputes on its compatibility with Marxist philosophy. Yanovskaya managed to embrace in an originally Marxist spirit the contemporary level of logico-philosophical research of her time. Due to her highly esteemed status within Soviet academia, she became one of the most significant pillars for the culmination of modern mathematics in the Soviet Union. In this paper, I attempt to trace the influence of the complex socio-cultural context of the first decades of the Soviet Union on Yanovskaya’s work. Among the several issues I discuss, her encounter with L. Wittgenstein is striking. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  28. On the Epistemological Foundations of the Law of the Lever.Maarten Van Dyck - 2009 - Studies in History and Philosophy of Science Part A 40 (3):315-318.
    In this paper I challenge Paolo Palmieri’s reading of the Mach-Vailati debate on Archimedes’s proof of the law of the lever. I argue that the actual import of the debate concerns the possible epistemic (as opposed to merely pragmatic) role of mathematical arguments in empirical physics, and that construed in this light Vailati carries the upper hand. This claim is defended by showing that Archimedes’s proof of the law of the lever is not a way of appealing to a non-empirical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Poincaré on the Foundation of Geometry in the Understanding.Jeremy Shipley - 2017 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta. Springer. pp. 19-37.
    This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, Poincaré, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view that geometry is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30.  36
    Skolem’s “Paradox” as Logic of Ground: The Mutual Foundation of Both Proper and Improper Interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31.  35
    Proposition The Foundation of Logic.Mudasir Ahmad Tantray - 2016 - International Journal of Social Sciences and Humanities Invention 3 (2):1841-1846.
    Proposition are the material of our reasoning. Proposition are the basic building blocks of the world/thought. Proposition have intense relation with the world. World is a series of atomic facts and these facts are valued by the proposition although sentences explain the world of reality but can’t have any truth values, only proposition have truth values to describe the world in terms of assertions. Propositions are truth value bearers, the only quality of proposition is truth & falsity, that they are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32.  74
    The Temporal Foundation of the Principle of Maximal Entropy.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (11):1-3.
    The principle of maximal entropy (further abbreviated as “MaxEnt”) can be founded on the formal mechanism, in which future transforms into past by the mediation of present. This allows of MaxEnt to be investigated by the theory of quantum information. MaxEnt can be considered as an inductive analog or generalization of “Occam’s razor”. It depends crucially on choice and thus on information just as all inductive methods of reasoning. The essence shared by Occam’s razor and MaxEnt is for the relevant (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. The Case of Quantum Mechanics Mathematizing Reality: The “Superposition” of Mathematically Modelled and Mathematical Reality: Is There Any Room for Gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34.  94
    Time and Information in the Foundations of Physics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (25):1-12.
    The paper justifies the following theses: The totality can found time if the latter is axiomatically represented by its “arrow” as a well-ordering. Time can found choice and thus information in turn. Quantum information and its units, the quantum bits, can be interpreted as their generalization as to infinity and underlying the physical world as well as the ultimate substance of the world both subjective and objective. Thus a pathway of interpretation between the totality via time, order, choice, and information (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35.  40
    Archeology of Consciousness ↔ The Ontological Basification of Mathematics (Knowledge) ↔ The Nature of Consciousness. [REVIEW]Vladimir Rogozhin - manuscript
    A condensed summary of the adventures of ideas (1990-2020). Methodology of evolutionary-phenomenological constitution of Consciousness. Vector (BeVector) of Consciousness. Consciousness is a qualitative vector quantity. Vector of Consciousness as a synthesizing category, eidos-prototecton, intentional meta-observer. The development of the ideas of Pierre Teilhard de Chardin, Brentano, Husserl, Bergson, Florensky, Losev, Mamardashvili, Nalimov. Dialectic of Eidos and Logos. "Curve line" of the Consciousness Vector from space and time. The lower and upper sides of the "abyss of being". The existential tension of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Mathematics and Conceptual Analysis.Antony Eagle - 2008 - Synthese 161 (1):67–88.
    Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  37. Mathematics as a Science of Non-Abstract Reality: Aristotelian Realist Philosophies of Mathematics.James Franklin - 2021 - Foundations of Science 26:1-18.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38.  65
    Conceptual Origami: Unfolding the Social Construction of Mathematics.Andrew Notier - 2019 - Philosophy Now 1 (134):28-29.
