Results for 'Local set theory'

952 found
Order:
  1. Liberalism and the Two Directions of the Local Food Movement.Samantha Noll - 2014 - Journal of Agricultural and Environmental Ethics 27 (2):211-224.
    The local food movement is, increasingly, becoming a part of the modern American landscape. However, while it appears that the local food movement is gaining momentum, one could question whether or not this trend is, in fact, politically and socially sustainable. Is local food just another trend that will fade away or is it here to stay? One way to begin addressing this question is to ascertain whether or not it is compatible with liberalism, a set of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  2. The Locality and Globality of Instrumental Rationality: The normative significance of preference reversals.Brian Kim - 2014 - Synthese 191 (18):4353-4376.
    When we ask a decision maker to express her preferences, it is typically assumed that we are eliciting a pre-existing set of preferences. However, empirical research has suggested that our preferences are often constructed on the fly for the decision problem at hand. This paper explores the ramifications of this empirical research for our understanding of instrumental rationality. First, I argue that these results pose serious challenges for the traditional decision-theoretic view of instrumental rationality, which demands global coherence amongst all (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  3. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  65
    The Particle of Haag's Local Quantum Physics: A critical assessment.Gregg Jaeger - 2024 - Entropy 26:748.
    Rudolf Haag’s Local Quantum Physics (LQP) is an alternative framework to conventional relativistic quantum field theory for combining special relativity and quantum theory based on first principles, making it of great interest for the purposes of conceptual analysis despite currently being relatively limited as a tool for making experimental predictions. In LQP, the elementary particles are defined as species of causal link between interaction events, together with which they comprise its most fundamental entities. This notion of particle (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. A theory of presumption for everyday argumentation.David M. Godden & Douglas N. Walton - 2007 - Pragmatics and Cognition 15 (2):313-346.
    The paper considers contemporary models of presumption in terms of their ability to contribute to a working theory of presumption for argumentation. Beginning with the Whatelian model, we consider its contemporary developments and alternatives, as proposed by Sidgwick, Kauffeld, Cronkhite, Rescher, Walton, Freeman, Ullmann-Margalit, and Hansen. Based on these accounts, we present a picture of presumptions characterized by their nature, function, foundation and force. On our account, presumption is a modal status that is attached to a claim and has (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  6. An Embodied Predictive Processing Theory of Pain.Julian Kiverstein, Michael David Kirchhoff & Mick Thacker - 2022 - Review of Philosophy and Psychology 1 (1):1-26.
    This paper aims to provide a theoretical framework for explaining the subjective character of pain experience in terms of what we will call ‘embodied predictive processing’. The predictive processing (PP) theory is a family of views that take perception, action, emotion and cognition to all work together in the service of prediction error minimisation. In this paper we propose an embodied perspective on the PP theory we call the ‘embodied predictive processing (EPP) theory. The EPP theory (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Intergenerational Relations: Contemporary Theories, Studies, and Policies.Andrzej Klimczuk (ed.) - 2024 - London: IntechOpen.
    Intergenerational Relations - Contemporary Theories, Studies, and Policies, concentrates on actual discussions around various aspects of interactions that occur between people from different age groups and generations. The authors present studies related to four sets of challenges crucial for relationships between children, young adults, middle-aged adults, and older adults. These challenges include social and cultural challenges, economic and technological challenges, environmental challenges, and political and legal challenges. The volume also addresses issues important for the global, national, regional, and local (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Retrieving the Mathematical Mission of the Continuum Concept from the Transfinitely Reductionist Debris of Cantor’s Paradise. Extended Abstract.Edward G. Belaga - forthcoming - International Journal of Pure and Applied Mathematics.
    What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from the transfinite deadlock of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Fathoming Postnatural Oceans: Towards a low trophic theory in the practices of feminist posthumanities.Marietta Radomska & Cecilia Åsberg - 2021 - Environment and Planning E: Nature and Space 4:1-18.
    As the planet’s largest ecosystem, oceans stabilise climate, produce oxygen, store CO2 and host unfathomable biodiversity at a deep time-scale. In recent decades, scientific assessments have indicated that the oceans are seriously degraded to the detriment of most near-future societies. Human-induced impacts range from climate change, ocean acidification, loss of biodiversity, eutrophication and marine pollution to local degradation of marine and coastal environments. Such environmental violence takes form of both ‘spectacular’ events, like oil spills and ‘slow violence’, occurring gradually (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Editorial: Perspectives and Theories of Social Innovation for Ageing Population.Andrzej Klimczuk & Łukasz Tomczyk - 2020 - Frontiers in Sociology 5:1--6.
    Gerontology together with its subfields, such as social gerontology, geragogy, educational gerontology, political gerontology, environmental gerontology, and financial gerontology, is still a relatively new academic discipline that is currently intensively developing, expanding research fields and combining various theoretical and practical perspectives. The interdisciplinarity, transdisciplinarity, and multidisciplinarity of research on ageing and old age, despite its vast thematic, methodological and theoretical diversity, have a common denominator, which is the focus of research work on improving the quality of life of older people. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Sensory Systems as Cybernetic Systems that Require Awareness of Alternatives to Interact with the World: Analysis of the Brain-Receptor Loop in Norwich's Entropy Theory of Perception.Lance Nizami - 2009 - Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics. San Antonio, TX.
    Introduction & Objectives: Norwich’s Entropy Theory of Perception (1975 [1] -present) stands alone. It explains many firing-rate behaviors and psychophysical laws from bare theory. To do so, it demands a unique sort of interaction between receptor and brain, one that Norwich never substantiated. Can it now be confirmed, given the accumulation of empirical sensory neuroscience? Background: Norwich conjoined sensation and a mathematical model of communication, Shannon’s Information Theory, as follows: “In the entropic view of sensation, magnitude of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the newly established quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Some results on ordered structures in toposes.Luís Sbardellini & Marcelo Coniglio - 2006 - Reports on Mathematical Logic:181-198.
    A topos version of Cantor’s back and forth theorem is established and used to prove that the ordered structure of the rational numbers (Q, <) is homogeneous in any topos with natural numbers object. The notion of effective homogeneity is introduced, and it is shown that (Q, <) is a minimal effectively homogeneous structure, that is, it can be embedded in every other effectively homogeneous ordered structure.
    Download  
     
    Export citation  
     
    Bookmark  
  16. Wand/Set Theories: A realization of Conway's mathematicians' liberation movement, with an application to Church's set theory with a universal set.Tim Button - forthcoming - Journal of Symbolic Logic.
    Consider a variant of the usual story about the iterative conception of sets. As usual, at every stage, you find all the (bland) sets of objects which you found earlier. But you also find the result of tapping any earlier-found object with any magic wand (from a given stock of magic wands). -/- By varying the number and behaviour of the wands, we can flesh out this idea in many different ways. This paper's main Theorem is that any loosely constructive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Quasi-set theory: a formal approach to a quantum ontology of properties.Federico Holik, Juan Pablo Jorge, Décio Krause & Olimpia Lombardi - 2022 - Synthese 200 (5):1-26.
    In previous works, an ontology of properties for quantum mechanics has been proposed, according to which quantum systems are bundles of properties with no principle of individuality. The aim of the present article is to show that, since quasi-set theory is particularly suited for dealing with aggregates of items that do not belong to the traditional category of individual, it supplies an adequate meta-language to speak of the proposed ontology of properties and its structure.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Causal Set Theory and Growing Block? Not Quite.Marco Forgione - manuscript
    In this contribution, I explore the possibility of characterizing the emergence of time in causal set theory (CST) in terms of the growing block universe (GBU) metaphysics. I show that although GBU seems to be the most intuitive time metaphysics for CST, it leaves us with a number of interpretation problems, independently of which dynamics we choose to favor for the theory —here I shall consider the Classical Sequential Growth and the Covariant model. Discrete general covariance of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  20. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21.  32
    Strategic Set Theory.Morteza Shahram - manuscript
    An attempt to vindicate naive set theory by postulating a universal set V which is describable in two distinct description languages: predicative and extensional. The extensional description of a set consists of describing all its elements whereas its predicative description consists of describing what sets it is an element of. -/- Extensionally described V has an uncapturable description length, akin to its cardinality. But predicatively described, in virtue of being the set that is not contained in any set whatsoever, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted furthermore (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Cognition according to Quantum Information: Three Epistemological Puzzles Solved.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (20):1-15.
    The cognition of quantum processes raises a series of questions about ordering and information connecting the states of one and the same system before and after measurement: Quantum measurement, quantum in-variance and the non-locality of quantum information are considered in the paper from an epistemological viewpoint. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. Quantum in-variance designates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24.  89
    Set Theory and Structures.Sy-David Friedman & Neil Barton - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 223-253.
    Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. (1 other version)Modal set theory.Christopher Menzel - 2018 - In Otávio Bueno & Scott A. Shalkowski (eds.), The Routledge Handbook of Modality. New York: Routledge.
    This article presents an overview of the basic philosophical motivations for, and some recent work in, modal set theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Internal Set Theory IST# Based on Hyper Infinitary Logic with Restricted Modus Ponens Rule: Nonconservative Extension of the Model Theoretical NSA.Jaykov Foukzon - 2022 - Journal of Advances in Mathematics and Computer Science 37 (7): 16-43.
    The incompleteness of set theory ZF C leads one to look for natural nonconservative extensions of ZF C in which one can prove statements independent of ZF C which appear to be “true”. One approach has been to add large cardinal axioms.Or, one can investigate second-order expansions like Kelley-Morse class theory, KM or Tarski-Grothendieck set theory T G or It is a nonconservative extension of ZF C and is obtained from other axiomatic set theories by the inclusion (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Cognitive Set Theory.Alec Rogers (ed.) - 2011 - ArborRhythms.
    Cognitive Set Theory is a mathematical model of cognition which equates sets with concepts, and uses mereological elements. It has a holistic emphasis, as opposed to a reductionistic emphasis, and it therefore begins with a single universe (as opposed to an infinite collection of infinitesimal points).
    Download  
     