    This essay presents the framework for the foundational axiom and conceptual underpinnings of mathematics and how they are applied.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Concept Construction in Kant's "Metaphysical Foundations of Natural Science".Jennifer Nadine Mcrobert - 1995 - Dissertation, The University of Western Ontario (Canada)
    Kant's reasoning in his special metaphysics of nature is often opaque, and the character of his a priori foundation for Newtonian science is the subject of some controversy. Recent literature on the Metaphysical Foundations of Natural Science has fallen well short of consensus on the aims and reasoning in the work. Various of the doctrines and even the character of the reasoning in the Metaphysical Foundations have been taken to present insuperable obstacles to accepting Kant's claim to ground (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. A New Foundation for the Propensity Interpretation of Fitness.Charles H. Pence & Grant Ramsey - 2013 - British Journal for the Philosophy of Science 64 (4):851-881.
    The propensity interpretation of fitness (PIF) is commonly taken to be subject to a set of simple counterexamples. We argue that three of the most important of these are not counterexamples to the PIF itself, but only to the traditional mathematical model of this propensity: fitness as expected number of offspring. They fail to demonstrate that a new mathematical model of the PIF could not succeed where this older model fails. We then propose a new formalization of the PIF that (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  41.  6
    A Logico-Linguistic Inquiry Into the Foundations of Physics: Part 1.Abhishek Majhi - forthcoming - Axiomathes (NA):1-46.
    Physical dimensions like “mass”, “length”, “charge”, represented by the symbols [M], [L], [Q], are not numbers, but used as numbers to perform dimensional analysis in particular, and to write the equations of physics in general, by the physicist. The law of excluded middle falls short of explaining the contradictory meanings of the same symbols. The statements like “m tends to 0”, “r tends to 0”, “q tends to 0”, used by the physicist, are inconsistent on dimensional grounds because “m”, “r”, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic, part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Fourteen Arguments in Favour of a Formalist Philosophy of Real Mathematics.Karlis Podnieks - 2015 - Baltic Journal of Modern Computing 3 (1):1-15.
    The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have not yet (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Defending the Axioms-On the Philosophical Foundations of Set Theory, Penelope Maddy. [REVIEW]Eduardo Castro - 2012 - Teorema: International Journal of Philosophy 31 (1):147-150.
    Review of Maddy, Penelope "Defending the Axioms".
    Download  
     
    Export citation  
     
    Bookmark  
  45. The Importance of Developing a Foundation for Naive Category Theory.Marcoen J. T. F. Cabbolet - 2015 - Thought: A Journal of Philosophy 4 (4):237-242.
    Recently Feferman has outlined a program for the development of a foundation for naive category theory. While Ernst has shown that the resulting axiomatic system is still inconsistent, the purpose of this note is to show that nevertheless some foundation has to be developed before naive category theory can replace axiomatic set theory as a foundational theory for mathematics. It is argued that in naive category theory currently a ‘cookbook recipe’ is used for constructing categories, and it is explicitly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Computational Reverse Mathematics and Foundational Analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Normativity and Mathematics: A Wittgensteinian Approach to the Study of Number.J. Robert Loftis - 1999 - Dissertation, Northwestern University
    I argue for the Wittgensteinian thesis that mathematical statements are expressions of norms, rather than descriptions of the world. An expression of a norm is a statement like a promise or a New Year's resolution, which says that someone is committed or entitled to a certain line of action. A expression of a norm is not a mere description of a regularity of human behavior, nor is it merely a descriptive statement which happens to entail a norms. The view can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  98
    Review Of: Garciadiego, A., "Emergence Of...Paradoxes...Set Theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Biological Organisation as the True Foundation of Reality.Brian Josephson - forthcoming - In R. L. Amoroso, L. H. Kauffman & P. Rowlands (eds.), Unified Field Mechanics II: 10th International Symposium in Honor of Mathematical Physicist Jean-Pierre Vigier. Singapore: WORLD SCIENTIFIC PUBLISHING.
    The presumptions underlying quantum mechanics make it relevant to a limited range of situations only; furthermore, its statistical character means that it provides no answers to the question ‘what is really going on?’. Following Barad, I hypothesise that the underlying mechanics has parallels with human activities, as used by Barad to account for the way quantum measurements introduce definiteness into previously indefinite situations. We are led to consider a subtle type of order, different from those commonly encountered in the discipline (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Plato’s Philosophy of Cognition by Mathematical Modelling.Roman S. Kljujkov & Sergey F. Kljujkov - 2014 - Dialogue and Universalism 24 (3):110-115.
    By the end of his life Plato had rearranged the theory of ideas into his teaching about ideal numbers, but no written records have been left. The Ideal mathematics of Plato is present in all his dialogues. It can be clearly grasped in relation to the effective use of mathematical modelling. Many problems of mathematical modelling were laid in the foundation of the method by cutting the three-level idealism of Plato to the single-level “ideism” of Aristotle. For a long (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000