    Export citation  
     
    Bookmark  
  28. Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory.Masanao Ozawa - 2016 - New Generation Computing 34 (1):125-152.
    The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum (...) to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Set Theory and Structures.Neil Barton & Sy-David Friedman - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 223-253.
    Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Set Theory INC# Based on Infinitary Intuitionistic Logic with Restricted Modus Ponens Rule (Part.II) Hyper inductive definitions.Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (4):22.
    In this paper intuitionistic set theory INC# in infinitary set theoretical language is considered. External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial application in number theory is considered.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Set Theory, Topology, and the Possibility of Junky Worlds.Thomas Mormann - 2014 - Notre Dame Journal of Formal Logic 55 (1): 79 - 90.
    A possible world is a junky world if and only if each thing in it is a proper part. The possibility of junky worlds contradicts the principle of general fusion. Bohn (2009) argues for the possibility of junky worlds, Watson (2010) suggests that Bohn‘s arguments are flawed. This paper shows that the arguments of both authors leave much to be desired. First, relying on the classical results of Cantor, Zermelo, Fraenkel, and von Neumann, this paper proves the possibility of junky (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. Reducing Arithmetic to Set Theory.A. C. Paseau - 2009 - In Ø. Linnebo O. Bueno (ed.), New Waves in Philosophy of Mathematics. Palgrave-Macmillan. pp. 35-55.
    The revival of the philosophy of mathematics in the 60s following its post-1931 slump left us with two conflicting positions on arithmetic’s ontological relationship to set theory. W.V. Quine’s view, presented in 'Word and Object' (1960), was that numbers are sets. The opposing view was advanced in another milestone of twentieth-century philosophy of mathematics, Paul Benacerraf’s 'What Numbers Could Not Be' (1965): one of the things numbers could not be, it explained, was sets; the other thing numbers could not (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  33. Nonstandard set theories and information management.Varol Akman & Mujdat Pakkan - 1996 - Journal of Intelligent Information Systems 6:5-31.
    The merits of set theory as a foundational tool in mathematics stimulate its use in various areas of artificial intelligence, in particular intelligent information systems. In this paper, a study of various nonstandard treatments of set theory from this perspective is offered. Applications of these alternative set theories to information or knowledge management are surveyed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. (1 other version)Twist-Valued Models for Three-valued Paraconsistent Set Theory.Walter Carnielli & Marcelo E. Coniglio - 2021 - Logic and Logical Philosophy 30 (2):187-226.
    Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  35. Another use of set theory.Patrick Dehornoy - 1996 - Bulletin of Symbolic Logic 2 (4):379-391.
    Here, we analyse some recent applications of set theory to topology and argue that set theory is not only the closed domain where mathematics is usually founded, but also a flexible framework where imperfect intuitions can be precisely formalized and technically elaborated before they possibly migrate toward other branches. This apparently new role is mostly reminiscent of the one played by other external fields like theoretical physics, and we think that it could contribute to revitalize the interest in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Heisenberg quantum mechanics, numeral set-theory and.Han Geurdes - manuscript
    In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in the classical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Category theory and set theory as theories about complementary types of universals.David P. Ellerman - 2017 - Logic and Logical Philosophy 26 (2):1-18.
    Instead of the half-century old foundational feud between set theory and category theory, this paper argues that they are theories about two different complementary types of universals. The set-theoretic antinomies forced naïve set theory to be reformulated using some iterative notion of a set so that a set would always have higher type or rank than its members. Then the universal u_{F}={x|F(x)} for a property F() could never be self-predicative in the sense of u_{F}∈u_{F}. But the mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. (1 other version)Book "Set theory INC^# based on intuitionistic logic with restricted modus ponens rule".Jaykov Foukzon - 2021 - LAP LAMBERT Academic Publishing.
    In this book set theory INC# based on intuitionistic logic with restricted modus ponens rule is proposed. It proved that intuitionistic logic with restricted modus ponens rule can to safe Cantor naive set theory from a triviality.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Set Theory.Charles C. Pinter - 1976 - Journal of Symbolic Logic 41 (2):548-549.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. A new low: Reassessing (and revising) the local recurrency theory of consciousness.Benjamin Kozuch - forthcoming - British Journal for the Philosophy of Science.
    Local Recurrency Theory (LR) holds that recurrent loops of neural activity localized to the visual cortex are necessary and sufficient for visual consciousness (if certain background conditions obtain). LR’s popularity has recently waned in favor of theories holding that higher-level types of processing are necessary for consciousness (for example, the Global Neuronal Workspace Theory and Higher-order Theory). This has been in part because of empirical evidence thought to disconfirm LR. However, these competing theories now face challenges (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Typicality à la Russell in Set Theory.Athanassios Tzouvaras - 2022 - Notre Dame Journal of Formal Logic 63 (2).
    We adjust the notion of typicality originated with Russell, which was introduced and studied in a previous paper for general first-order structures, to make it expressible in the language of set theory. The adopted definition of the class ${\rm NT}$ of nontypical sets comes out as a natural strengthening of Russell's initial definition, which employs properties of small (minority) extensions, when the latter are restricted to the various levels $V_\zeta$ of $V$. This strengthening leads to defining ${\rm NT}$ as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. On Forms of Justification in Set Theory.Neil Barton, Claudio Ternullo & Giorgio Venturi - 2020 - Australasian Journal of Logic 17 (4):158-200.
    In the contemporary philosophy of set theory, discussion of new axioms that purport to resolve independence necessitates an explanation of how they come to be justified. Ordinarily, justification is divided into two broad kinds: intrinsic justification relates to how `intuitively plausible' an axiom is, whereas extrinsic justification supports an axiom by identifying certain `desirable' consequences. This paper puts pressure on how this distinction is formulated and construed. In particular, we argue that the distinction as often presented is neither well-demarcated (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  43. A Proposal for a Bohmian Ontology of Quantum Gravity.Antonio Vassallo & Michael Esfeld - 2013 - Foundations of Physics (1):1-18.
    The paper shows how the Bohmian approach to quantum physics can be applied to develop a clear and coherent ontology of non-perturbative quantum gravity. We suggest retaining discrete objects as the primitive ontology also when it comes to a quantum theory of space-time and therefore focus on loop quantum gravity. We conceive atoms of space, represented in terms of nodes linked by edges in a graph, as the primitive ontology of the theory and show how a non-local (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  44. Review of: Garciadiego, A., "Emergence of...paradoxes...set theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Indispensability Argument and Set Theory.Karlis Podnieks - 2008 - The Reasoner 2 (11):8--9.
    Most set theorists accept AC, and reject AD, i.e. for them, AC is true in the "world of sets", and AD is false. Applying to set theory the above-mentioned formalistic explanation of the existence of quarks, we could say: if, for a long time in the future, set theorists will continue their believing in AC, then one may think of a unique "world of sets" as existing in the same sense as quarks are believed to exist.
    Download  
     
    Export citation  
     
    Bookmark  
  46. Set Theory INC# Based on Intuitionistic Logic with Restricted Modus Ponens Rule (Part. I).Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (2):73-88.
    In this article Russell’s paradox and Cantor’s paradox resolved successfully using intuitionistic logic with restricted modus ponens rule.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. From Traditional Set Theory – that of Cantor, Hilbert , Gödel, Cohen – to Its Necessary Quantum Extension.Edward G. Belaga - manuscript
    The original purpose of the present study, 2011, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
    Download  
     
    Export citation  
     
    Bookmark  
  48. Neutrosophic Crisp Set Theory.A. Salama & Florentin Smarandache - 2014 - Neutrosophic Sets and Systems 5:27-35.
    The purpose of this paper is to introduce new types of neutrosophic crisp sets with three types 1, 2, 3. After given the fundamental definitions and operations, we obtain several properties, and discussed the relationship between neutrosophic crisp sets and others. Also, we introduce and study the neutrosophic crisp point and neutrosophic crisp relations. Possible applications to database are touched upon.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  49. Set Theory INC_{∞^{#}}^{#} Based on Infinitary Intuitionistic Logic with Restricted Modus Ponens Rule (Part III).Hyper inductive definitions. Application in transcendental number theory.Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (8):43.
    Main results are: (i) number e^{e} is transcendental; (ii) the both numbers e+π and e-π are irrational.
    Download  
     
    Export citation  
     
    Bookmark  
  50.  39
    Summary by an AI of the article The Ontology of Knowledge, Logic, Arithmetic, Set Theory, and Geometry.Jean-Louis Boucon - 2024 - Academia.
    The text “The Ontology of Knowledge, Logic, Arithmetic, Set Theory, and Geometry” by Jean-Louis Boucon explores a deeply philosophical interpretation of knowledge, its logical structure, and the foundational elements of mathematical and scientific reasoning. -/- Here’s an overview condensed by an AI of the key themes and ideas, summarized into a quite general conceptual structure. These two pages are instructive on their own, but their main purpose is to facilitate the reading of the entire article, allowing the reader to (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 952